3 The Quantum Monte Carlo Method.
Simple systems

In this section we shall demonstrate how the density matrix treatment of a system,
S, coupled to a reservoir, may be replaced by a method in which wave functions
are propagated according to the systern Hamiltonian and certain random elements.
The density matrix is then construcied as in Eq.{6)} for an ensemble of such wave
functions, which has to be sufficiently big to yield the expectation values of interest
with sufficiently small statistical uncertainty. Such an approach has two main features
of interest. First, if the relevant Hilbert space of the quantum system has a dimension
N large compared to 1, the number of variables involved in a wave function {reatment
(~ N) is much smaller than the one required for calculations with density matrices
(~ N?). Second, new physical insight may be gained, in particular in the studies of
the behaviour of a single quantum system.

The purpose of this section is to give a general presentation of the Quantum Monte
Carlo method (QMC), and I shall present the method as it has been formulated in
Refs.[3, 4, 5]. The idea of writing the master equation in terms of a stochastic process
for wave functions has been put forward by a number of groups within the last few
years. A, maybe, surprising variation in the mofivation, methods and goals between
these groups exists, and I shall discuss some applications of the theory, also by other
groups.

3.1 Simulations for laser excited two-level atoms

3.1.1 How to do it

We present first the method in the simple case of a two-level atom, states |g)}, le},
coupled to the quantized electromagnetic field {3].

When solving Schrodinger’s equation for the atomic wavefunction we include in the
equation for the excited state amplitude, ¢, a decay term, (€ )decay = mg-ce. This
correction term corresponds to adding the imaginary part —ihI'/2 to the energy of
the unstable excited state, as it is sometimes done in scattering theory to incorporate
decay effects:

thT

Hg — H= Hs — -—z—le)(ei (&7)
We now propagate the wavefunction amplitudes in time, and at each time step, 6t,
we make a choice: either the wavefunction is normalized which is necessary because
the decay term in (47) both reduces the excited state amplitude and the total norm of
the wave function, or the system performs a quantum jump, and the wave funciion is
put equal to the ground state wave function, |g). The jump occurs with probability
8p = Tle.|*6t, which is compared with a number € chosen at random within the interval
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[0,1): if € < &p the jump occurs. This evolution is then repeated over and over again
with a new random number € at each time increment.

In part (&) of Fig.3 is shown the result of such an evolution. The parameters are a
vanishing detuning § between the laser and atomic frequencies, and a Rabi frequency
(0 = 3. We have plotted the excited state population lc.|* as a function of time for a
single wave function, and we see the characteristic Rabi-oscillations of this population.
At different points in time, jumps occur, two are shown in the figure with vertical
dashed lines, and the evolution proceeds. Part (b} of the figure shows the average
population of the excited state for 100 wave functions, and a dotted line indicates
the solution to the master equation for p..(t). It works ! (A formal proof of this is
presented in Section 3.2.2.)
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Figure 3: (a) Time evolution of the excited-state population of a two-level atom in the
QMC approach. The dashed lines indicate the projection of the atomnic wave function
onto the ground state (quantum jump). (b) Excited state population averaged over 100
wave functions all starting in the ground state at time (. The dotted line represents
the master equation result.

3.1.2 A physical interpretation of the procedure

We now discuss the physical content of the QMC procedure. We consider at timet =0
a two-level atom in a superposition of the ground and excited states

1$(0)) = colg) + cele), (48)

and we omit the laser field and put § = 0 so that Hs vanishes in the rotating wave
approximation.

In the QMC formalism, following the first step of the evolution just outlined, we
have at time 6t :

16(58)) = colg) + cee TP ?e). (49)



The probability §p for making a quantum jump is:
6p = Tle|*6t (50)

and this corresponds to the probability for emitting a photon between 0 and &t Indeed,
the wave function |¢()(6t)} in (49) is nothing but the zero-photon component of the
total atom-+field wave function in (12), and the difference, 1 — {¢{1)]|¢V) =~ Tle.|*61 is
the total norm of the remaining one-photon component, having the atom in its ground
state. Thus, our random choice simulates the result of the measurement of the number
of photons emitied between 0 and 5t, and the quantum jump is the projection of the
wave function onto the ground state |g}, associated with the detection of one photon.
In the absence of laser light the wave funciion has no further evolution.

If no quantum jump occurs, the normalized wave function {#(61)) is proportional
to |¢()(6t)). Using the fact that &t is small, we get after normalization:

0600 = o (14 30l ) 1)+ e (1= Tl b (51

We note that there has been a slight rotation of the wave function: the probability
amplitude for being in the ground state has increased, and the one for being in the
excited state-has decreased. The non-hermitian part of the evolution corresponds to
the modification of the state of the system associated with a zero detection result of
the number of emitted photons. The information gained in a zero result ezperiment
and its consequences for the evolution of the system has been emphasised by Dicke

{30].
The rotation following a zero detection result is essential. If it did not occur, i.e.,
if we were to take the wave function

14(62)) = |$(0)}, (52)

the probability for having a quantum jump (i.e. deteclinga photon) between 4t and
26t would be equal to the one between § and 8¢, and this would repeat over and over
until a quantum jump would finally occur. Even for very small values lcel® # 0, one
would then always find that a photon is emitted between t = 0 and t = oo, and this
would clearly be wrong. Due to the slight rotation in (51) however, the probability for
making a quantum jump between §t and 26t is smaller, and it will be further reduced
as no quantum jump occurs in successive time steps. Assuming that no quantum jump
occurred between 0 and t, we can write [¢(t)) as:

colg) + cce ™)
Vicel +lcPe™

The probability P(t) for having no quantum jurnp between 0 and ¢ fulfils the equation

P(t + 8t) = P(t)[L — T8tlcel’e ™™/ (lel” + leel’e™")] - (54)

|6(t)) =

(53)
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and this equation has the solution
P(t) = |es|" + |eel’e ™™, (55)

This shows, as we would have expected, that there is a probability |¢;|* that no jump
occurs between ¢t = 0 and ¢ = cc.

Qur procedure explicitly solves the riddle: How can n atoms, all being initially
in a coherent superposition {48), relax towards the ground state without giving us
n fluorescence photons resulting in a macroscopic violation of energy conservation 7
Answer: only a fraction |c.|? of the atoms decay by photon emission, the remaining
fraction of atoms correspond to the wave function component c¢,lg} @ |0) in (12), i.e.
to atoms being in the ground state already. Our simulation provides a way for these
atoms to “get 1id of” their excited state components without emission of light.

We also note that at any time the ensemble consists of only two kinds of wave func-
tions: the ground state |g) and the state |¢(t)} (53). It is easy to show that the mean
values of products E—E;‘T, t,j = €, g, obey the equations (13). The two wave functions
have no particular relations with the state vectors that diagonalize p. The uniqueness
{up to degeneracies) of the eigenstate basis is also shown to be less important: our
wave functions are not even orthogonal.

Note that the measurement is performed on the reservoir and not on the system
variables. One may invoke the argument [10] that since photons emitted by the atom
play no further rele in its future evolution, they may as well be detected and absorbed,
and this detection leads, by the rules of quantum measurements, to the wavefunction
evolution described. Considering the ensuing evolution of ensemble averages, we have
then obtained an alternative derivation of the master equation.

3.2 General presentation of the QMC procedure
3.2.1 How to do it in the general case

We now present the procedure for evolving wave functions of a general small system so
that the ensemble average in the sense of Eq.(6) can replace the solution to the master
equation (11):

d 1
with Lraaxlp] being of the general Lindblad form (18),

1
Lretazlp] = —3 2((}? Cip + pCF Ci) + E CipCF. (57)

Consider the normalized wave function |¢(t)). In order to get the wave function at
time t + §t, we proceed in two steps:
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Figure 4: The possible quantum jumps in the Monte-Carlo evolution

1. First we calculate the wave function |¢(*)(¢+6t)) obtained by evolving [#(2)) with
the non hermitian Hamiltonian:

A
H=Hs— % 3 CLCn. (58)

This gives for sufficiently small 6¢:

69+ ) = (1= 55 1 (59)

Since H is not hermitian, this new wave function is not normalized. The square

of its norm 1s:
iHY i
#O s o) = ool (1+ 55 (1- B e

il

= 1 6Pi (68)

where 6p reads:
bp = 6t (WO ~ H(0) = 3 bpm (61)
5pm = 6t ($(1)|CLCMI8(t)) > 0. (62)

The magnitude of the step &t is adjusted so that this calculation to first order is
valid; in particular it requires 6p < 1.
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2. The second step of the evolution of |¢) between ¢ and ¢ + 4§t is connected with
the possibility of a quantum jump. In order to decide whether the jump occurs
or not, we choose a random number ¢, uniformly distributed between 0 and 1,
and we compare it with §p. If §p is smaller than ¢, which is most often the case

since ép < 1, no quantum jump occurs, and we take for the new normalized wave
function at t + &t

[1)( + 61))
=5
If € < &p, a quantum jump takes place and we choose the new normalized wave

function among the different states C, [q‘;(t)) according to the probability law
I = &pm/ép:

Sp<e: |p(t+6t) = (63)

Sp>e Pt +6t)) = Cmld(®)) with a probability I, = % (64)

N

For the particular case of a two-level atom coupled to the vacuum electromagnetic
field, these two steps coincide with the ones given above. In Ref.[4] a number of
examples with various possibilities for Hg and the C;-operators are given.

We can also extend the treatment of the no guantum jump periods to the general
case. Suppose that we know that no quantumn jump has occured between 0 and i.
During this period the wave function obeys a non linear differential equation deduced

from (58), (59) and (63):
igﬁ = ( (¢IH e )) |8). (65)

The solution of this equation is, for a time independent Hamiltonian:

= 9(0)
V(BT eI 4 (0))

which generalises (53). This corresponds to an evolution with the non-hermitian Hamil-
tonian between 0 and &
5419

AL = Hig) (67)

|$(t)) = (66)

and a subsequent normalization.

The no-jump evolution and the associated probability, e.g. P{t) in Eq. (55}, have
been considered previously in an analysis of the quantum jump phenomenon in three
level atoms. Dalibard and Cohen-Tannoudji [2] pointed out that P{t) is a delay func-
tion providing the statistics of the time intervals between subsequent emission events.
Identifying two very different time scales, they were able to derive the mstem:e of dark
and bright periods in the fluorescence signal as it had been observed expeﬁmenta.ﬁy
Zoller et.al. [31] gave a nice demonstration of this by numerical simulations.
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If the no-jump conditioned wave function and the delay function are known ana-
lytically, they may constitule a very eflicient simulation scheme: instead of making a
decision at each time step, one applies the no-jump evolution (66) until the delay func-
tion reaches a certain value e. Then a jump is made, following (64), and a2 new random
value of ¢ is chosen, and one repeats the procedure. In fact, this procedure also applies
in the case where P(t) and the wave function have to be determined numerically, and
it may represent a means to avoid exhausting the random number generator, and to
weaken the demands on its uniformity and absence of correlations at very small values
(remember that the jump in (64) occurs only if € < §p < 1)}.

3.2.2 Proof of equivalence with the Master Equation

With the set of rules in Eqs.(58) through (64), we can propagate a wave function |¢(t))
in time, and we now show that this procedure is equivalent to the master equation (56).
More precisely we consider the quantity 3(¢) obtained by averaging o(t) = |¢{t)}{#(t)}
over the various outcomes at time t of the QMC evolutions, all starting in |$#(0)), and
we prove that &(t) coincides with p(t) at all times ¢, provided they coincide at ¢ = 0.

Consider a QMC wave function |¢(2)) at time ¢. At time ¢ + 8¢, the average value
of o(t + 6t} over the evolution caused by different values of the random number € is: - -

gt + 81)) (¢ + 6t)|

vi-8p J1-6p
Cuml8(t)) (4(t)ICh

(v = (1-dp)

o T NN, )
which gives "
7T 80) = o(t) + -{o(t), Hs] + 6t Loamlo()]. (69)

When averaged over the possible values of o(t) this equation is equivalent to the master
equation (56). If we assume that p(0) = |$(0)}{$(0)], 5{t) and p(t) coincide at any time.
In the case where p(0) does not correspond to a pure state, one may first decompose it

as a statistical mixture of pure states, p(0) = ¥ pilx:}{x:i| and choose the initial wave
functions among the |x;) with the weight factors p;.

3.3 Getting good statistics with the QMC method

The master equation approach and the reduced density matrix give access to expec-
tation values (A)(t} = Tr{p(t)A). This is also the primary goal of the QMC method.
Applying the QMC method with n wave functions, we obtain the sample mean:

(Aa(8) = = 369D A19(0). (10)

=1
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This value approximates (A){¢) with a statistical error § An) related to the square root
of the sample variance (AA)? w) bY:

544.(,,} = AA‘:;) (?1)
with: L /o |
B30 = ; (SOOI - (A0 ()

This is illustrated in Fig.3(b), with A = |e){e]. The QMC result is in good agree-
ment with the one derived from the master equation (Optical Bloch Equations). Error
bars inferred from (71) are not shown, but they may be estimated from the fluctuations
of the curve in the figure.

The condition for a good signal to noise ratio {A}/§A(,) can be written

=, DAY
Vvn > ———LL——( () (73)

In order to discuss the requirements imposed by (73), we now distuingish between
two kinds of operators. First there are “local operators”, such as the ones giving the

population of a particular state |j), A = |7){j] and A* = A. For those operators we
expect :

S (A~ 1, N1, (74)
where N denotes the total number of quantum states involved in the simulation. If
we insert these values in (73), we see that the number of simulations n must be larger
than the number of states N. The Monte-Carlo treatment is not efficient in this case
since the amount of calculation for determining 2 single |¢(¢)) is reduced by a factor of
N with respect to the calculation of the density matrix p(t), but one has to perform n
QMC runs to get good siatistics, with n > N.

(A)t) ~

The QMC treatment is more efficient if one deals with “global operators”, such as

the population of a large group of states, or, for the description of laser cooling, the
average kinetic energy. For those operators, we have:

AA(E) ~ (A)(Y). (75)

In this case we see from (73) that good statistics is obtained after n Monte-Carlo runs
as soon as n is much larger than unity. If one requires, say, a 10% accuracy for the
average of global operators, the inequality (73) suggests n ~ 100. Thus, when the
number N of states involved is larger than this number, the QMC treatment should
be more efficient than the master equation approach.



3.4 Doppler cooling

We now consider the example of 1-D) Doppler cooling of a two-level atom, for which we
present some numerical results. This will illustrate the efficiency of the QMC method
as compared with the master equation approach when the number of states is not very
low.

An atom with a transition between levels with angular momenta J, and J, = J, +1
is placed in a o, polarized standing wave. Owing to optical pumping only the Zeeman
sublevels |g,m, = J;) and |e,m. = J,} play a role and for simplicity we denote these
substates |g) and le) in the following. Doppler cooling occurs for negative values of
the detuning § = wy — w4 between the laser and atomic frequencies; it originates
from the fact that a moving atom is closer to resonance with the counterpropagating
component of the wave than with the copropagating one; the atom therefore experiences
a net radiation pressure force opposed to its velocity {32, 33]. This picture works well
at non saturating laser intensities, where one may add the effects of the two waves
independently. At higher intensities this type of semi-classical analysis based on the
calculation of a damping force becomes more complicated {34, 35] and a quantum
treatment of the atomic external motion is a good alternative. We present here the
result of such an analysis using both the master equatlon and the QMC approach.

Within the rotating wave approximation the ha.mﬁtoman Hg reads

Hs = - ~ hQ cos(kZ)(Ie) (g + Ig)(e) — Bblee], (76)

where Z and P are the atomic position and momentum operators and {1 is the Rabi
frequency of each travelling wave forming the standing wave. We choose the initial
wave function |¢{0)) equal to 2 momentum eigenstate |g,p = 0}. At any later time ¢,

|#(t)) is of the form:
18(8) = 3 en(t)lg,p = po + 2nhk) + Ba(t)le,p = po + (2n + 1)iK)  (77)

where the momentum p, depends on the random recoils associated with the sponta-
neous emission events which have occurred between ( and t. The evolution of e, and
B, consists of sequences of two steps. First the wave function evolves linearly with the
non-hermitian Hamiltonian H = Hg — iﬁg—[e) (el:

nhk)?
ia',, = m(?ﬁ_;zﬁﬁ )%_E(ﬁn'}'ﬁn—l) (78)
. 2 Dhk)? 1k
B — ((po+(2ﬂ;) Y st )[S’,,—w—(an-i—%ﬂ) (79)

Then we decide whether a quantum jump occurs. The probability ép for a jump is
proportional to the total excited state population:

5p=TY_ |8l 6t. (80)
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Figure 5: Time evolution of (P*) in Doppler cooling. Time is measured in units of
the excited state lifetime I'! and momenium in units of k. The detuning § and
the Rabi frequency {2 are given by @ = —§ = I'/2. The atomic mass is such that
I' = 2005k*/M. The points represent the Monte-Carlo results, obtained by averaging
over n = 500 evolutions. The error bars correspond to the statistical error é"Pg,.
We have also indicated, by a solid curve, the results of the density matrix approacg..
Both calculations involve 200 quantum states, and require approximately the same
computing time on a scalar machine. We have detailed in the insert the short-time
regime corresponding to the diffraction of the atomic de Broglie wave by the laser
standing wave,

If no quantum jump occurs, we simply normalize the wave function. If a jump occurs,
the momentum Ak’ along the z axis of the fluorescence photon is chosen according to
the probability distribution N(¥) = (1 + (%)2) [39], and the new wave function is
obtained by the action of one of the operators:

Cw = TN (K)e ™ Z|g)(e] (81)
on |#(t)} 7. This leads to:

an(t +81) = pBa(t)
Bu(t+6t) = 0
Po — po— Ak (82)

where u is a normalization coefficient. We note that in this way the recoil due to
spontaneous ermssion is treated in an exact manner. In the master equation approach,
an exact treatment of the spontaneous recoil requires a discretisation of atomic mo-
menta on a grid with a step size small compared to Ak. This increases the amount of

In the master equation the sum over i in Eq.(57) is replaced by an integral over the continuous
variable &',
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Figure 6: Time evolution of the momentum distribution for a single Monte-Carlo wave
function for the Doppler cooling situation described in Fig. 5. The MCWTF extends over

approximately Shk and explores as time goes on all significant parts of the momentum
space.

calculation with the master equation with respect to the QMC one, in addition to the
N? versus N difference.

We have considered the case of sodium atoms (' = 200 Ak?/M), for which the
minimum Doppler cooling limit, obtained for § = —I'/2 and §? « T', corresponds to
Prms. = 8.4khk. We have discretized the momentum in units of Ak between —50 Ak
and +50 Ak which corresponds to a basis with 202 eigenstates, with at any time 101
nonzero coefficients ¢, and S, (see (78,79)). po is either an odd or even multiple of £k
(with our discretization, chosen to make a comparison with the master equation, we

take k' in (82) to be either 0 or +k with probabilities 3/5,1/5,1/5).
The results for the evolution of the sample mean {P?),,, defined as:

=1

(Pl = = 38901 PHO(), (83)

are given in Fig. 5 together with the results for (P?)(¢) obtained using the master
equation treatment. These results correspond to the parameters (! = —§ = I'/2. The
QMC results have been obtained as the average of n = 500 evolutions.

We clearly see in Fig. 5 the existence of two regimes in the evolution of (P?)(t).
At short times, the number of spontaneous events is small, and the physics involved is
essentially the diffraction of the plane atomic de Broglie wave by the grating formed
by the laser standing wave [36]. For longer interaction times, dissipation comes into
play [37, 38] and (P?)(t) tends to a steady-state value, of the order of (11Ak)® . This
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value for pr.m,. is larger than the Doppler cooling limit (8.4 hik) because of saturation
effects.

We have indicated in Fig. 5 the statistical error SP(";‘) on the determination of
(P*}(n)- This quantity JP(Q,,), which was defined in (71,72}, gives an estimate of the
quality of the result, and with n = 500 wave functions, the signal-to-noise ratio in the
range of 20 is quite satisfactory. On a computer we found that the time required for
the calculation with 500 wave functions is equal to the time required for the master
equation evolution. Therefore, even for this relatively simple 1D problem with “only”
200 states, the QMC methed is at least as efficient as the master equation approach
for determining cooling limits with a good precision .

Fig. 6 shows the evolution of the momentum distribution of a single wave func-
tion. The state extends over approximately 5hk and explores, as time goes on, all the
significant parts of the momentum space.

3.5 Other numerical applications
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Figure 7: Temporal evolution of (P*) in a 3D laser configuration formed by three
mutually orthogonal standing waves of circular polarization. Time is given in the
reduced unit, v = kk*t/M. The results have been obtained as an average over 29
Monte Carlo wave functions, and the steady state results, prm, =~ 7.0 + 0.34k along
each axis, are in good agreement with typical experimental values.

One of our motivations for developing the QMC method was to be able to deal with laser
cooling problems where the number of variables is very big. We have now developed a
general program which allows calculations on cooling of atoms with arbitrary angular
momentum values Jy, J, in three dimensional laser field configurations. For practical
reasons we are limited to a finite grid in momentum space, as in the application to
Doppler cooling, and so far the maximum degeneracies considered correspond to J, =
4, J, = 5, the values for a much studied transition in the Cs atom. In Fig.7 we show
results similar to the ones in Fig.5, but for 3D cooling of atoms with J, = 1, J, =2
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[40]. These calculations, performed with 29 wave functions only, give already quite
good prediction for the temperatures. They also show one of the problems in dealing
with statistically scattered data: when has a stationary state been attained, which
variations in the results are physical and which ones are statistical fluctuations ? In
this case we have wave functions with ~ 10° amplitudes, and there is no possibility to
compare with density matrix results as in Fig.5.

Dum et al {9] have applied simulations to the laser cooling of trapped ions in a
regime where comparisons with density matrix results are possible. Carmichael et al
[6, 41] have considered a number of cavity field problems, and groups in Oxford [42} and
in Helsinki [43] have made calculations for ultra-slow atomic collisions in laser fields.
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