
Physics 566 Problem Set #2 
Due: Friday Sep. 12, 2008 

 
Problem 1:  Spin precession in a magnetic field - Heisenberg picture (10 Points) 
Consider a spin 1/2 particle such as an electron in a magnetic field.  Such a particle has 
an intrinsic magnetic moment, described by the operator,   

r ˆ µ = γ s ˆ S , where γs is known as 
the “gyromagnetic ratio”, and S = ˆ S xex + ˆ S yey + ˆ S zez  in the spin 1/2 angular momentum 

operator.  When placed in a magnetic field B, the interaction energy is described by the 
Hamiltonian 

  ̂
 H = −

r ˆ µ ⋅B . 
 

(a)  Show that the Heisenberg equation of motion for the spin operator is  
 

  

d ˆ S 
dt

= −
r 
Ω × ˆ S , where   

r 
Ω = γ sB  

Describe the physical meaning of this differential equation if we take S to be a classical 
angular momentum vector. 
 
(b)  Find the Heisenberg equations of motion for the spherical components ˆ σ z , ˆ σ ±  (do this 
through direct commutation with the Hamiltonian and check with part (a) ).   
 
(c)  Solve this equation for ˆ σ x(t), ˆ σ y (t), ˆ σ z (t)  in terms of the initial operators for the 
particular case the magnetic field is B = Bxex + Bzez .  Use this solution to find the 
trajectory of the Bloch vector   Q(t) =

r 
σ (t)  for the Heisenberg state − z  (this is the 

initial state in the Schrödinger picture).  Sketch the trajectory on the Bloch sphere. 
 
 
Problem 1:  Magnetic Resonance:  Rabi vs. Ramsey  (20 Points) 
     The technique of measuring transition frequencies with magnetic resonance was 
pioneered by I. I. Rabi in the late 30's.  It was modified by Ramsey (his student) about 10 
years later, and now serves as the basis for atomic clocks and the SI definition of the 
second.  All precision atomic measurements, including modern atom-interferometers and 
quantum logic gates in atomic systems, have at their heart a Ramsey type geometry. 
 



(i)  Rabi resonance geometry.  Consider a beam of two-level atoms with transition 
frequency ωeg , passing through an "interaction zone" of length L, in which they interact 
with a monochromatic laser field of frequency ωL. 

E cos(   t)ωL0

L

 
 
(a)  Suppose all the atoms start in the ground-state g , and have a well defined velocity v, 
chosen such that ΩL / v = π , where   hΩ = degE0 .  Plot the probability to be in the excited 
state e ,  Pe, as a function of driving frequency ω L , neglecting spontaneous emission 
(what is the condition that we can do this?).  What is the linewidth?  Explain your plot in 
terms of the Bloch-sphere. 
(b)  Now suppose the atoms have a distribution of velocities characteristic of thermal 

beams: f (v) =
2
v0
4 v

3 exp(−v 2 / v0
2 ) , where v0 = 2kBT / m .  Plot Pe vs. L  for Δ=0, 

(you may need to do this numerically).  At what L is it maximized - explain?  Also plot as 
in (a), Pe as a function of ωL with L = Lmax  .  What is the linewidth?  Explain in terms of 
the Bloch-sphere. 
 
(ii)  Ramsey separated zone method 
As you have seen in parts (a)-(b), assuming one can make the velocity spread sufficiently 
small, the resonance linewidth is limited by the interaction time L/v.  This is known as 
"transit-time broadening" and is a statement of the time-energy uncertainty principle.  
Unfortunately, if we make L larger and larger other inhomogenities, such as the amplitude 
of the driving field come into play.  Ramsey's insight was that one can in fact "break up" 
the π-pulse given to the atoms into two π/2-pulses in a time τ=l/v (i.e. Ωτ = π / 2), 
separated by no interaction for a time T=L/v.  The free interaction time can then made 
much longer. 
 

L
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(b)  Given a mono-energetic atoms with velocity v,  internal state ψ (0) = g ,  and field 
at a detuning Δ <<Ω  so that ˜ Ω ≈ Ω find: 
 ψ (τ = l / v) ,  ψ (τ + T = (l + L) / v) , ψ (2τ + T = (2 l + L) / v)  
and show that mapping of the state on the Bloch-sphere. 
 
(c)  Plot Pe (t final = 2τ + T )  as a function of ωL.  Plot also for the case of finite spread in 

velocity as in (b).  What is the linewidth? 
 
(d)  A Ramsey separated zone geometry is often described as a kind of " interferometer".   
Explain why this makes sense. 
 
 
Problem 3:  Inhomogeneous broadening 
In a typical experiment to observe quantum coherence, one is dealing with an ensemble 
of systems, e.g. atoms in a gas, molecules in a solvent, water in human tissue.   The signal 
one observes is then a sum over all of the members.  Because these ensembles are 
extended in space, they tend to be exposed to inhomogeneous environments.  All 
members are thus not undergoing identical evolutions and we must average some 
distribution function.  The result can lead to a “washing out” of coherent oscillations in 
the signal.  This is NOT however due to a loss of quantum coherence.  Through clever 
techniques one can recover the coherent oscillations an thwart the effects of 
inhomogeneity. 
 
(a)  Free induction decay by inhomogeneous broadening:  Consider a macroscopic 
ensemble of spins in static magnetic field in the z direction, but with an inhomogeneous 
magnitude. If a given spin starts in 

� 

+x  and sees a magnetic field 

� 

B|| , it will Larmor 
precess at 

� 

Ω|| = γB|| (

� 

γ  being the gyromagnetic ratio).  This is known as “free induction” 
as the oscillating spin will radiate as freely rotating magnetic dipole.  This signal will 
decay due to the averaging over different local precession frequencies, 

� 

Ω||.   
Suppose the distribution of 

� 

B||  is Gaussian, with mean 

� 

B0  and rms 

� 

ΔB|| << B0 . 
(i) Calculate and sketch, 

� 

ˆ σ x , averaged over the ensemble, as a function of time. 
(ii)  What the characteristic decay time, known as 

� 

T2
*, due to inhomogeneity. 

(iii)  If the spins all start in 

� 

+z , qualitatively describe how to achieve an approximate 
π/2-pulse to rotate all spins into the state 

� 

+x , despite the inhomogeneity. 
 



(b)  Spin echo:  Though inhomogeneous broadening will cause a decay of the ensemble 
averaged coherence, it is not a truly irreversible process.  A procedure for recovering the 
coherence is known as a “spin echo”. Consider the following pulse sequence. 
 
 
 
The 

� 

π /2-pulse about the y-axis acts according to (a.iii) to bring all spins onto the x-axis 
of the Bloch sphere.  For a time 

� 

τ , the spins dephase.  The 

� 

π -pulse about the x-axis acts 
to time reverse the process.  An “echo” signal will be seen at a time 

� 

τ  later. 
Explain this process using this Bloch sphere.  Sketch the signal 

� 

ˆ σ x . 

� 
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