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Course Aims

The aims of this section of the graduate course are (1) to familiarise you with some of the theory
underpinning modern atomic physics experiments (2) to apply this framework to your own research.

Course Structure

The course consists of 8 lectures, with one lecture each week (9am Tuesday, Sir James Knott Room).
The lectures will take the form of tutorial style discussions of the previous week’s homework and key
points from the notes. The course notes are available here; you will be expected to bring your own
copy to the lectures.

Course Outline

Here I have broken down the course content into seven sections, roughly corresponding to the lectures.
Towards the end of the course the lectures will become more like tutorials as we also discuss the
previous weeks homework etc. the final lecture has been reserved for further analysis of the material
we have covered.

1. The density matrix Including spontaneous emission. The density matrix and density operator.
Master equations.

2. The optical Bloch equations Form of the equations. Steady-state solutions. Time-dependent
solutions and the Bloch sphere.

3. Relating microscopic and macroscopic properties. Doppler broadening, susceptibility,
absorption and refractive index.

4. The three-level atom Optical pumping, Raman transitions and electromagnetically induced
transparency.

5. Basic atomic structure. Revision of basic atomic structure, fine and hyperfine splittings.
Comparison of one and two electron atoms.

6. Atoms in static electric and magnetic fields Nature of the coupling of atoms to electro-
magnetic fields. Multipole expansion; the role of spin. Selection rules.

7. Angular momentum operators and matrix elements Techniques for solving problems in
atomic structure and atom-field interactions.

8. Angular problems in the uncoupled basis This section develops techniques for solving
angular problems in the uncoupled basis using matrix methods.

Core references

• Atomic structure and atoms in external fields: This material is well covered in Elementary
Atomic Structure by Woodgate and Physics of atoms and molecules by Bransden and Joachim.
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• Atom-light interactions: Key books are The Quantum Theory of Light by Loudon, and Atom-
photon interactions: Basic processes and applications by Cohen-Tannoudji, Dupont-Roc and
Grynberg.
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1 THE TWO-LEVEL ATOM

1 The two-level atom

In the first part of the course we will develop the detailed theory of a two-level atom coupled to a
classical light field, using the electric dipole approximation. The treatment we will use is adapted to
intense, monochromatic radiation such as that produced by lasers, where, as we shall see, coherent
effects need to be taken into account. We will develop the theory for a completely coherent interaction
with the light field first, before introducing the density matrix and spontaneous emission. We will
then look at resonance fluorescence and absorption. Finally we will look at extending the treatment
to three-level atoms interacting with two light fields.

1.1 Atom light interactions in the Schrödinger picture

The two level atom is illustrated in Fig. 1. The atom has a ground state g and an excited state e, and
the two states are coupled by an electric dipole transition of frequency ω0. The atom interacts with a
monochromatic radiation field of frequency ω, which can be detuned by an amount ∆ = ω − ω0 from
resonance.

The evolution of this system is governed by the time-dependent Schrödinger equation

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (1)

The atomic wavefunction at any time t can be written

Ψ(r, t) = cg(t)|g〉+ ce(t)|e〉e−iω0t (2)

and the Hamiltonian is Ĥ = Ĥ0 + V̂ , where Ĥ0 is the Hamiltonian of the unperturbed atom with
eigenstates |g〉 and |e〉, and V̂ = d̂ · E.

Substituting 2 into 1 yields two coupled differential equations for the coefficients cg(t) and ce(t)

i~
dcg(t)

dt
= ce〈g|d̂ · Ê|e〉e−iω0t (3)

i~
dce(t)

dt
= cg〈e|d̂ · Ê|g〉e+iω0t. (4)

For a plane wave, the electric field can be written as Ê = ε̂E0 cos(kr− ωt). Substituting this into the
equations 3 and 4 leads us to the definition of a key parameter for atom light interactions. The Rabi
frequency

Ω =
E0

~
〈e|d̂ · ε̂|g〉 (5)

describes the strength of the coupling between the atom and the electric field. It increases with
increasing intensity, and for a given intensity it is dependent on the atomic states and the polarization
through the dipole matrix element.

The coupled equations 3 and 4 can now be written as

i~
dcg(t)

dt
= ce~Ω∗

(
ei(ω−ω0)t + e−i(ω+ω0)t

2

)
(6)

i~
dce(t)

dt
= cg~Ω

(
ei(ω0+ω)t + e−i(ω−ω0)t

2

)
. (7)

where we have used the exponential form of cos(ωt). Up to this point, the treatment, within the
approximation of only two energy levels, has been exact. We now make an important approximation
that is known as the Rotating Wave Approximation. We assume that terms like e−i(ω+ω0) that
oscillate at roughly twice the frequency of the driving field can be eliminated, as their time dependence
averages out over the much slower timescale of the evolution of the coefficients cg and ce. This
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1 THE TWO-LEVEL ATOM
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Figure 1: The two-level atom. The two energy levels are separated by a transition with frequency ω0.
The atom is driven by a monochromatic plane wave of frequency Ω. Two key parameters govern the
dynamics of the atom-light interaction - the detuning ∆ = ω − ω0 and the Rabi frequency Ω which
describes the strength of the atom-field coupling.

approximation is routinely made, and it is a good approximation close to resonance, and if the driving
is weak (Ω� ω).1

Retaining only terms like ei(ω−ω0)t, we introduce the other key parameter for atom-light interac-
tions: the detuning ∆ = ω−ω0 which, along with the Rabi frequency, will control the time evolution
of this system. The two coupled equations can now be written

i~
dcg(t)

dt
= ce~Ω∗

ei∆t

2
(8)

i~
dce(t)

dt
= cg~Ω

e−i∆t

2
. (9)

The easiest way to solve these equations is to differentiate again with respect to t which yields the
following pair of (uncoupled) equations for the coefficients:

d2cg
dt2
− i∆cg

dt
+

Ω2

4
cg = 0 (10)

d2ce
dt2

+ i∆
ce
dt

+
Ω2

4
ce = 0 (11)

1.1.1 Rabi oscillations

If we assume that at t = 0, cg = 1 and ce = 0, then equations 10 and 11 can be solved to give the
following expression for the probability to be in the excited state |ce(t)|2 :

|ce(t)|2 =
Ω2

Ω′2
sin2

[
Ω′t

2

]
(12)

where Ω′ =
√

Ω2 + ∆2. The probability to be in state |e〉 undergoes Rabi oscillations at frequency
Ω′, as shown in Fig. 2. On resonance, a pulse of duration T = π/Ω is known as a “π-pulse”. If the
atom is initially in the ground state, then a π-pulse transfers it to the excited state. If the duration
of the pulse is halved T = π/(2Ω) then, we obtain a “π/2-pulse”, which transfers atoms initially in
the ground state into an equal linear superposition of the ground and excited state. These pulses are
very important in Ramsey spectroscopy, which is used in atomic clocks, and in quantum information
processing where these types of pulses are examples of single qubit operations.

1Be careful however, as away from the context of CW optical spectroscopy the RWA is frequently violated. A good
example is in the RF dressing of magnetic potentials to make novel atom traps.
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1 THE TWO-LEVEL ATOM

qubit using Ramsey spectroscopy. We apply two ! /2 pulses
separated by a variable time t, with a fixed value of the
Raman detuning ". In the limit "#$1 where # is the ! /2
pulse length, the population measured in the !1" state varies
as P#t$=cos2#"t /2$. The results of this measurement with #
=1.2 %s and "=2!&20.8 kHz are shown in Fig. 3. The con-
trast of the interference fringes decays as the time between
the two ! /2 pulses is increased, with a 1/e decay time of
approximately 370 %s due to dephasing of the atomic qubit
compared to the Raman beams. The dephasing mechanisms
that operate in optical dipole traps have been extensively
studied %23&. In our case, the dominant dephasing mechanism

arises from the finite temperature of the atoms in the trap.
Due to the 6.8 GHz hyperfine splitting, the detuning of the
dipole trap ' is slightly different for the !0" and !1" states,
which therefore experience slightly different ac Stark shifts.
This gives rise to a position dependence of the qubit transi-
tion frequency (#r$=(hf+)U#r$ /*, where the differential ac
Stark shift coefficient )#'(hf /'$=7&10−4 for our trap. Av-
eraged over the motion of the atom in the trap, this effect
shifts the detuning " between the atomic resonance and the
Raman beams by an amount which is different for each atom
in a thermal ensemble, depending on its energy. As shown in
%23&, this gives rise to a decay of the contrast with a charac-
teristic #1/e$ decay time T2

*=1.94* /)kBT. We measure a
dephasing time of T2

*=370 %s, which is longer than the the-
oretical value T2

*=220 %s that we would expect at 90 %K.
By varying the temperature we have confirmed that the
dephasing is due to the motion of the atom, although this
quantitative disagreement remains unexplained.

The dephasing due to the motion of the atoms in the trap
can be reversed using the spin-echo technique %23,24&. An
additional population-inverting ! pulse applied midway be-
tween the two ! /2 pulses ensures that the phase accumulated
during the second period of free evolution is the opposite of
that acquired during the first. The echo signals that we obtain
are shown in Fig. 4. The echo signal decays due to the decay
of the populations #T1 processes$ and the loss of atoms to
other Zeeman states, as well as irreversible dephasing caused
by fluctuations in the experimental parameters. To illustrate
this, we repeated the spin echo experiments with a reduced
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FIG. 2. Single-atom Rabi oscillations. We measure the fraction
of atoms in F=1 as a function of the Raman pulse length, at low #a$
and high #b$ intensity. We observe damped Rabi oscillations be-
tween the two qubit states with Rabi frequencies of +=2!
&18 kHz #a$ and +=2!&6.7 MHz #b$. In #b$ we could not ob-
serve the first 400 ns due to the response time of the acousto-optic
modulator. The error bars correspond to the quantum projection
noise.
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FIG. 3. Ramsey fringes recorded with a ! /2 pulse length of
1.2 %s and a detuning "=2!&20.8 kHz. The solid line is a fit
using the model presented in %23&, which yields a dephasing time
T2

*=370 %s. The dotted line is the envelope of this fit.
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FIG. 4. #a$ Example of the echo signal. We fix the time between
the first ! /2 pulse and the ! pulse at T=5 #left$ and 15 ms #right$,
and vary the time of the second ! /2 pulse around t=2T. The trap
depth is U=0.4 mK, and the magnetic field is B=0.18 mT. #b$ Echo
signal contrast as a function of the total time between the ! /2
pulses with U=1.2 mK and B=0.36 mT #open squares$ and U
=0.4 mK and B=0.18 mT #filled circles$. The dashed and solid
lines are exponential fits with 1/e decay times of 13±2 and
34±5 ms, respectively.

FAST QUANTUM STATE CONTROL OF A SINGLE… PHYSICAL REVIEW A 75, 040301#R$ #2007$
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Figure 2: Rabi oscillations measured using a single 87Rb atom trapped in an optical dipole trap.
The F = 1,mF = 0 → F = 2,mF = 2 transition at 6.8 GHz is driven using a two-photon Raman
transition. In (a) the Rabi frequency is Ω = 2π × 18 KHz and in (b) it is Ω = 2π × 6.7 MHz. The
damping is due to the finite temperature of the atoms in the trap. From [1]

1.1.2 AC Stark shifts

We can reformulate equations 8 and 9 to remove the explicit time dependence on the right hand side.
Let us define new coefficients c′g = cg and c′e = cee

i∆t. In terms of these new coefficients, the equations
of motion become

i~
dc′g
dt

= c′e
~Ω

2
(13)

i~
dc′e
dt

= c′g
~Ω

2
− c′e~∆. (14)

and the Hamiltonian can be written as2

Ĥ =
~
2

[
0 Ω
Ω −2∆

]
. (15)

We can diagonalise this Hamiltonian to find the eigenvalues and eigenvectors. The eigenvalues are

Ee =
~
2

(
−∆−

√
Ω2 + ∆2

)
; Eg =

~
2

(
−∆ +

√
Ω2 + ∆2

)
(16)

Far from resonance where Ω � |∆| we can expand the square root, and we find that each state

experiences a shift ∆E = ~Ω2

4∆ that is proportional to the light intensity. The shift of the ground and
excited states have opposite sign, and the overall sign depends on the sign of the detuning ∆. This
shift is known as the AC Stark shift or the lightshift, and is exploited in optical dipole traps for cold
atoms.

The new eigenvectors can be written as

|e′〉 = cos θ|g〉 − sin θ|e〉 ; |g′〉 = sin θ|g〉+ cos θ|e〉 (17)

where cos 2θ = −∆/Ω′. These states are known as the dressed states; the bare atom has been “dressed”
by the off-resonant laser field. Each dressed state is a coherent superposition of the two bare eigenstates
|g〉 and |e〉.

2Here we have chosen to write the Hamiltonian matrix as if it operated on a vector {cg, ce} (i.e. the element in the
top-left corner is the energy of the ground state). In this convention, we must identify state |e〉 with spin down and
|g〉 with spin up if we are to use the conventional form of the Pauli spin matrices. In other words, the ground state
|g〉 appears at the top of the Bloch sphere. This convention is used by Loudon, but the opposite is used in Cohen-
Tannoudji, Dupont-Roc and Gryndberg, “Atom-photon interactions”. Of course both conventions yield the same optical
Bloch equations.
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2 SPONTANEOUS EMISSION AND THE DENSITY MATRIX

2 Spontaneous emission and the density matrix

In the Schrödinger picture that we have considered thus far, the application of the classical light field
causes the atom to oscillate between the ground and excited states. If we think in terms of energy
transfer, then the conservation of energy implies that energy must be transferred to and from the
monochromatic external light field. The processes that exchange energy with the driving field are
known as absorption and stimulated emission. In this picture, an atom prepared in the excited state
at t = 0 remains in the excited state, unless the external field is present to drive the atom.

In reality of course, atomic excited states have finite lifetimes. They decay by spontaneous emission
- the emission of a photon into the empty modes of the electric field surrounding the atom. To describe
atom-light interactions properly, we must include this process. Formally, we would need to write a
Hamiltonian for our system that includes not only the coupling to the classical external driving field,
but also to all the other electric field modes. To attack the problem in this way requires the techniques
of quantum optics, which are beyond the scope of this course.

Instead we consider our atom as an isolated two level atom that is coupled to an environment (all
the rest of the electric field). We don’t care about the state of the environment, only about the state
of our atom. The coupling between the atom and the environment is irreversible - when the atom
spontaneously emits a photon it is “lost”. The appearance of this irreversibility is an unavoidable
consequence of our partial knowledge of the overall quantum state of the system+environment. The
evolution described by the Schrödinger equation is symmetric in time, so we must look beyond this if
we are to make progress.

2.1 The density matrix

2.1.1 Pure states and mixed states

Consider a beam of atoms prepared in an equal superposition state, for example by a π/2 pulse. The
state of each atom can be completely described by the wavefunction

|Ψ〉 =
1√
2

(|g〉+ |e〉) , (18)

and the state of the N atoms in the beam can be described as a product of these wavefunctions:

|Ψbeam〉 = (|Ψ〉)N . (19)

This state, where it makes sense to talk about a wavefunction, is called a pure state [2].
Each atom in the beam passes through a device3 that gives a click if the atom is in |e〉 and no click

if it is in |g〉. What is the outcome of the measurement? if the atoms are in an equal superposition, we
expect a click 50% of the time on average, with the clicks randomly distributed in time. Now consider
the state of the atoms (and the beam) after the measurement. The measurement projects each atom
in the beam into one of the two states so

|Ψ〉 = |g〉 OR |Ψ〉 = |e〉. (20)

The beam therefore consists of a stream of atoms that are randomly in one state or the other, with
equal probability. The beam is in a statistical mixture of the two states. This state cannot be described
by the wavefunction Ψbeam; in fact it cannot be described by a wavefunction at all. This type of state
is called a mixed state. Note that this mixed state would still give a click 50% of the time on average
if we were to repeat the measurement further downstream. How do we distinguish therefore between
the state Ψbeam and this statistical mixture? How can we represent them both in the same formalism?
The answer is the density matrix

3For example, we could couple one of the states (but not the other) to a strong optical transition, and measure the
fluorescence. Using this technique, ion trap experiments can make projective measurements on individual ions with
> 99.9% fidelity [3]
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2 SPONTANEOUS EMISSION AND THE DENSITY MATRIX

2.1.2 The density matrix for for pure states

The density operator for a state is
ρ̂ = |Ψ〉〈Ψ| (21)

which is more conveniently written as a matrix - the density matrix, which for our two-level atom is

ρ̂ =

(
ρgg ρge
ρeg ρee

)
=

(
cgc
∗
g cgc

∗
e

cec
∗
g cec

∗
e

)
. (22)

Asterisks (∗) denote the complex conjugate. Each element is the product of two probability amplitudes.
The diagonal matrix elements are the square of a probability amplitude, and are therefore straightfor-
ward to interpret as the probability of finding an atom in a particular state. The off-diagonal matrix
elements are called it coherences. To see why this is the case let us consider the expectation value of an
operator Â acting on a state Ψ〉 = cg|g〉+ ce|e〉. One obtains 〈A〉 = |cg|2Agg + |ce|2Aee+ 2Re(c∗gcgAeg).
The coherences describe the visibility of the interference, or cross-term, which depends on the relative
phase between the states |g〉 and |e〉.

The density matrix for the pure state we considered above is ρ̂ =

(
1/2 i/2
−i/2 1/2

)
. The coherences

are not zero, and indeed if we applied a second π/2 pulse we can observe interference fringes in the
probability to be in each of the two states.

2.1.3 The density matrix of mixed states

The huge advantage of the density matrix is that it can also describe mixed states. The density matrix
for a mixed state is defined as

ρ̂ =
∑
i

wi|Ψi〉〈Ψi|, (23)

where wi is the classical probability of being in state i. The density matrix is always diagonal for a

completely mixed state. The density matrix for our atoms after the measurement is

(
1/2 0
0 1/2

)
.

The coherences have vanished. The coherences have vanished, and I would see no fringes on applying
a second π/2 pulse.

2.2 The time evolution of the density matrix and spontaneous emission

If the evolution can be described in terms of of a Hamiltonian, then it can be easily shown that the
time evolution of the density matrix is governed by the following equation:

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
(24)

where the term in square brackets is the commutator of the density operator and the Hamiltonian.
This equation is called Liouville’s equation; and it is equivalent to the Schrödinger equation.

However, the density matrix formalism also allows us to include processes which can’t be described
using a Hamiltonian, which allows us to include the effects of spontaneous emission. If the excited
state |e〉 decays at rate Γ, then the time evolution of the populations due to spontaneous emission is

dρee
dt

= −dρgg
dt

= −Γρee. (25)

The effect of spontaneous emission on the coherences is less obvious; here will just quote the result
and refer to the literature for justification.

dρeg
dt = −Γ

2 ρeg , −dρge
dt = Γ

2 ρge (26)

The full equation of motion for the density matrix, including the Hamiltonian part due to the inter-
action with the external field and spontaneous emission is

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
−
(
−Γρee

Γ
2 ρge

Γ
2 ρeg Γρee

)
. (27)
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3 THE OPTICAL BLOCH EQUATIONS
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Figure 3: This figure illustrates the effects of coherent evolution and spontaneous emission. A single
atom held in a dipole trap was illuminated by a 4 ns laser pulse (shaded region), and then left to
evolve. Fluorescence photons emitted by the atom were collected by a lens and detected with high
timing resolution. The amount of fluorescence depends on the population of the excited state. During
the pulse, the laser drives Rabi oscillations between the ground and excited state. At the end of the
laser pulse, the excited state population decays with the 27 ns lifetime of the excited state. From [4]

.

The most useful references for this section of the course are Ch. 5 of Atom-photon interactions by
Cohen-Tannoudji et al. and Ch 2. of The Quantum Theory of Light by Loudon.

3 The optical Bloch equations

At the end of the previous section we wrote down the following matrix equation for the evolution of
the density matrix:

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
−
(
−Γρee

Γ
2 ρge

Γ
2 ρeg Γρee

)
. (28)

Using the time-independent form of the Hamiltonian that we introduced in the previous section

Ĥ =
~
2

[
0 Ω
Ω −2∆

]
, (29)

we can expand the commutator and write out this matrix equation as a system of coupled differential
equations

˙̃ρgg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρ̃ee (30)

˙̃ρee = − iΩ
2

(ρ̃ge − ρ̃eg)− Γρ̃ee (31)

˙̃ρge = − iΩ
2

(ρ̃ee − ρ̃gg)− i∆ρ̃ge −
Γ

2
ρ̃ge (32)

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + i∆ρ̃eg −

Γ

2
ρ̃eg (33)

These equations4 are known as the optical Bloch equations.. Their solutions have been studied
extensively; analytical solutions are possible in only a few special cases, but the equations can be
solved numerically by standard techniques. In addition to these equations, the elements of the density
matrix must obey two other constraints: the sum of the populations ρ̃gg+ ρ̃ee = 1, and the off-diagonal
matrix elements are complex conjugates (ρ̃ge = ρ̃∗eg). In fact, only three independent components need
be considered, which we can write as the components {u, v, w} of a vector known as the Bloch vector,
where

u =
1

2
(ρ̃ge + ρ̃eg) v =

1

2i
(ρ̃eg − ρ̃ge) w =

1

2
(ρ̃gg − ρ̃ee) . (34)

4Here the tilde is used to denote the fact that we have used the time-independent form of the Hamiltonian. Bear in
mind also that we have made the rotating wave approximation
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3 THE OPTICAL BLOCH EQUATIONS

We can attach a physical significance to each of the three terms: w is proportional to the difference in
the populations of the ground and excited state, and u and v are respectively proportional to the in
phase and quadrature components of the atomic dipole moment, as we will show later. The differential
equations describing the evolution of the Bloch vector are easily derived from equations 30. The Bloch
vector has a maximum of unit length, and in the absence of spontaneous emission this unit vector
defines a point on the Bloch sphere as shown in Fig. 4. The effect of spontaneous emission is to
“collapse” the Bloch sphere; the Bloch vector no longer has unit length and the sphere eventually
shrinks to a single point as all the atoms end up in the ground state.

3.1 The steady-state solution

By setting the time derivatives to zero, we obtain the steady-state solutions for constant Ω. They can
be written as:

uss =
∆

Ω

S

1 + S
vss =

Γ

2Ω

S

1 + S
wss =

1

2

(
S

1 + S
− 1

)
(35)

where we have introduced the saturation parameter S

S =
Ω2/2

∆2 + (Γ2/4)
=

s

1 + 4∆2/Γ2
, (36)

where the on-resonant saturation parameter s = I/Isat. The saturation intensity Isat is a commonly
used way of describing the strength of a transition, as it is conveniently related to things that can be
measured in the lab. It can be written as

Isat =
2π2~Γc

3λ3
(37)

and can be thought of as an energy (photon energy hc/λ) per unit time (lifetime 1/Γ) per unit area
(the resonant cross-section is approximately λ2). For D lines of the alkali metals, Isat ≈1 mW cm−2.

3.2 Properties of the steady-state solution

The steady-state population of the excited state is

ρ̃ee = wss + 1/2 =
1

2

s

1 + s+ 4∆2/Γ2
. (38)

Let us compare this solution with the Rabi solution that we discussed previously. There, the ap-
plication of a constant driving field led to Rabi oscillations, and on resonance, the population could
be transferred completely from the ground state to the excited state and back. In the presence of
damping, oscillations are no longer observed5. Instead the population reaches a steady state given
by equation 38. The maximum population of the excited state is ρ̃ee = 1/2, which is attained only
asymptotically as the laser intensity is increased. This effect is known as saturation6.

From equation 38, we can calculate the scattering rate R

R(I,∆) = Γρ̃ee =
Γ

2

s

1 + s+ 4∆2/Γ2
. (39)

This expression for the scattering rate is one of the key results of the Bloch equation treatment. As
an example, consider the measurement of the number of atoms N in a cloud of laser-cooled atoms.
Applying a resonant probe beam causes the atoms to fluoresce, and we can collect the fluorescence
and image it onto a photodiode. If the total collection efficiency of our detection system (including
the sold angle and the photodiode calibration is ε, then the photodiode signal SPD = RN/ε.

The scattering rate has a Lorentzian lineshape, with width Γ′ =
√

Γ2(1 + s) At low intensity
(s� 1), the width is set by the natural linewidth Γ. At higher intensity, the width increases and the
line becomes power broadened.

5In the homework you will show that coherent dynamics can only be observed on timescales that are short compared
to Γ. See also the graphs of Rabi oscillations followed by spontaneous decay in the previous section.

6It is important to note that saturation arises because the system is closed; the only decay mechanism transfers
population back to the ground state. In the case of solid state systems or molecules, there may be no closed transitions,
and decay may occur to many different states. In this case, saturation may not occur
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4 RELATING THE MICROSCOPIC AND MACROSCOPIC

w

v

u u

v

w(a) (b)

Figure 4: The three components of the Bloch vector can be used to define a point in a three-dimensional
space {u,v,w}. In the absence of spontaneous emission, these points are constrained to lie on a sphere,
called the Bloch sphere. By numerically solving the optical Bloch equations, we can plot the evolution
of the system as a trajectory on the Bloch sphere. In this case, (a) and (b) both show trajectories
for a double π/2-pulse Ramsey-type experiment. The first π/2 pulse rotates the Bloch vector into the
equatorial plane, corresponding to an equal superposition of the ground and excited state. A period
of free evolution follows. As there is a finite detuning ∆, the Bloch vector rotates in the equatorial
plane. Depending on the length of the free evolution, the second π/2 pulse transfers a varying amount
of the population to the excited state

3.3 Time-dependent solutions

The optical Bloch equations can be solved numerically in the case of a time-dependent driving field.
Figure 4 shows the numerical solution for the three components of the Bloch vector for a Ramsey type
experiment, where two π/2 pulses are separated by a period of free evolution. You will investigate
some time-dependent solutions in one of the homeworks.

4 Relating the microscopic and macroscopic

The optical Bloch equations allow us to calculate the state of a single two-level atom interacting with
a classical light field. In this section we will investigate how we can relate this microscopic theory for
a single atom to the observations such as absorption spectra that we make in the lab. We will start by
looking at the macroscopic theory of dielectrics7, which will lead us to introduce the susceptibility as
the key parameter that describes the absorptive and dispersive properties of the medium. By relating
the susceptibility to the dipole moment of a single atom, we will make the connection between the
macroscopic properties of the medium and the theory for single atoms that we have developed so far.

4.1 The susceptibility

The response of a dielectric (in this case an ensemble of two-level atoms) to an external electric field
~E can be written as

~P = ε0χ(ω) ~E. (40)

The constant of proportionality χ(ω) is called the susceptibility of the medium, and the factor of ε0
ensures that χ is dimensionless. Here we have assumed that the electric polarization ~P (dipole moment
per unit volume), is proportional to the applied field - in other words that we are dealing with linear
optics. For intense fields the polarization can depend on higher orders of the electric field, giving rise
to the domain of nonlinear optics8.

7If you are not familiar with this, then a good reference is Classical Electrodynamics by Jackson.
8We have also assumed that the medium is isotropic, such that the induced field is parallel to the applied field. In

crystals this is not always the case, and the susceptibility becomes a tensor. We have also assumed that the medium

10



4 RELATING THE MICROSCOPIC AND MACROSCOPIC

The susceptibility is frequency dependent, and it is complex; the real part describes the dispersive
properties and the imaginary part describes the absorption. Inside the medium, Maxwell’s equations
must be rewritten in terms of the electric displacement vector ~D = ε0 ~E + ~P = ε0 ~E + ε0χ~E = εrε0 ~E,
where the dielectric constant, or relative permittivity, is εr = 1+χ. Plane wave solutions propagate at
a modified speed v = 1

√
εrµr, and we are led to introduce the refractive index n =

√
εrµr =

√
εr, where

we have used the fact that the magnetic response of the medium is negligible at optical frequencies
(this essentially the same as the electric dipole approximation). Now, the refractive index modifies
the propagation of a plane wave in the following way: ~E = ~E0e

i(kz−ωt) → ~E = ~E0e
i(nkz−ωt). A natural

extension is to allow the refractive index to be complex, i.e. n = nR + inI. In this case, we obtain
~E = ~E0e

i(kz−ωt) → ~E = ~E0e
i(nRkz−ωt)e−(knIz). The imaginary part leads to an exponentially decaying

amplitude and therefore describes absorption. We can relate the imaginary and real parts of χ to the
corresponding parts of the refractive index as follows:

n =
√

1 + χ ≈ 1 +
χ

2
(41)

∴ nR = 1 +
χR

2
; ni =

χI

2
(42)

Thus, if we can calculate the susceptibility, then the absorptive and dispersive properties of the medium
follow.

Before we examine the calculation of the susceptibility, we note that the dispersive and absorptive
properties are inextricably linked. They are related by the Kramers-Kronig relations,

χR(ω) =
2

π

∫ ∞
0

ω′χI(ω
′)

w′2 − ω2
dω′ (43)

χI(ω) = −2ω

π

∫ ∞
0

χR(ω′)

w′2 − ω2
dω′, (44)

which can be derived from fundamental considerations of the theory of complex functions and the
principle of causality. As such they hold generally, and in particular they are independent of any
model (linear or nonlinear) for χ.

4.2 The dipole moment of a single atom

The approach that we take to calculating the susceptibility is to first calculate the polarisation ~P
from the dipole moment of a single atom, and then use equation 40 to obtain an expression for the
susceptibility. The dipole moment of a single atom can be calculated from the optical Bloch equations.
To do this we make use of the general result that the expectation value of any operator Â is given by
〈A〉 = Tr(ρ̂Â).

As we have already seen, the dipole operator can be written as d̂ =

(
0 dge
deg 0

)
where dge =

〈g|d̂ · ε̂|e〉E0. Therefore we find

〈d〉 =Tr(ρ̂d̂) = dge(ρge + ρge) (45)

=dge(ρ̃gee
−iωt + ρ̃ege

iωt) (46)

=2dge(u cosωt− v sinωt). (47)

We can now identify u and v as respectively proportional to the components of the atomic dipole in
phase and in quadrature with the incident field. Re-writing equation 40 as ~P = 1

2ε0
~E(χe−iωt+χ∗eiωt)

we have

responds instantaneously, and that there are no ferroelectric effects (permanent dipole moment).
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Figure 5: Normalised absorption χI(∆)/χI(0) (red) and dispersion χR(∆)/χI(0) (blue) as a function
of detuning ∆, with Γ = 1 and Ω = 0.1.

~P = n〈d̂〉 =
1

2
ε0 ~E(χe−iωt + χ∗eiωt) (48)

ndge(ρ̃gee
−iωLt + ρ̃ege

iωLt) =
1

2
ε0 ~E(χe−iωt + χ∗eiωt) (49)

∴ χ =
−2ndge
ε0

ρ̃ge, (50)

where n = N/V is the atomic number density. An important point to note is that the atomic dipole
and are related to the off-diagonal matrix elements ρ̃ge,eg of the density matrix. This result can be
generalised in a relatively straightforward way to obtain the susceptibility in cases involving more than
two levels [5].

4.3 The susceptibility of a two-level atom

The steady-state susceptibility can be found by noting thatρ̃ge = u − iv, and substituting equations
35 into equation 489 . Splitting the result into real and imaginary parts, one finds:

χR =
2ndge
ε0

u = −
nd2

ge

~ε0
∆

∆2 + Γ2/4 + Ω2/2
(51)

χI =− 2ndge
ε0

v =
nd2

ge

~ε0
Γ/2

∆2 + Γ2/4 + Ω2/2
(52)

where we have used ~Ω = −dge. The real and imaginary parts of the steady-state susceptibility are
plotted as a function of detuning in Fig. 5. The absorption has a familiar Lorentzian lineshape. The
dispersion however is quite different: it is an odd function, which changes sign exactly on resonance.
The dispersion is positive below resonance, and negative above resonance. The shape of this curve
is known as a “dispersion lineshape” and it is intimately related to the Lorentzian lineshape of the
absorption via the Kramers-Kronig relations.

4.4 Saturated absorption

In our discussion of susceptibility, we wrote that the electric field after propagating a distance z
through the atomic vapour is ~E = ~E0e

i(nRkz−ωt)e−(knIz). The intensity I = I0e
−αz, where α is known

9In other words, the real part of χ (dispersion) arises from the component of the atomic dipole that is in phase with
the driving field, and the imaginary part (absorption) arises from the quadrature component.
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4 RELATING THE MICROSCOPIC AND MACROSCOPIC

as the absorption coefficient. Using the relation I = 1
2ε0cE

2 we can identify that

α = 2knI (53)

= kχI. (54)

The amount of light absorbed by a slab of atoms of thickness dz = αdz, and so the transmission
through the medium is governed by the differential equation

1

I

dI

dz
= −kχI (55)

⇒ dI

dz
= −I

knd2
ge

~ε0
Γ/2

∆2 + Γ2/4 + Ω2/2
(56)

Re-writing this in terms of the on-resonant saturation parameter s we obtain

dI

dz
= −n~ωΓ

2

s

1 + s+ 4∆2/Γ2
. (57)

The absorption coefficient α is intensity dependent - despite considering a linear model for the suscep-
tibility at the beginning, we have ended up with a non-linear response of the medium. It is interesting
to consider the extremes of low and high intensity. At low intensity s� 1 and equation 57 becomes

1

I

dI

dz
= −n~ω

Isat

Γ

2

1

1 + 4∆2/Γ2
. (58)

The solution of this equation yields the well-known Beer Lambert law: the intensity decays expo-
nentially with distance propagated through the medium. In the high-intensity limit s � 1 and we
have

dI

dz
= −n~ωΓ

2
. (59)

The solution in this regime is I = I0 − zn~ωΓ/2 - there is a linear decrease in absorption with
distance propagated. It is straightforward to show that as the intensity increases, saturation causes
the medium to transmit a significantly larger fraction of the incident intensity. In other words, the
absorption becomes saturated. The physical origin of this effect becomes apparent if we note that we
can derive equation 57 by considering the rate at which light is scattered out of the medium. The
power scattered by a single atom is ~ωR = ~ωΓρee, and by considering the power scattered out of the
beam by a slab of density n and thickness dz one obtains equation 5710. As you have shown in the
homework, the excited state population ρee and hence the scattered power saturates at high intensity.
As the medium cannot scatter any more light, the transmission increases. This principle underlies one
of the most important forms of sub-Doppler spectroscopy, known as saturated absorption spectroscopy,
which you will look at in the homework.

10Its often a good sign if energy in = energy out
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Figure 6: Examples of optical pumping in 87Rb. (a) Hyperfine pumping. The transition F = 1 →
F ′ = 2 is clearly not closed, and driving this transition will pump population into the F = 2 ground
state hyperfine level. (b) Zeeman pumping. It is also possible to pump atoms into an individual mF

state. here circularly polarised light pumps the atoms into the F = 2,mF = 2 state. Note that only
some of the spontaneous decay paths are shown for clarity.

5 Beyond two levels

In this section we will look at the effects of moving beyond the two-level atom approximation. In
the first part we will consider optical pumping - an important incoherent effect that arises from the
availability of more decay channels. In the second part we will consider some of the coherent effects
that can arise when three levels and two laser fields are involved. These include electromagnetically
induced transparency (EIT) and Raman transitions.

5.1 Optical Pumping

Let us consider once again our favourite transition - the D2 line in 87Rb. The energy level diagram
is shown in Fig. 6. Now imagine that i start with atoms that are all in the lowest energy level: the
F = 1 hyperfine ground state. Note that there is only one possible closed transition from this level11.
If we excite to the F ′ = 2 state, then this energy level can decay to the F = 2 sublevel in the ground
state, as well as the original F = 1 sublevel. Crucially, once the atom is in F = 2, it is no longer
resonant with the laser, and it will stay there. As a result, the population accumulates in F = 2. This
is known as optical pumping; we say that the population has been pumped into the F = 2 state by
the laser. As it relies on spontaneous emission, this transfer process is incoherent (it does not setup
additional off-diagonal elements in the density matrix). The transfer can in principle be close to 100%
efficient12 - ALL the atoms can be transferred to F = 2. Therefore optical pumping is often used
for state preparation. Optical pumping can also be a problem in some experiments. Laser cooling
experiments in Rb use the F = 2 → F ′ = 3 closed transition. However, off-resonant excitation of
the other hyperfine levels is possible, and this leads to optical pumping into the F = 1 level, and an
additional repump laser must be used to empty this state and return the atoms to the to the cooling
cycle.

Optical pumping can also be used to prepare atoms in a particular mF sublevel by controlling
the light polarization. Consider a circularly polarised beam resonant with the F = 2 → F ′ = 3
transition as shown in Fig. 6(b). The quantization axis is defined by a magnetic field applied along
the propagation direction of the beam, such that it drives σ+ transitions with ∆mF = +1. A sequence
of absorption and spontaneous emission cycles will pump the atom into the “stretched state” |F =
2,mF = +2〉, where it will cycle on the completely closed F = 2,mF = 2→ F ′ = 3,mF = 3 transition.
Other optical pumping schemes are possible where the final state is a “dark state” which is no longer
coupled to the laser beams, which have the advantage that once pumped, the atoms are not heated
by spontaneous emission.

11which one?
12what effects might prevent 100% transfer?
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Figure 7: The three possible arrangements of three levels and two fields: (i) “ladder” or “cascade” (ii)
“lambda” (iii) “vee”.

5.2 The three-level system

To look at coherent effects in multi-level atoms, we will add one more level and one more laser field to
the two-level atom that we have discussed so far. It is possible to derive optical Bloch equations for
this three-level system, which you will look at in the homework, and which provide a unified theoretical
framework. Here we will discuss in more general terms the physical effects that can be observed in
this system. Two very useful articles on this subject are [5] and [6].

There are three distinct ways that the three levels and two laser fields can be arranged, as shown
in Fig 7. In this section we will consider the “lambda” and “cascade” systems, as it is difficult to see
coherent effects on the “vee” system.

5.3 Dressed states revisited - Autler-Townes splitting

Consider a cascade or ladder system of levels. The lower two levels |a〉 and |b〉 form a closed two-level
system identical to that which we have studied previously. In the dressed state picture, coupling these
two-levels with a strong resonant probe laser field Ωp leads to two new eigenstates, which are separated
by ±Ωp/2. Now let us add a weak coupling laser which probes the transition from |b〉 to |c〉. As state
|b〉 is present in both dressed states, they are both coupled to |c〉 by the laser. If we measure the
population in |c〉, for example by using fluorescence, then we will observe a doublet of spectral lines,
where the splitting is governed by the probe Rabi frequency Ωp, as shown in Fig 8. This is called the
Autler-Townes splitting.

5.4 Interference in the dressed state picture - CPT and EIT

Keeping this picture of dressed states in mind, let us turn to the “lambda” scheme. Let the states
|b〉 and |c〉 be coupled by a strong laser field Ωc. As in the previous example, a weak probe beam
on the |a〉 to |b〉 transition interacts with the dressed states of the coupled system. There are two
possible excitation pathways from |a〉 to |b〉, via each of the two dressed states. If the probe beam
is exactly on resonance, then the probability amplitudes for each of these pathways are equal and
opposite, and they can cancel. In other words, instead of the probe beam being strongly absorbed
exactly on resonance, it is transmitted. the medium has become at least partially transparent to the
probe beam; this effect is commonly known as electromagnetically induced transparency.

To understand this in a little more detail, it is useful to look at the dressed states of the three-
level system. We will follow (with a slight change in notation) the treatment presented in [6]. The
Hamiltonian can be written as13

Ĥ =
~
2

 0 Ωp 0
Ωp −2∆p Ωc

0 Ωc −2(∆p −∆c)

 (60)

where ∆p and ∆c are respectively the detuning of the probe and coupling lasers. The form of this
Hamiltonian is simple to understand; the four elements in the top left corner refer to the probe

13This Hamiltonian is written for the “slow variables” i.e. we have transformed out terms like eiωt.
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5 BEYOND TWO LEVELS

Figure 8: Autler-Townes doublet observed in ladder system using a beam of Na atoms. The probe
laser (A) is tuned exactly on resonance, and the coupling laser (B) is scanned across the |b〉 → |c〉
transition. The splitting increases as the probe laser frequency is increased. Figure from [7].

transition and are identical to the Hamiltonian we obtained for the two level atom. All we have done
in the remainder of the matrix, is to add the coupling of levels |b〉 and |c〉, and the (relative) energy
of state |c〉.

The eigenstates of this Hamiltonian can be expressed in terms of mixing angles. For two-photon
resonance (∆c = ∆p = ∆) the mixing angles can be written as

tan θ =
Ωp

Ωc
(61)

tan 2φ =

√
Ω2
p + Ω2

c

∆
(62)

and the three eigenstates are:

|ψ+〉 = sin θ sinφ|a〉+ cosφ|b〉+ cos θ sinφ|c〉 (63)

|ψ0〉 = cos θ|a〉 − sin θ|c〉 (64)

|ψ−〉 = sin θ cosφ|a〉 − sinφ|b〉+ cos θ cosφ|c〉. (65)

The two states Ψ+ and Ψ− contain a component of the excited state |b〉, whereas the state Ψ0 does not.
If an atom is prepared in Ψ0 there is no possibility of excitation to |b〉 and subsequent spontaneous
emission:- it is a dark state. In contrast Ψ+ and Ψ− do give rise to fluorescence; they are the dressed
states responsible for the Autler-Townes doublet described above.

How much each of the three eigenstates is populated depends on the evolution of the system.
For example, the dark state can be populated by optical pumping. In this case population steadily
accumulates in the dark state where it is trapped - an effect known as coherent population trapping.
Alternatively, the dark state can also be populated adiabatically. Consider a weak probe beam for
which Ωp � Ωc, or θ ≈ 0. In this limit, the dark state ψ0 becomes identical to the ground state |0〉, and
excitation cannot occur. If Ωp is increased sufficienty slowly, the population will remain in the dark
state as θ and φ evolve. It is this effect that gives rise to electromagnetically induced transparency.
Adiabatic evolution can also be exploited to transfer population efficiently from |a〉 to |c〉 without ever
populating |b〉 in a technique known as stimulated Raman adiabatic passage or STIRAP [8].

A more complete description of all these effects (CPT, EIT and STIRAP) can be obtained by solv-
ing the optical Bloch equations for the three-level system, which we will investigate in the homework.
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Before we move on to off-resonant effects, it is important to note that similar effects can be observed
using a ladder scheme of energy levels. At first glance, this is not surprising given that it just involves
a re-labelling of states in the Hamiltonian. However, in our discussion of the lambda scheme we have
implicitly assumed that the state |a〉 and |c〉 are stable. This is not the case in a ladder scheme, where
decay from |c〉 → |b〉 and from |c〉 → |a〉 becomes possible, and must be taken into account.

5.5 Raman transitions

So far, we have considered both lasers to be close to resonance with their respective optical transitions
i.e. ∆p = ∆c ≈ 0. Another important limit occurs when the one-photon detuning ∆ = ∆p + ∆c is
very large (∆ � Ωc,Ωp), but the two-photon resonance condition (δ = ∆c − ∆p = 0) is met. Some
insight into this regime can be gained by looking at the dressed states in the limit of large ∆. We
obtain

|ψ+〉 =|b〉 (66)

|ψ0〉 = cos θ|a〉 − sin θ|c〉 (67)

|ψ−〉 = sin θ|a〉+ cos θ|c〉. (68)

As the lasers are far from one -photon resonance, the excited state |b〉 is not significantly populated.
Levels |a〉 and |b〉 behave like an isolated two-level system with an effective Rabi frequency that
depends on both the probe and coupling lasers. More rigourously, one can show [9] that the excited
state |b〉 can be “adiabatically eliminated” from the optical Bloch equations, which reduce to the Bloch

equations for a coherent two-level system with an effective Rabi frequency Ω′ =
ΩpΩc

∆ . In other words,
the lasers drive an off-resonant, two-photon transition between the states |a〉 and |c〉, which in this
ideal limit does not populate |b〉 and lead to spontaneous emission. Note that as this is a two-photon
transition, the usual electric dipole selection rules are modified. In particular, it is possible to drive
Raman transitions between states with ∆L = 0, which means that Raman transitions can be used
to drive transitions between the hyperfine ground states of the alkalis. Raman transitions crop up
throughout modern atomic physics, as they can be used to perform qubit operations, for cooling and
for many other high-precision spectroscopy experiments. They are also important in condensed matter
systems, where they are often used to couple light with phonons.
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6 BASIC ATOMIC STRUCTURE

6 Basic atomic structure

This part of the graduate course is a revision of the origin of the basic structure of atomic energy
levels. A detailed discussion is beyond the scope of these lectures; you are referred to Woodgate and
Bransden and Joachim for more details.

6.1 Gross structure

The gross structure of atomic energy of hydrogen is of course obtained from the solution of the
Schrödinger equation for a Coulomb potential. The resulting wavefunctions can be written as a
product of a radial wavefunction that depends on two quantum numbers - the principal quantum
number n and the orbital angular momentum l, and an angular wavefunction that depends on l and
its projection ml. At this level of approximation, all states of a given n are degenerate in l, and the
energy levels are given by the Rydberg formula:

EH = hc
R

n2
(69)

where Rinf is the Rydberg constant. For alkali atoms, a modified version of the same equation can be
written:

ERb = hc
RRb

(n− δl)2
(70)

where δl is known as the quantum defect which arises because the outer valence electron no longer
experiences a pure Coulomb potential. The quantum defect is l dependent, breaking the degeneracy
observed in hydrogen. This equation is a good description of the energy levels for Rydberg states
where n > 10. The quantum defects determine many of the properties of Rydberg atoms, including
their behaviour in external fields and their interactions [10].

6.2 Fine structure

The fine structure is a result of relativistic effects that are not described by the Schrödinger equation.
The most important of these is the intrinsic angular momentum, or spin s, of the electron. The electron
spin can couple to the orbital angular momentum of the electron via the spin-orbit interaction

ĤFS =
∑
i

ξi l̂i · ŝi (71)

where ξi is a constant that depends on the radial wavefunction of the electron, and we sum over the
i valence electrons (the sum over closed shells is zero). This leads naturally to the introduction of
another quantum number: the total angular momentum of each electron ji, and the eigenstates of
the spin-orbit Hamiltonian are the eigenstates of the ĵi = l̂i + ŝi (see problems). For a single valence
electron, we do not need to worry about the summation. The fine structure splitting of Rb is illustrated
in Fig. 9. The fine structure leads to a splitting of the 5P state, giving a doublet of spectral lines that
are commonly labelled D1 and D2.

For two or more electrons, the situation is slightly more complicated, as one must compare the size
of the fine structure splitting to other effects that occur due to the Coulomb interaction between the
two electrons. This interaction also lifts the degeneracy of different spin states in a given configuration
(e.g. 5s5p). In general this interaction is much larger than the fine-structure splitting. This situation
is known as L-S coupling. In this case the residual Coulomb interaction splits the 5s5p configuration
into two terms: 1P and 3P . Within each term, L and S remain good quantum numbers, and the fine
structure Hamiltonian can be written as

ĤFS = AFSL̂ · Ŝ (72)

This leads to a splitting of the three different J states associated with 3P term. We will look at the
effect of the breakdown of L-S coupling in the homework
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Figure 9: The hierarchy of energy scales illustrated for 87Rb, showing how the levels split as we add
the fine and hyperfine interactions. Detailed numbers for energies, splittings and wavelengths for Rb
can be found in [11].

.

6.3 Hyperfine structure

Hyperfine structure is the result of the interaction between the electrons and the nucleus. The domi-
nant effects that give rise to a splitting of the energy levels are the magnetic dipole interaction and the
electric quadrupole interaction. We will discuss these further in the discussion of multipole expansions
in the lecture notes, and in next weeks homework. Here as an example we will consider the hyperfine
splitting of s states (e.g. Rb ground state) where the quadrupole term vanishes.

The magnetic dipole interaction is the interaction between the magnetic dipole µI associated with
the nuclear spin I and the magnetic field produced by the orbiting electrons at the nucleus Bel

Ĥhfs = −µ̂ · B̂el. (73)

As the hyperfine splitting is smaller than all electronic energy scales14, this interaction takes the form
of a coupling between the nuclear spin I and the total electronic angular momentum j

Ĥhfs = AÎ · Ĵ . (74)

This is analogous to the LS coupling described above, and in a similar way we are lead to define a
new total angular momentum F̂ = Î + Ĵ , which commutes with the Hamiltonian of equation (74).
For atoms with a S = 1/2 ground state like Rb, this leads to a splitting into two hyperfine levels as
shown in 9.

Traditionally, most atomic physics experiments have been carried out with the alkali metals which
have only one valence electron. However, atoms like Sr and Yb which have two valence electrons are
becoming increasingly important. We will look at why this is and some of the differences between one
and two electron atoms in the lecture and the homework.

It should also be noted that multi-electron systems are common in solid-state systems such as
quantum dots, and the concepts discussed in the homework such as intercombination transitions are
very important there also.

7 Atoms in electromagnetic fields

In this section we will very briefly consider the origin of the Hamiltonians that we use commonly use
in atomic physics to describe the coupling between atoms and static fields, and between atoms light.

14there are exotic systems where this is not true, such as highly ionized heavy atoms
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A more detailed treatment is given in Woodgate and Bransden and Joachim. In all cases we will use
a semiclassical treatment, where the electromagnetic field is not quantised.

7.1 The interaction Hamiltonian

A general approach15 to the problem of atoms interacting with electromagnetic fields starts with the
scalar and vector potentials φ and A. This treatment starts with the general form of the Hamiltonian
for a charged particle in and electromagnetic field

Ĥ =
1

2m
(p̂− qÂ)2 + qφ (75)

from which is its possible to obtain the following approximate Hamiltonian that describes the coupling
of a one electron atom to the electromagnetic field

Ĥ =
−i~e
m

Â · ∇̂. (76)

If we consider the case of plane polarised electromagnetic waves than the vector potential can be
written as

Â(r, ω, t) = ε̂A0(ω) (exp [i(k · r− ωt] + c.c.) (77)

where ε̂ is the polarization unit vector. The matrix elements coupling the ground |g〉 and excited |g〉
states therefore have the form 〈e|e−ik·rε̂ · ∇̂|g〉.

The next step is to expand the exponential

e−ik·r = 1 + (ik · r) +
1

2!
(ik · r)2 + · · · (78)

For the optical transitions that we are interested, the wavelength of light is much larger than the
size of the atom, and kr is small. Therefore we retain only the first term in the expansion. This
approximation is known as the electric dipole approximation.

As you will show in the homework, under this approximation the interaction Hamiltonian can be
written as

Ĥ = D̂ · Ê (79)

where D̂ = e
∑

j r̂j is the atomic dipole operator, and the electric field is written as Ê = ε̂E cos(ωt).

7.1.1 Electric dipole selection rules

The selection rules that describe which transitions are allowed in the electric dipole approximation
are determined by the angular parts of the electronic wavefunction. I will briefly discuss them here:

Parity The electromagnetic interactions conserves parity. The operator r̂ has odd parity. The dipole
matrix element can therefore only connect states of opposite parity, in order for parity to be
conserved overall.

l From the properties of the angular part of the wavefunctions, one can show that the dipole
matrix element is zero unless ∆l = ±1.

mL Similarly, it can be shown that ∆m = 0 or ∆m = ±1 depending on the polarization of the light
relative to the projection axis.

Spin The dipole operator does not act on the spin part of the wavefunction, so this remains unchanged.

15The approach that I follow here is used by Bransden and Joachim and Woodgate. An alternative development based
on the electric and magnetic fields E and B is presented in Loudon
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8 ANGULAR MOMENTUM OPERATORS AND MATRIX ELEMENTS

7.1.2 Higher order transitions

If the dipole matrix element vanishes, the transition may still occur through higher order processes.
Retaining the next term i(k · r) in the expansion gives rise to magnetic dipole and electric quadrupole
transition. Both terms are of the same order of magnitude and much weaker than an electric dipole
transition. Magnetic dipole transitions of this kind are very rare (one example is transitions between
the ground state fine structure levels of the halogen atoms). Magnetic dipole transitions can also occur
via the coupling of the magnetic field with the electron spin. A very important example of this is
the microwave transitions between the hyperfine ground states of the alkali atoms, which are used in
atomic clocks. In the optical domain, electric quadrupole transitions are sometimes used in frequency
standards, such as the Sr+ ion [12]. Using trapped ions, electric octupole transitions [13] have even
been observed!

7.2 Atoms in static electric and magnetic fields

The same Hamiltonians govern the interaction between atoms and static electric and magnetic fields.
Let us look at this on more detail.

7.2.1 Static magnetic fields

It can be shown that (Bransden and Joachim chapter 5) that to a very good approximation, the
interaction Hamiltonian for an atom in a static magnetic field is of magnetic dipole form

ĤB = −µB

~
(L̂+ 2Ŝ) · B̂ − µN

~
Î · B̂ (80)

where µB is the Bohr magneton, and µN is the nuclear magneton. The operator notation for B
reflects the fact that the magnetic field has a direction. The magnetic field couples to the magnetic
dipole associated with the orbital angular momentum L and the intrinsic angular momentum S of the
electrons. The factor of two in front of the spin is the gyromagnetic ratio of the electron which can be
calculated using the fully relativistic Dirac equation. There is also a coupling to the nuclear spin I,
which is much weaker as µN/µB = me/mp. This term can only sometimes be neglected however 16.

7.2.2 Static electric fields

Here once again it is the dipole term
ĤE = D̂ · Ê (81)

that dominates, as laboratory electric fields do not vary appreciably across the size of the atom. The
dipole selection rules apply for the matrix elements, and states with different values of the projection
mJ along the field direction are not coupled, as it is impossible to make circularly polarized static
fields.

8 Angular momentum operators and matrix elements

The types of problems that you will come across in atomic structure, or the interaction of atoms
with static fields, will involve calculating the matrix elements of combinations of angular momentum
operators, such as Î · Ĵ or B̂ · Ŝ. In this section of the course, we will look in more detail at the
structure of these calculations and how they can be carried out.

Often, in calculations of atomic structure or atom-field interactions, we are interested in calculating
the splitting or shifts of energy levels withiin a single configuration (ie a single value of n and l), where
the radial part of the matrix element is the same for all the states concerned. In this case, we need
to calculate the angular parts of the matrix elements of operators such as Î · Ĵ for the states that we
are interested in.

16It is after all responsible for all of NMR including its use in medical imaging!
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8 ANGULAR MOMENTUM OPERATORS AND MATRIX ELEMENTS

To follow this discussion more easily, let us take a concrete example, which you will solve as part of
the lectures. The Hamiltonian governing the Zeeman splitting and hyperfine structure in the ground
state of the alkali metals such as Rb can be written as:

Ĥ = AÎ · Ĵ − 2µBB̂ · Ŝ (82)

where we have used the fact that L = 0, and neglected the interaction of the nuclear spin with the
magnetic field. We will assume that the magnetic field is applied along the z axis, in which case the
second term becomes −2µBBŜz, where Sz is the operator that projects the spin along the magnetic
field axis.

8.1 Working in the coupled basis

One way to tackle the problem is to start with the eigenfunctions of Ĥ at zero magnetic field. In this
case, the total angular momentum F̂ = Î + Ĵ is a good quantum number. For an alkali atom with
electronic spin S = 1/2, there are thus two eigenstates F = I + 1/2 and F = I − 1/2. The challenge
then is to calculate the matrix elements of the Zeeman Hamiltonian in the F,mF basis. The matrix
elements that we need to calculate have the form 〈F ′,m′F |Ŝz|F,mf 〉. As the operator Sz acts in the
S,ms subspace, we must decompose the |F,mF 〉 states into the |S, I,ms,mI〉 basis. For example, in
the 87Rb ground state where I = 3/2 we have

|F = 1,mF = +1〉 =

(
−
√

3

2

)∣∣∣1
2
,
3

2
,−1

2
,+

3

2

〉
+

(
1

2

) ∣∣∣1
2
,
3

2
,+

1

2
,+

1

2

〉
(83)

where the numerical factors in parenthesis are Clebsch-Gordan coefficients. The operator Ŝz can then
be applied to each part of the state in turn. The advantages of working in the coupled basis is that
you do not necessarily need to be able to write down the full Hamiltonian - only the energies of the
states before the field is applied are required. However the angular momentum algebra required can
become very complex, particularly when more than one level of decoupling is required (ie when F
must be decoupled first into I, J and then again into I, S, L). The first homework uses the coupled
basis.

8.2 Working in the uncoupled basis

In the uncoupled basis the states are labelled according to their coarse structure quantum numbers
n and ` and the magnetic quantum number for each component of angular momentum (orbital m`,
electron, ms, and nuclear, mI , spin). Thus the state labels are |n` : m`msmI〉 In this basis the atomic
Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥfs + Ĥhfs + Ĥ ′ , (84)

where H0 is a diagonal matrix consisting of the coarse structure energy levels, En`. Hfs and Hhfs are
the fine and hyperfine interactions, and H ′ is the interaction induced by the external field. Ignoring
Hfs, Hhfs and H ′, each n` level has a degeneracy of Dn` = (2`+ 1)(2I + 1)(2s+ 1), consequently the
Hamiltonian for each n` level can be written as a sub-matrix of dimension Dn` × Dn`. Eigenvalues
and eigenvectors of the total Hamiltonian can then be obtained via matrix diagonlisation.

8.2.1 Examples

For I = 1/2, ` = 0, e.g. the hydrogen ground state, the unperturbed s-state matrix Hs is a 4× 4 with
elements 〈i, j|H0 +Hfs +Hhfs|i, j〉, where |i, j〉 are the spin states∣∣ms = +1

2 ,mI = +1
2

〉
= |+,+〉 , (85)

|+,−〉, |−,+〉, and |−,−〉. Similarly, for ` = 1, Hp is a 12 × 12 where the four spin components are
repeated for each m` state.
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The advantage of this method is that it is not necessary to carry out lengthy angular momentum
algebra, and the physics of each interaction can be introduced in a straightforward way. The disad-
vantage is that knowledge of the complete fine and hyperfine Hamiltonians is needed, rather than just
the eigenenergies. In addition, the hamiltonian rapidly becomes too large to construct and manipulate
analytically, so computer methods should be used.

The coupled basis is therefore useful for analytic calculations, or where the exact details of the
fine and hyperfine operators are not known. The uncoupled basis lends itself to exact numerical
calculations for large groups of states on a computer. The next section details how such calculations
in the uncoupled basis can be carried out in practice, and in the homework you will apply these
techniques to the calculation of the Breit-Rabi diagram for Rb.

9 Angular problems in the uncoupled basis: the Breit-Rabi diagram

This section of the notes introduces the techniques that you need for performing calculations in the
uncoupled basis using a computer. We will illustrate the technique by calculating the behaviour of
the 87Rb hyperfine levels in a magnetic field. These notes and the computer codes were developed by
Prof. Charles Adams.

9.1 Spin matrices

To construct the fine and hyperfine interaction matrices in the uncoupled basis we use the standard
techniques for adding angular momenta. The first step is to write down the spin matrices for an
arbitrary angular momentum j.

All angular momentum operators satisfy the same set of commutation rules and we can derive the
general result (for an arbitrary angular momentum j, see e.g. Ballantyne, p. 121)

ĵ+|j,m〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉 ,

where ĵ+ = ĵx + iĵy. Consequently the matrix ĵ+ is only non-zero along the upper diagonal with
elements

√
j(j + 1)−m(m+ 1), e.g. for j = 3

2 we have (note that it is the m value along the top
that is used to calculate the matrix element):

3
2

1
2 −1

2 −3
2

3
2 0

√
3 0 0

1
2 0 0

√
4 0

−1
2 0 0 0

√
3

−3
2 0 0 0 0

.

ĵ− is given by the transpose of ĵ+, and

ĵx = 1
2(ĵ+ + ĵ−) ,

ĵy = − i
2(ĵ+ − ĵ−) ,

ĵz = 1
2(ĵ+ĵ− − ĵ−ĵ+) .

Using these results one can construct a function (e.g. for matlab the function spin.m17 is given below)
that returns the matrix components for any spin or angular momenta.

17function s=spin(j)
d=2*j+1; m=j-1:-1:-j; jm=sqrt(j*(j+1)-m.*(m+1));
sp=full(sparse(1:d-1,2:d,jm,d,d));
sm=full(sparse(2:d,1:d-1,jm,d,d));
s=(sp+sm)/2;s(:,:,2)=(-sp+sm)*i/2;
s(:,:,3)=(sp*sm-sm*sp)/2;
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9.2 Adding angular momenta

Once we have built the matrices for an arbitrary angular momentum it is easy to add two or more
angular momentum. The components of the sum of two angular momenta, e.g., j1 and j2, in matrix
form are given by

Ĵi = ĵ1i ⊗ 12j2+1 + 12j1+1 ⊗ ĵ2i ,
where 12j+1 is a unity matrix with dimension 2j + 1. First we will do one example analytically for
the simplest case of two spin−1

2s, (e.g. the 1H ground state), and then develop a general method for
any state. This approach offers an alternative insight to the standard Clebsch-Gordan, 3-j and 6-j
symbol formulism.

9.2.1 Two spin−1
2s.

Consider two spin−1
2 particles (labelled 1 and 2). Each particle may be either in the ‘spin-up’ state,

|↑〉 or the ‘spin-down’ state, |↓〉. We write the wavefunction of the first spin as |ψ〉1 = a1|↑〉 + b1|↓〉,
and similarly for the second. We can also write this as a vector,

|ψ〉1 =

(
a1

b1

)
, and |ψ〉2 =

(
a2

b2

)
.

The combined state of the two spins is

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 = a1a2|↑↑〉+ a1b1|↑↓〉+ a2b1|↓↑〉+ a2b2|↓↓〉

or in vector notation

|ψ〉 =

(
a1

b1

)
⊗
(
a2

b2

)
=


a1a2

a1b2
b1a2

b1b2

 ,

where ⊗ is a tensor product (make copies of the second matrix with positions and prefactors given
by the first). An operator in this 4-dimensional vector space is given by a 4× 4 matrix. We want to
construct the operator corresponding to the total angular momentum. The angular momentum of a
spin−1

2 (in units of ~) is Ĵ = 1
2 σ̂, where σ̂ = (σ̂x, σ̂y, σ̂z) is a ‘spinor’ with components equal to the

Pauli spin matrices. The total angular momentum is given by the sum of the contributions from each
particle,

Ĵ = 1
2(σ̂1 ⊗ 12 + 12 ⊗ σ̂2) , (86)

where 12 is a 2 × 2 unity matrix. Note that the operator order specifies which term acts on which
spin: e.g. σ̂⊗ 12 means that we apply σ̂ to the first particle and the identity matrix (i.e. do nothing)
to the second; whereas 12 ⊗ σ̂x means do nothing to the first particle and apply σ̂x to the second.
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To construct the matrix for Ĵ
2

consider each component separately,

Ĵx = 1
2(σ̂x ⊗ 12 + 12 ⊗ σ̂x) (87)

= 1
2

[(
0 1
1 0

)
⊗
(

1 0
0 1

)
+

(
1 0
0 1

)
⊗
(

0 1
1 0

)]

= 1
2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 ,

Ĵy = 1
2(σ̂y ⊗ 12 + 12 ⊗ σ̂y)

= 1
2

[(
0 −i
i 0

)
⊗
(

1 0
0 1

)
+

(
1 0
0 1

)
⊗
(

0 −i
i 0

)]

= 1
2


0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

 , (88)

Ĵz = 1
2(σ̂z ⊗ 12 + 12 ⊗ σ̂z)

= 1
2

[(
1 0
0 −1

)
⊗
(

1 0
0 1

)
+

(
1 0
0 1

)
⊗
(

1 0
0 −1

)]

= 1
2


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 . (89)

Next, we square the matrices18

Ĵ2
x = 1

4


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



= 1
2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .

18We could have avoided squaring a 4× 4 matrix by making use of σ̂2
x = 1 and σ̂x1 = σ̂x2 = σ̂x, to rearrage (87) as

Ĵ2
x = 1

4
(σ̂x ⊗ 1 + 1⊗ σ̂x)2

= 1
4
(σ̂2

x ⊗ 1 + σ̂x ⊗ σ̂x + σ̂x ⊗ σ̂x + 1⊗ σ̂2
x)

= 1
2
(1⊗ 1 + σ̂x ⊗ σ̂x) ,

Substituting

σ̂x ⊗ σ̂x =

(
0 1
1 0

)
⊗
(

0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

we obtain,

Ĵ2
x = 1

2
(1⊗ 1 + σ̂x ⊗ σ̂x) = 1

2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .
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Similarly,

Ĵ2
y = 1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 ,

Ĵ2
z = 1

2


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

 ,

and the total angular momentum

Ĵ
2

= Ĵ2
x + Ĵ2

y + Ĵ2
z =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 .

To find the eigenvalues we put∣∣∣∣∣∣∣∣
2− λ 0 0 0

0 1− λ 1 0
0 1 1− λ 0
0 0 0 2− λ

∣∣∣∣∣∣∣∣ = 0 .

which gives
(2− λ)2(λ2 − 2λ) = 0 ,

giving three eigenvalues with λ = 2 and one with λ = 0. As the eigenvalues of the total angular
momentum are J(J + 1), these correspond to J = 1 and J = 0, respectively. For λ = 0

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




a
b
c
d

 = 0 ,

which gives a = d = 0 and c = −b, i.e., the eigenvector is

|0, 0〉 = 1√
2


0
1
−1
0

 ,

where we have used the label |j,m〉 for the eigenvector, with m being the eigenvalues of Ĵz. We will
verify the m quantum numbers below. For λ = 2

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0




a
b
c
d

 = 0 ,

so either a = 1, b = c = d = 0, or a = d = 0 and b = c, or d = 1, a = b = c = 0, i.e., the eigenvectors
are

|1, 1〉 =


1
0
0
0

 , |1, 0〉 = 1√
2


0
1
1
0

 , and |1,−1〉 =


0
0
0
1

 .
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What about Ĵz? Using (89) we find

Ĵz|1, 1〉 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1




1
0
0
0



= 1


1
0
0
0

 = 1|1, 1〉 .

Similarly, Ĵz|1,−1〉 = −1|1,−1〉, Ĵz|1, 0〉 = 0, and Ĵz|0, 0〉 = 0.
For the hydrogen ground state the total angular momentum is labelled as F and its projection

as mF . By finding the eigenvectors of the total angular momentum matrix F̂ 2, we have related the
eigenstates in the coupled basis, labelled |F,mF 〉 (which also happens to the eigenbasis of the hyperfine
interaction), to those in the uncoupled basis |mI ,ms〉. This relationship between the coupled and
uncoupled states is shown in the lower half of Fig. 10

( )−+++−=
2
10,1

( )−+−+−=
2
10,0

++−++−−−++−−+−=
3
10

6
10

6
1

3
10,1

++−−+−+−++−−+−=
3
10

6
10

6
1

3
10,0

−−−−+−=− 0
3
1

3
21,1 ++−+−+= 0

3
1

3
21,1

−−=−1,1 ++=1,1

Figure 10: The decomposition of the 2S1/2 (lower) and 2P1/2 (upper) |F,mF 〉 states in terms of the
uncoupled states, |mI ,ms〉 or |m`,mI ,ms〉, for a nuclear spin I = 1/2.

9.2.2 A spin−1
2 and a spin−1.

In this case, we are not adding the angular momentum of two separate particles, but different contri-
butions to the same particle, however the addition works in the same way, i.e., for the x-component,
we write

Ĵx = L̂x ⊗ 12S+1 + 12L+1 ⊗ Ŝx ,
where Ŝx = 1

2 σ̂x, 12S+1 and 12L+1 means do nothing to the S and L parts of the wavefunction,
respectively. Using the spin commutation relations, Section 9.1 we find that

L̂x = 1√
2

 0 1 0
1 0 1
0 1 0

 , L̂y = 1√
2

 0 −i 0
i 0 −i
0 i 0

 ,

L̂z =

 1 0 0
0 0 0
0 0 −1

 .

As L̂z has eigenvalues 1, 0,−1 we now have 6 basis states,

|ψ〉 = a|++〉+ b|+−〉+ c|0+〉+ d|0−〉+ e|−+〉+ f |−−〉 ,
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using the labelling |m`,ms〉. Writing out the 6 × 6 matrices is too much like hard work so we resort
to our favourite software (matlab or mathematica). You should verify that the matrix for the total
angular momentum is

Ĵ2 =



15
4 0 0 0 0 0

0 7
4

√
2 0 0 0

0
√

2 11
4 0 0 0

0 0 0 11
4

√
2 0

0 0 0
√

2 7
4 0

0 0 0 0 0 15
4

 .

As expected this has two eigenvalues of 3
4 and four of 15

4 . The eigenvectors are

|12 ,−1
2〉 = −

√
2
3 |−+〉+

√
1
3 |0−〉

|12 ,+1
2〉 = −

√
2
3 |+−〉+

√
1
3 |0+〉

|32 ,−1
2〉 = −

√
2
3 |0−〉 −

√
1
3 |−+〉

|32 ,+1
2〉 =

√
2
3 |0+〉+

√
1
3 |+−〉

|32 ,−3
2〉 = |−−〉 and |32 ,+3

2〉 = |++〉 .

9.2.3 Adding nuclear spin.

Once we have added L and S to form J we can add the nuclear spin in the same way, i.e.,

F̂x = Ĵx ⊗ 12I+1 + 12J+1 ⊗ Îx ,

etc. For the 2P1/2 state, we find that the hyperfine sub-levels |F,mF 〉 can be written as the following
superpositions

|0, 0〉 = − 1√
3
|+−−〉+ 1√

6
|0+−〉+ 1√

6
|0−+〉 − 1√

3
|−++〉

|1,−1〉 =
√

2
3 |−+−〉 − 1√

3
|0−−〉

|1, 0〉 = − 1√
3
|+−−〉+ 1√

6
|0+−〉 − 1√

6
|0−+〉+ 1√

3
|−++〉

|1,+1〉 =
√

2
3 |+−+〉 − 1√

3
|0++〉 .

This decomposition is illustrated in the upper half of Fig. 1.

9.2.4 Decomposition for an arbitrary angular momentum state

By finding the eigenvectors of the F̂ 2 matrix we can write any state in the coupled |F,mF 〉 basis in
terms of its uncoupled components. As the matrices can become very large we will do this numerically.
One of the problems is that a standard eigenvalue algorithm cannot order degenerate eigenstates so
we do not know which state is which. To solve this problem we find the eigenvectors of a matrix where
all the degeneracy is lifted by a combination of fine, hyperfine and ‘pseudo’–Zeeman splitting. In fact
if we use the operator

Ĥ = 2(2I + 1)Ĥfs + 2Ĥhfs + F̂z + 1
2(gF + 1) , (90)

where gF = (2`+ 1)(2I+ 1)(2S+ 1) is the total degeneracy, the eigenvalues are integers in the range 1
to gF and the eigenvectors are ordered according to their value of J , F and mF . Below19 is a matlab
program to determine the eigenvector of a specified |F,mF 〉 level for a given I, L, S, and J .

19 function ev=evec2(is,l,s,j,f,m)
SS=spin(s);Sx=SS(:,:,1);Sy=SS(:,:,2);Sz=SS(:,:,3);
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9.3 Transition amplitudes

For electric dipole transitions, the spin state remains unchanged, so to calculate a transition strength
we look for the amount of a particular spin configuration in the initial and final states. For example,
recalling that for 2S1/2 we found

|0, 0〉 = 1√
2
(|+−〉 − |−+〉) |1, 0〉 = 1√

2
(|+−〉+ |−+〉) ,

we see (Fig. 10) that there are contributions from both the |+−〉 and |−+〉 to the F,mF = 0 →
F ′,m′F = 0 transitions. For F = F ′, the two contributions cancels, whereas for F 6= F ′ they add

to give
√

1
3 . To find the transition amplitude between an initial state |`,m`, F,mF 〉 and a final

state |` ± 1,m` ± q, F ′,m′F 〉 we calculate the projection 〈` ± 1,m` ± q, F ′,m′F |`,m`, F,mF 〉, where
|`,m`, F,mF 〉 is a reduced eigenvector only containing the terms with a particular ` and m`.

20 An
example showing electric dipole couplings for the coupled and uncoupled bases is shown in Fig. 11.

Group meeting, 
C. S. Adams, Durham 

Choosing the right basis

mF

F

1√
3

0
1√
3

Coupled basis Uncoupled basis

I L S J F mF I  L S mL ms mI

Coupled basis Uncoupled basis

10 couplings with different amplitudes 4 couplings all same amplitude

1

2p

(a) (b)

1 1 11 1 1 1

! = 0

! = 1
m! = +1m! = −1 m! = 0

| − −〉| − +〉| + −〉| + +〉

| − −〉| − +〉| + −〉| + +〉| − −〉| − +〉| + −〉| + +〉 | − −〉| − +〉| + −〉| + +〉

Figure 11: The different couplings for electric dipole transitions in the (a) coupled and (b) uncoupled
basis. To obtain the transition amplitudes for the coupled basis we write the coupled states in the
uncoupled basis and calculate the overlap or projection of the appropriate ` m` sections of the initial
and final states.

gs=2*s+1;Si=eye(gs);
LL=spin(l);Lx=LL(:,:,1);Ly=LL(:,:,2);Lz=LL(:,:,3);
gl=2*l+1;Li=eye(gl);
II=spin(is);Ix=II(:,:,1);Iy=II(:,:,2);Iz=II(:,:,3);
gi=2*is+1;Ii=eye(gi);
Jx=kron(Lx,Si)+kron(Li,Sx);
Jy=kron(Ly,Si)+kron(Li,Sy);
Jz=kron(Lz,Si)+kron(Li,Sz);
gj=gl*gs;Ji=eye(gj);
J2=kron(Jx*Jx+Jy*Jy+Jz*Jz,Ii);
fx=kron(Jx,Ii)+kron(Ji,Ix);
fy=kron(Jy,Ii)+kron(Ji,Iy);
fz=kron(Jz,Ii)+kron(Ji,Iz);
gf=gj*gi;Fi=eye(gf);
f2=fx*fx+fy*fy+fz*fz;
hs=f2-is*(is+1)*Fi-J2;
fs=J2-(l*(l+1)+s*(s+1))*Fi;
split=hs+(2*is+1)*fs+fz+(gf+1)/2*Fi;
[V,D]=eig(split);
id=f*(f+1)-is*(is+1)-j*(j+1)+(2*is+1)*(j*(j+1)-l*(l+1)-s*(s+1))+m+(gf+1)/2;
ev=V(:,id);
20 function cg=cleb2(is,l1,j1,f1,m1,l2,j2,f2,q)
if abs(m1+q)>f2
cg=0;
else
gvec=evec2(is,l1,1/2,j1,f1,m1);
lg=length(gvec);
evec=evec2(is,l2,1/2,j2,f2,m1+q);
le=length(evec);
lm=(le-lg)/2;lp=(le+lg)/2;
revec=evec(lm*(1-q)+1:lp-lm*q);
cg=gvec’*revec;
end
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9 ANGULAR PROBLEMS IN THE UNCOUPLED BASIS: THE BREIT-RABI DIAGRAM

9.4 Project: - The Breit-Rabi diagram
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Figure 12: A plot of the Zeeman shift of the hyperfine sublevels (or Breit-Rabi diagram) for (a) 1H
and (b) 133Cs. Here x = gJµBB/A.

As an application of these techniques, you will calculate the Breit-Rabi diagram for the ground
state of 87Rb using both the coupled and the uncoupled basis. Doing the calculation two ways will allow
you to check the answer, and also provide you with more insight into the nature of these calculations
and the differences between the various methods.

The Breit-Rabi diagram is a plot of the energy shift of the hyperfine sublevels in a magnetic field.
Examples for 1H and 133 Cs are shown in Fig 12. More details are given on the homework sheet.
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