
Spontaneous Emission: Weisskopf-Wigner Theory

It is well known that an atom in an excited state is not in a stationary state — it will eventually decay to the
ground state by spontaneously emitting a photon. The nature of this evolution is due to the coupling of the atom to
the electromagnetic vacuum field. The idea of spontaneous emission goes back to Einstein when he studied Planck’s
blackbody spectrum using the principle of detailed balance. The rate of spontaneous emission is still known as the
“Einstein A coefficient”. Victor Weisskopt presented a method for analyzing this interesting problem in his thesis
work, together with his advisor Eugene Wigner. We will follow their treatment here.

Consider a two-level atom. Initially the atom is prepared in its excited state |e〉 and the field is in vacuum state
|{0}〉. We use

|ψ(0)〉 = |e, {0}〉
to denote this initial state. Since this is not a stable state, the atom will decay to the ground state |g〉 and give off a
photon in mode (k, s). The state of the system after the decay is then |g, 1ks〉. These state vectors form a complete
set for expanding the time-dependent state of the system:

|ψ(t)〉 = a(t)e−iω0t|e, {0}〉+
∑

k,s

bks(t)e−iωkt|g, 1ks〉

where ω0 is the atomic transition frequency and ωk = ck is the frequency of the photon.
The total Hamiltonian under the rotating wave approximation is H = HA + HF + Hint with

HA = ~ω0σ̂ee

HF =
∑

k,s

~ωkn̂ks

Hint = −d̂ · Ê = −
∑

k,s

~gksσ̂egâks + h.c.

where the atom-field coupling coefficient is

gks = i

√
ωk

2~ε0V
(d · εks)

The Schrödinger equation reads

H|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 = i~ (ȧ− iω0a) e−iω0t|e, {0}〉+ i~

∑

k,s

(
ḃks − iωkbks

)
e−iωkt|g, 1ks〉

By multiply through this equation by 〈e, {0}| and 〈g, 1ks|, respectively, we obtain

ȧ(t) = i
∑

k,s

gkse
−i(ωk−ω0)t bks(t) (1)

ḃks(t) = ig∗kse
i(ωk−ω0)t a(t) (2)

To solve these equations, we first formally integrate (2) as

bks(t) = ig∗ks

∫ t

0

dt′ ei(ωk−ω0)t
′
a(t′)

and put this back into (1), we have

ȧ(t) = −
∑

k,s

|gks|2
∫ t

0

dt′ e−i(ωk−ω0)(t−t′) a(t′) (3)

First let us concentrate on
∑

k,s |gks|2. In the continuum limit (i.e., when the quantization volume V →∞), we have

∑

k,s

→
2∑

s=1

∫
d3kD(k)



2

where D(k) is the density of states in k-space. Since k = (2πn1/L, 2πn2/L, 2πn3/L), there is one state in volume
(2π/L)3 = (2π)3/V , hence the density of states is D(k) = V/(2π)3. Then using the spherical coordinates (k, θ, ϕ), we
have

∑

k,s

→
2∑

s=1

V

(2π)3

∫ ∞

0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕ

Thus

∑

k,s

|gks|2 =
∑

k,s

ωk

2ε0V ~
(d · εks)2 =

∫ ∞

0

dk k2 ωk

2(2π)3ε0~

[
2∑

s=1

∫ π

0

sin θdθ

∫ 2π

0

dϕ (d · εks)2
]

Here we assume that d is real, but the final result is more general and works also for complex d. First let us evaluate
the quantity inside the square bracket using a simple trick:

2∑
s=1

∫ π

0

sin θdθ

∫ 2π

0

dϕ (d · εks)2 =
∫ π

0

sin θdθ

∫ 2π

0

dϕ
[
(d · εk1)2 + (d · εk2)2

]
(4)

Since the triplet (εk1, εk2,κ) with κ = k/k forms an orthogonal set of nit vectors that we can use to expand any
vector, so in particular

d = (d · εk1)εk1 + (d · εk2)εk2 + (d · κ)κ

and thus

|d|2 = (d · εk1)2 + (d · εk2)2 + (d · κ)2

or

(d · εk1)2 + (d · εk2)2 = |d|2 − (d · κ)2

We can choose the spherical axis in our integral in any direction that we like, so that we may as well choose it to lie
along the direction parallel to d. So we have finally

(d · εk1)2 + (d · εk2)2 = |d|2 (
1− cos2 θ

)
= |d|2 sin2 θ

Now Eq. (4) can be easily evalued to give

2∑
s=1

∫ π

0

sin θdθ

∫ 2π

0

dϕ (d · εks)2 =
8π

3
|d|2

Therefore

∑

k,s

|gks|2 =
∫ ∞

0

dk k2 ωk

2(2π)3ε0~
8π

3
|d|2 =

|d|2
6π2ε0~c3

∫ ∞

0

ω3
k dωk (5)

where we have changed the integration over k to over ωk = ck.
Next let us take a look at the time integral in (3):

∫ t

0

dt′ e−i(ωk−ω0)(t−t′) a(t′)

The exponential oscillates with frequency ∼ ω0. We assume that the excited state amplitude a(t) varies with a
rate Γ ¿ ω0. Therefore a(t) changes little in the time interval over which the remaining part of the integrand has
non-zero value (t′ ∼ t), and we can replace a(t′) in the integrand by a(t) and take it out of the integral. This is
called the Weisskopf-Wigner approximation, which can be recognized as a Markov approximation: Dynamics of a(t)
depends only on time t and not on t′ < t, i.e., the system has no memory of the past. We will come back to Markov
approximation in later lectures.
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Now the time integral becomes
∫ t

0

dt′ e−i(ωk−ω0)(t−t′) a(t′) ≈ a(t)
∫ t

0

dτ e−i(ωk−ω0)τ

with τ = t− t′. Since a(t) varies with a rate Γ ¿ ω0, the time of interest t À 1/ω0, thus we can take the upper limit
of the above integral to ∞, and we have

∫ ∞

0

dτ e−i(ωk−ω0)τ = πδ(ωk − ω0)− iP
(

1
ωk − ω0

)

where P represents the Cauchy principal part.
Because of the i before it, the Cauchy principal part leads to a frequency shift. This is in fact one contribution to

the Lamb’s shift. This shift diverges and has be dealt with through renormalization. Here we will neglect this part.
Put things together into (3), we finally have

ȧ(t) = −Γ
2

a(t)

where

Γ =
ω3

0 |d|2
3πε0~c3

The excited state amplitude thus decays exponentially as

a(t) = e−Γt/2a(0)

Γ is then the population decay rate, also known as the Einstein A coefficient.
The Weisskopf-Wigner theory thus predicts an irreversible exponential decay of the excited state population with

no revivals, in contrast to the JC model. In the latter, revival occurs due to the interaction with a single mode and
the discrete nature of the possible photon numbers. In free-space spontaneous emission, the atom is coupled to a
continuum of modes. Although under the action of each individual mode the atom would have a finite probability to
return to the excited state, the probability amplitudes for such events interfere destructively when summer over all
the modes.

Finally we can the lineshape of the emitted light. Using (2) we have

ḃks(t) = ig∗kse
i(ωk−ω0)t a(t) = ig∗kse

i(ωk−ω0)te−Γt/2

which can be integrated to give

lim
t→∞

bks(t) =
ig∗ks

Γ/2− i(ωk − ω0)

and the corresponding probability is

lim
t→∞

|bks(t)|2 =
|gks|2

Γ2/4 + (ωk − ω0)2

which is a Lorentzian form centered at ω0 with FWHM Γ.
The angular dependence of the emitted light can be calculated from

∑
s |d · εks|2. If the dipole transition has

∆m = 0, then d can be taken as real and can be chosen to lie along the polar axis (z-axis), as we have done above.
Thus we have

lim
t→∞

∑
s

|bks(t)|2 ∼ sin2 θ

which is the familiar linear dipole radiation pattern. If, on the other hand, the transition is ∆m = ±1, then d is
complex and can be taken as

d =
|d|√

2
(x̂± iŷ)

Using the same trick, we have

∑
s

|d · εks|2 = |d|2 − |κ · d|2 = |d|2
(

1− sin2 θ

2

)
= |d|2 1 + cos2 θ
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