Physics 566: Quantum Optics I
Lecture 5: Magnetic Reomene and Rabi flopping
All comment spectroscopy has at its hart, spin magnetic resoname. Father of the subject: I.I. Rabi, 1939 meanemed hyperfine structure ξ limb shift.

The problem of manipulating 2-leuls of a quantum system:
General form of the Itamiltonion, like any opuator on \mathbb{C}^{2}

$$
\hat{H}=A \hat{\mathbb{1}}+\vec{B} \cdot \hat{\sigma} \equiv \text { spin- } 1 / 2 \text { in a magnet ti fold }
$$

$$
\Rightarrow \hat{H}_{0}=\hbar \frac{\vec{\omega}_{0}}{2} \cdot \hat{\sigma}, \quad \vec{\omega}_{0}=-\gamma \vec{B}_{0} \quad\left(\omega_{0}=|\gamma| \frac{B_{0}}{\hbar}=2 \frac{\mu_{0} B_{0}}{\hbar}\right. \text { for elcchm) }
$$

Eigenstates $\left|\hat{t}_{n}\right\rangle,\left|t_{n}\right\rangle: \hat{H}_{0}\left|\hat{f}_{n}\right\rangle= \pm \frac{\hbar \omega_{0}}{2}\left|\hat{t}_{n}\right\rangle \quad \underline{\bar{i} \hbar \omega_{0}}\left|\hat{t}_{n}\right\rangle \quad$ (teen Splitting)
Unitary cvolutam: $U(t)=e^{-i \frac{\omega_{0} t}{2} \hat{\sigma}_{n}} \equiv$ Larmor precession around $\vec{e}_{n}=\frac{\vec{B}_{0}}{\left|\vec{B}_{0}\right|}$.

Gyroscopic precession.

A spin in a magnetic file will precess and \vec{B}_{0} at a rate $\omega_{0}=\left|\left|| | B_{0}\right.\right.$. If the spin is aligned or anti-aligned it is in a "statomary state."

Magnetic Resonance

- Apply a strong magnetic field \vec{B}_{0} along some axis: Defines the "quantization axis" $z: \quad \vec{B}_{0} \equiv B_{11} \vec{e}_{z}$

$$
\hat{H}_{0}=-\hat{\vec{\mu}} \cdot \vec{B}_{0}=\frac{\hbar \omega_{0}}{2} \hat{\sigma}_{z} \quad \omega_{0}=|\gamma| B_{0}
$$

- "Drive" the system with time dependent interaction, $\vec{B}_{n+}(t)$, oscillating near resonance, ω near ω_{0}

$$
\hat{H}_{i n t}(t)=\hat{H}^{(+1)} e^{-i \omega t}+\hat{H}^{(-)} e^{i \omega t}
$$

Having decomposed the intrusion Hamiltomen into its positive and negative frequency components. We recall, from tume-depenensert perturbation theory the the positive (negative) frequency compments lead to absorption(emission).

The is not the whole story. It is applicable for weak interaction and for
(i) Incoherent broad-hand source (cig. natural source of radution) andor (ii) The final state has a "brood" linwidth

For an isolated two-leul system, driven by a quasimenochromatio source, we need to go beyond timededpudent perburkation theory. There is new important physics coherent unitary cuolution?

Rabi-Oscillaturs

To drive the spin from $\left|t_{z}\right\rangle \Rightarrow\left|t_{z}\right\rangle$, the perturbing Hami: itmian must have off-dicgomal matrix elements $\Rightarrow \hat{H}_{\text {int }}$ rust have $\operatorname{term} \propto \hat{\sigma}_{x}$ and /or $\hat{\sigma}_{y} \Rightarrow \overrightarrow{\bar{B}}_{\text {int }}(t)$ in $x-y$ plane. To achieve resoneme, consider the following geometry:

In the presence of the state field \vec{B}_{11}, the spin precesses at fry $w_{0}=| | B_{n 11}$. By applying a tanserse field that rates in the x-y pare, we can achier perfot resonance, flipping to spin from $\left|t_{z}\right\rangle$ bu $\left|t_{z}\right\rangle$.

Mattematicelly, we sock the solution to the tine-depenentent Schrodinger equation:

$$
\begin{gathered}
\frac{\partial}{\partial t}|\psi(t)\rangle=-\frac{i}{\hbar} \hat{H}(t)|\psi(t)\rangle, \quad \hat{H}(t)=\hat{H}_{0}+\hat{H}_{i n t}(t), \\
\hat{H}_{0}=-\hat{\vec{\mu}}^{2} \cdot \vec{B}_{r 1}=\frac{\hbar \omega_{0}}{2} \hat{\sigma}_{z}, \quad \hat{H}_{i i t}=-\vec{\mu} \cdot \vec{B}_{\perp}(t)=-\frac{\hbar \gamma B_{x}}{2}(t) \hat{\sigma}_{x}-\frac{\hbar \gamma B_{y}(t) \hat{\sigma}_{y}}{2}
\end{gathered}
$$

Note: $\left[\hat{H}\left(t_{1}\right), \hat{H}\left(t_{2}\right)\right] \neq 0 \Rightarrow|\psi(t)\rangle=\tilde{J}\left[e^{-\frac{i}{\hbar} \int_{0}^{t} \hat{A}\left(t^{\prime}\right) d t^{\prime}}\right]$: Time. orders exponential No closed form solution

For the specific case of a rotating transverse field of constant amplituck:

$$
\begin{aligned}
& \vec{B}_{\perp}(t)=B_{\perp}\left(\cos (\omega t+\phi) \vec{e}_{x}+\sin (\omega t+\phi) \vec{e}_{y}\right) \Rightarrow \\
& \hat{H}_{n t}(t)=-\frac{\hbar \gamma_{B_{\perp}}}{2}\left(\cos (\omega t+\phi) \hat{\sigma}_{x}+\sin (\omega t+\phi) \hat{\sigma}_{y}\right)=\frac{\hbar \Omega_{\perp}}{2}\left(e^{-i(\omega t+\phi)} \hat{\sigma}_{+}+e^{i(\omega t+\phi)} \hat{\sigma}_{-}\right) \\
& \left.\quad \equiv \Omega \text { the 'Rabi frequency" }=-\gamma_{\perp} \quad \text { (taking } \gamma<0\right)
\end{aligned}
$$

From the geometrical puncture, we see that if we go to a "rotating frame" co-rotating with the rotation g fold $\vec{B}_{\perp}(t)$, then in that frame, the (tamiltmin is static, and we can drivisilly integrate the Schriochuger equator.

Going to the rotating frame
We accomplish a frame transformation in quantum medonics by making a writery transtormatm. In the case of magnetic spin resoname, this is a physical rotator; in other cases (as we will see) the frame is abstract, and going to a rotating frame just mems shifting the eigenvalues of the Hamiltmion, eeg. He familiar "interaction picture" ir tame-depnalat perturb baton.

Here, we move to rotating frame by rotation about the z-axis by angle $w t$, where w is the fervency of the routing full ${\overrightarrow{B_{1}}}^{\prime}(t): \quad \hat{U}_{R F}(t)=e^{-i \frac{i u t}{2} \hat{\sigma}_{z}}$

Observables in the rotation frame: $\hat{\theta}_{R F}(t)=\hat{U}_{R F}^{+} \mid f+\hat{\theta}_{S}^{(t)} \hat{U}_{R F}^{(+)} \quad$ Sctroindiger Picture
States in the rotator frame: $\left|\psi_{R F}(t)\right\rangle=\hat{U}_{R F}^{+}(t)\left|\psi_{S}(t)\right\rangle$, so $\left\langle\psi_{S}(t)\right| \hat{\theta}_{S}(t)\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{R E}(t)\right| \hat{\sigma}_{R E}(t)\left|\psi_{R F}(t)\right\rangle$.
Schrodinger Esr in the rotatory frame:

$$
\begin{aligned}
& \hbar \frac{\hbar}{-i} \frac{\partial}{\partial t}\left|\psi_{R F}^{(t)}\right\rangle=-\frac{\hbar}{-i} \frac{\partial}{\partial t}\left[\hat{U}_{R F}^{+}(t)\left|\psi_{s}(t)\right\rangle\right]=\hat{U}_{R F}^{+}\left[\frac{\hbar}{-i} \frac{\partial}{\partial t}\left|\psi_{S}(t)\right\rangle\right]+\left[\frac{\hbar}{-i} \frac{\partial \hat{U}_{R F}^{+}}{\partial t}\right]\left|\psi_{S}(t)\right\rangle \\
& \Rightarrow \frac{\hbar}{-i} \frac{\partial}{\partial t}\left|\psi_{R F}(t)\right\rangle=\left[\hat{U}_{R F}^{+} \hat{H}_{s}(t)+\frac{\hbar}{-i} \frac{\partial \hat{U}_{R F}^{+}}{\partial t}\right]\left|\psi_{s}\right\rangle=\underbrace{\left[\hat{U}_{R F}^{+} \hat{H}_{s} \hat{U}_{R F}+\frac{\hbar}{-i} \frac{\partial \hat{U}_{R F}^{+}}{\partial t} \hat{U}_{R F}\right]\left|\psi_{R F}\right\rangle}_{\hat{U}_{R F}} \text {, }
\end{aligned}
$$

$\Rightarrow N_{c w} H_{\text {tain }}$ damian in the rotating frame

$$
\begin{aligned}
\hat{H}_{R F} & =\hat{U}_{R F}^{+} \hat{H}_{S} \hat{U}_{R F}-\frac{\hbar \omega}{2} \hat{\sigma}_{z}, \quad \hat{H}_{S}=\hbar \omega_{0} \hat{\sigma}_{z}+\hbar \Omega\left(e^{-i(\omega t+\phi)} \hat{\sigma}_{+}+e^{i(\omega t+\phi)} \hat{\sigma}_{-}\right) . \\
\Rightarrow \hat{H}_{R F} & =-\hbar\left(\omega-\omega_{0}\right) \hat{\sigma}_{z}+\hbar \Omega\left(e^{-i(\omega t+\phi)} \hat{U}_{R F}^{+} \hat{\sigma}_{+} \hat{U}_{R F}+e^{i(\omega t+\phi)} \hat{U}_{R F}^{+} \hat{\sigma}_{-} \hat{U}_{R F}\right)
\end{aligned}
$$

I leave it as a simple exercise to show: ${U_{R F}}_{+}^{\sigma_{ \pm}} U_{R F}=e^{ \pm i \omega t} \hat{\sigma_{ \pm}}$

$$
\Rightarrow \hat{H}_{\text {RF }}=-\frac{\hbar \Delta \Delta}{2} \hat{\sigma}_{z}+\frac{\hbar \Omega}{2}\left(e^{-i \phi} \hat{\sigma}_{+}+e^{+i \phi} \hat{\sigma}_{-}\right)=-\frac{\hbar \Delta}{2} \hat{\sigma}_{z}+\frac{\hbar \Omega}{2}\left(\cos \phi \hat{\sigma}_{x}+\sin \phi \hat{\sigma}_{y}\right)
$$

$\Delta=\omega-\omega_{0}$ (detaning) , $\quad \Omega=\gamma B_{\perp}$ (Rabi frequency)
$\hat{H}_{R F}$ is time-indipendert as expected?

General solution: $\left|\psi_{R F}(t)\right\rangle=e^{-\frac{i}{\hbar} \hat{H}_{R F} t}\left|\psi_{R F}(0)\right\rangle=\hat{U}_{R b b i}(t)\left|\psi_{R F}(0)\right\rangle$

$$
\hat{U}_{\text {Rabi }}=e^{-i \frac{\tilde{\Omega}_{0}, \hat{\sigma}}{2}} \text { : Rotation on the Bloch sphere }
$$

"Gearerlged Rabi feypuny": $\Omega_{t_{0}+}=\left|\vec{\Omega}_{t_{0}+}\right|=\sqrt{\Omega^{2}+\Delta^{2}}$ axis of rotation $\vec{e}_{a}=\frac{\vec{\Omega}_{+o t}}{\left|\vec{\Omega}_{+o+}\right|}=-\frac{\Delta}{\Omega_{+o t}} \vec{e}_{z}+\frac{\Omega}{\Omega_{\text {tot }}} \vec{e}_{\perp}(\phi)$

Consider the case $\Delta=0$ Con resonance)

$$
\left.\hat{H}_{R F}=\frac{\hbar \Omega}{2} \vec{e}_{\perp} \phi\right) \cdot \hat{\vec{\sigma}}=\frac{\hbar \Omega}{2}\left(\cos \phi \hat{\sigma}_{x}+\sin \phi \hat{\sigma}_{y}\right)
$$

Rabi rotations on Bloch sphere.
On resonance the Bleach rector precesses from north is coth pole about an axis dipenching $m \phi$.

Written in dens of the Quentin evolution in the rotating frame: $\left.\left|\psi_{\text {RF }}\right| t\left\rangle=\hat{U}_{\text {Rb: }}:\right| \downarrow_{z}\right\rangle$

$$
\begin{aligned}
\hat{U}_{\text {Rabi }} & =e^{-i \vec{\Omega}_{\text {tr }} t \cdot \frac{\hat{\bar{\sigma}}}{2}}=\cos \left(\frac{\Omega_{+t+} t}{2}\right) \hat{\mathbb{I}}-i \sin \left(\frac{\Omega_{++} t}{2}\right) \vec{e}_{a} \cdot \hat{\vec{\sigma}} \\
& =\cos \left(\frac{\Omega_{+2} t}{2}\right) \hat{\mathbb{1}}-i \sin \left(\frac{\Omega_{2+} t}{2}\right)\left[-\frac{\Delta}{\Omega_{+o t}} \hat{\sigma}_{z}+\frac{\Omega}{\Omega_{+d}}\left(e^{-i \phi} \hat{\sigma}_{+}+e^{+i \phi} \hat{\sigma}_{-}\right)\right]
\end{aligned}
$$

On resoname $\left.\left|\psi_{2 F}(t)\right\rangle=\hat{U}_{\text {Rail }}| |_{z}\right\rangle=\cos \left(\frac{\Omega_{t+t} t}{2}\right)\left|t_{z}\right\rangle-i e^{-i \phi} \sin \left(\frac{\Omega_{\text {tot }} t}{2}\right) \cdot\left|f_{z}\right\rangle$

$$
P_{\hat{\xi}}(t)=\left|\left\langle\psi_{z} \mid \psi_{R r}(t)\right\rangle\right|^{2}=\sin ^{2}\left(\frac{\Omega t}{2}\right)=\frac{1+\cos (\Omega t)}{2}
$$

Rabi flopping ?
Population oscillates from $\left|t_{t}\right\rangle$ to $\left|t_{z}\right\rangle$

Ex: " Π-pulse", $\Omega_{ \pm} t=\pi \Rightarrow\left|\psi_{R F}\left(\frac{\pi}{\Omega}\right)\right\rangle=-i e^{-i \phi}\left|\psi_{z}\right| \equiv\left|\psi_{z}\right\rangle$
A π-pulse this spin-down to spin-up. It remesents "perfect absorphom.".
But this is not the fall story. For suppose we stoppered the pule half-way, ie $\Omega t=\frac{\pi}{2}$.
Ex: " $\frac{\pi}{2}$-pulse", $\Omega_{ \pm} t=\frac{\pi}{2} \Rightarrow\left|\psi_{R F}\left(\frac{\pi}{2 n}\right)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|t_{z}\right\rangle-i e^{-i \phi}\left|\psi_{z}\right\rangle\right)=-i \frac{i d \phi}{\sqrt{2}}\left(\left|\psi_{z}\right\rangle+i e^{i \phi}\left|t_{z}\right\rangle\right)$
\Rightarrow A $\frac{\pi}{2}$-pulse of magnetic every acting on $\left|\partial_{z}\right\rangle$ creates a 50-50 superposition of $\left|A_{z}\right\rangle$ and $\left|t_{z}\right\rangle$ when a phase between them that duna on the phase of the apples oscillate. An important point is that the evolution is coherent. That is, at all sales of the evolution, the sin is in a colerat superposition of $\left|\hat{A}_{z}\right\rangle$ and $\left|\dot{f}_{z}\right\rangle$. Stopping the coldest evolution half wave from spinnup to spin down lewes the system in a 50-50 superposition

Note. For a 2π-pule, $\left|\psi\left(\frac{2 \pi}{\Omega}\right)\right\rangle=-\left|t_{z}\right\rangle$. The accumulation of the phase -1 has no physical etches on a spin- $-1 / 2$ site. But. it $r_{\text {a fete ts the difference between } S U(2) \text { rotations }}$ and SO(3) rotations in Euclidem 3D spare.

General Rabi Solution $\left|\psi_{R F}(t)\right\rangle=\hat{U}_{\text {Rabi }}|\psi(0)\rangle$, with $|\psi(0)\rangle=\left|t_{z}\right\rangle$

$$
\begin{aligned}
\Rightarrow\left|\psi_{R F}(t)\right\rangle= & {\left[\cos \left(\frac{\Omega_{\text {tot }} t}{2}\right)+i \frac{\Delta}{\Omega_{\text {to }}} \sin \left(\frac{\Omega_{t_{t o t} t}}{2}\right)\right]\left|f_{z}\right\rangle+\left[-i e^{-i \phi} \frac{\Omega}{\Omega_{t_{t o} t}} \sin \left(\frac{\Omega_{t o t} t}{2}\right)\right]\left|\psi_{z}\right\rangle } \\
& \left.P_{A_{z}}(t)=\mid\left\langle\psi_{z} \mid \psi_{R F}(t)\right\rangle\right)^{2}=\frac{\Omega^{2}}{\Omega_{t_{0} t}^{2}} \sin ^{2}\left(\frac{\Omega_{\text {tot }} t}{2}\right)=\frac{\Omega^{2}}{\Omega^{2}+\Delta^{2}} \sin ^{2}\left(\frac{\Omega_{t_{0} t} t}{2}\right)
\end{aligned}
$$

Off resoname, there is never unit probability for the spin to go from $t_{z} \Rightarrow T_{z}$.

The probability cumpletures altos oscillates faster @ $\Omega_{\text {tot }}=\sqrt{\Omega^{2}+\Delta^{2}}$

Off-Reoonance Bloch Sphere Picture

$$
\vec{\Omega}_{\text {tot }}=-\Delta \vec{e}_{z}+\Omega \vec{e}_{\perp}
$$

The angle the torque axis with the

$$
\begin{aligned}
&-z \cdot a x i s \tan \theta_{a}=\frac{\Omega}{-\Lambda} \\
& \Rightarrow\left\langle\hat{\sigma}_{z}^{m a x}\right\rangle^{m}=-\cos 2 \theta_{a}=2 \sin ^{2} \theta_{a}-1 \\
&=2 \frac{\Omega^{2}}{\Omega^{2}+\Delta^{2}}-1=P_{A_{z}}-P_{b_{z}} \\
&=2 P_{A_{z}}-1 \Rightarrow P_{A_{z}}=\frac{\Omega_{\perp}^{2}}{\Omega_{+}^{2}+\Delta^{2}}
\end{aligned}
$$

Rotating wave approximation (RWA)
Suppose that instal of rotating transurse field, we had a linearly oscillating field along a transverse axis, say the x-axis

$$
B_{x} \cos (\omega t) \vec{e}_{x}=\underbrace{\frac{B_{x}}{2}\left[\cos \omega t \vec{e}_{x}+\sin \omega t \vec{e}_{y}\right]}_{\text {Right hand circulating }}+\underbrace{\frac{B_{x}}{2}\left[\cos \omega t \vec{e}_{x}-\sin \omega t \vec{e}_{y}\right]}_{\text {Left hand circulation }}
$$

"Corotating"

+ "Counter-rotating"

The linearly oscillating fuld decomposes into "co-rotation" and "counter-rotating" terms. On y the co-rotating term in rear resonance. When $\left|\omega-\omega_{0}\right| \ll \omega_{0}$ and $\Omega \ll \omega_{0}$, the counter rotating term oscillated so fast in the rotating frame, that "net effect on the Bloch vector is negligible. This is known as the rotating wave approximation (RWA).

Formally, consider the interaction Itamiltmion in the Schrodinger picture

$$
\hat{H}_{l n t}^{(s)}=-\vec{\mu} \cdot \vec{e}_{x} B_{x} \cos \omega t=-\frac{\hbar \gamma}{2} B_{x} \cos \omega t \hat{\sigma}_{x}=\frac{-\hbar \gamma B_{x}}{4}\left(e^{-i \omega t}+e^{+i \omega t}\right)\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right)
$$

Transforming to the rotating frame

$$
\begin{aligned}
& \hat{H}_{m t}^{(R F)}=\frac{-\hbar \gamma B_{x}}{4}\left(e^{-i \omega t}+e^{+i \omega t}\right)\left(\hat{\sigma}_{+} e^{+i \omega t}+\hat{\sigma}_{-} e^{-i \omega t}\right) \\
&=\underbrace{\frac{-\hbar \gamma B}{4}\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right)}_{\text {Cotrotating terms }}-\underbrace{\frac{\hbar \gamma B_{x}}{4}\left(e^{+2 i \omega t} \hat{\sigma}_{+}+e^{-2 i \omega t}\right.}_{\text {Counter-rotaterg terms }} \hat{\sigma}_{-}) \approx \frac{\hbar \Omega}{4}\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right) \\
& \Omega=-\gamma B_{x}
\end{aligned}
$$

The counter-rotatung terms oscillate like 2 ω, Whereas the characteristic dynamics of the Bloch vector is at rates $\Omega, \Delta \Rightarrow$ Rapial 05 illations averger to zero. This can be male more rigornus using the "method of averages"

Different
When examining the problem of Rabi ocalletions, there are a number of diffecent representations we us:

- Probability amplitudes

In the rotting frame $\left|\psi_{R}\right\rangle=c_{A_{z}}\left|\psi_{z}\right\rangle+c_{t_{z}}\left|t_{z}\right\rangle$

$$
\hat{H}_{R F}=-\frac{\hbar \Delta}{2} \hat{\sigma}_{z}+\frac{\hbar \Omega}{2} \hat{\sigma}_{x} \quad(c \text { long drive pare } \phi=0)
$$

$\Rightarrow \operatorname{Mahrix}_{\text {representation }}^{\operatorname{lon}} \quad \frac{d}{d t} \underbrace{\left[\begin{array}{l}c_{\uparrow} \\ c_{\downarrow}\end{array}\right]}_{\left|\psi_{k F}\right\rangle}=\underbrace{-\frac{i}{2}}_{-\frac{i}{\pi} \hat{H}_{R F}} \begin{array}{cc}-\Delta & \Omega_{\perp} \\ \Omega_{1} & \Delta\end{array}] \underbrace{\left[\begin{array}{l}c_{\uparrow} \\ c_{\downarrow}\end{array}\right]}_{\left|\psi_{R F}\right\rangle} \Rightarrow \begin{aligned} & \dot{c}_{\uparrow}=\frac{i}{2} \Delta c_{\uparrow}-\frac{i}{2} \Omega c_{\downarrow} \\ & \dot{c}_{\downarrow}=-\frac{i}{2} \Delta c_{\phi}-\frac{i}{2} \Omega c_{\uparrow}\end{aligned}$

On resonance: $\dot{C}_{q}=-i \frac{\Omega}{2} c_{\phi}, \dot{c}_{\phi}=i \frac{\Omega}{2} c_{\uparrow} \Rightarrow \ddot{C}_{p}=-\frac{\Omega^{2}}{4} c_{q}$ (SHO diff 'eqn)

$$
\Rightarrow c_{\uparrow}(t)=c_{\uparrow}(0) \cos \left(\frac{\Omega t}{2}\right)+\frac{2}{\Omega} \dot{c}_{\uparrow}(0) \sin \left(\frac{\Omega t}{2}\right)=c_{\uparrow}(0) \cos \left(\frac{\Omega t}{2}\right)-i c_{t}(0) \sin \left(\frac{\Omega t}{2}\right)
$$

with $c_{\uparrow}(0)=0, C_{t}(0)=1 \Rightarrow C_{\uparrow}(t)=-i \sin \left(\frac{\Omega t}{2}\right), \quad P_{\uparrow}(t)=\sin ^{2}\left(\frac{\Omega t}{2}\right) \cup$
General Case: Consoler eqgenverters and eigenvalues of the Hamiltonian

$$
\begin{aligned}
& \hat{H}_{R F}=\frac{\hbar \vec{\Omega}_{\text {tot }} \cdot \hat{\sigma}=\frac{\hbar \Omega_{\text {tot }}}{2} \vec{e}_{a} \cdot \hat{\sigma} \text {, where } \Omega_{\text {tot }}=\sqrt{\Omega_{\perp}^{2}+\Delta^{2}},}{} \quad \vec{e}_{a}=\frac{\vec{\Omega}_{\text {tot }}}{\Omega_{\text {tot }}}=\frac{\Omega}{\Omega_{\text {tot }}} \vec{e}_{1}+\frac{-\Delta}{\Omega_{\text {tot }}} \vec{e}_{z}=\sin \theta\left(\cos \phi \vec{e}_{x}+\sin \phi \vec{e}_{y}\right)+\cos \theta \vec{e}_{z} \quad\left(\tan \theta=\frac{\Omega}{-\Delta}\right)
\end{aligned}
$$

\Rightarrow Eignvalues: $E_{ \pm}= \pm \frac{\hbar \Omega_{\text {tot }}}{2}= \pm \frac{\hbar}{2} \sqrt{\Omega^{2}+\Delta^{2}}$
Eigenvectors $\left.|+\rangle=\cos \frac{\theta}{2}\left|A_{z}\right\rangle+e^{i \phi} \sin \frac{\theta}{2}\left|t_{z}\right\rangle, \quad\left|\rightarrow=\sin \frac{\theta}{2}\right| A_{z}\right\rangle-e^{i \phi} \cos \frac{\theta}{2}\left|t_{z}\right\rangle$ "Dressed $\begin{gathered}\text { States } 11\end{gathered}$

Generic Avoided crossing

7:37 AM. AV,

- Dynamical of the Bloch vector \Rightarrow

Define $\vec{Q}=\langle\hat{\vec{\sigma}}\rangle=(u, v, w)$ (in rotating trave)
Heisenberg equators of motion $\frac{d \hat{\sigma}}{d t}=-\frac{i}{\hbar}\left[\hat{\vec{\sigma}}, \hat{H}_{R F}\right] \Rightarrow \frac{d}{d t} \vec{Q}=\vec{\Omega}_{\text {tot }} \times \vec{Q}$

$$
\Rightarrow \frac{d}{d t}\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{ccc}
0 & \Delta & 0 \\
-\Delta & 0 & -\Omega_{\perp} \\
0 & \Omega_{\perp} & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

$\frac{d}{d t} u=\Delta v, \quad \frac{d}{d t} v=-\Delta u-\Omega_{\perp} w, \quad \frac{d}{d t} w=\Omega_{\perp} v \quad$ "Bloch equation"

Connection to absorption a emission of light by a two level atom
Our initial motivation to stull turo-larel queathem suptans has to study absorption and emission of light by atoms close to resonance.
The feed drives transitions between two (nondgrarat) level $|g\rangle \Rightarrow\left|t_{z}\right\rangle$ and $|e\rangle \Rightarrow\left|t_{z}\right\rangle$. The monchromati tied at the position of the atom is $\vec{E}(\vec{R}, t)=\operatorname{Re}\left(\vec{E}_{0} e^{i \phi(\vec{k})} e^{-i \omega_{L} t}\right)$. The total Itamiltruin

$$
\hat{H}=\hat{H}_{A}+\hat{H}_{A L}(t)
$$

Atom Hamiltonian Atom-laser interaction Hamiltonian

$$
\hat{H}_{A}=E_{g}|g\rangle\langle g|+E_{c}|e\rangle\langle e|=\frac{E_{g}+E_{e}}{2} \hat{\mathbb{1}}+\frac{E_{e}-E_{g}}{2} \hat{\sigma}_{z} \equiv \frac{\hbar \omega_{e g}}{2} \hat{\sigma}_{z}, \quad \omega_{e g}=\frac{E_{e}-E_{g}}{\hbar} \text { (Bohr fir que }(y) \text {) }
$$

We tile here $E_{g}+E_{e}=0$
In the dipole approximation: $\hat{H}_{A L}=-\hat{\vec{d}} \cdot \vec{E}(\vec{R}, t)=-\frac{\hat{\vec{d}} \cdot \vec{\epsilon}}{2} E_{0} e^{i \phi(\vec{R})} e^{-i \omega_{L} t}-\frac{\hat{d} \cdot \vec{\epsilon}^{*}}{2} E_{0} e^{-i \phi(\vec{R})} e^{+i \omega_{L} t}$.
For concreteness, consider a dipole-allowed $S \rightarrow P$ atomic transition
 ground S-shat

According to the dipole-selection rules, $\Delta m_{l}=0, \pm 1$. Thus, by choosing the polarization of the laser, we pick a given two-kvels.

Consider the $\Delta m_{e}=0$ transition (linear polarization along the quantization axis) so $\vec{\epsilon}$ rel

$$
\hat{d} \cdot \vec{\epsilon}=|e\rangle\langle g|\langle e| \hat{d} \cdot \vec{\epsilon}|g\rangle+|g\rangle\langle e|\langle g| \hat{d} \cdot \vec{\epsilon}|e\rangle=\operatorname{deg}\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right)
$$

Where $d_{e g} \equiv\langle e| \hat{d} \cdot \vec{\epsilon}|g\rangle$ is the dipole dansition matrix dement, which can be chosen rel

$$
\Rightarrow \hat{H}_{A L}=-\frac{d_{e g} E_{0}}{}\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right)\left(e^{i \phi} e^{-i \omega_{L} t}+e^{-i \phi} e^{i \omega_{L} t}\right)
$$

This has the form of a magnetic spin resonance interachem: $\hat{H}_{\text {int }}=\hbar \Omega_{\perp} \hat{\sigma}_{x} \cos \left(\omega_{L} t-\phi\right)$.

We thus define the Rabi frequency $\hbar \Omega=-\operatorname{deg} E_{0}=\langle e| \hat{\vec{r}} \cdot \vec{E}|g\rangle E_{0}$. We will drop the label 1 from now on, when not talking about magnetic spin resonance. When $|\Delta|=\left|\omega_{L}-\omega_{\text {eg }}\right| \ll \omega_{e g}$ (near resonance) $+\Omega \ll \omega_{\text {eg }}$ we can make the rotating wave approximation:

In the $R W_{A}: \hat{H}_{A L}=\frac{\hbar \Omega}{2}\left(\hat{\sigma}_{+} e^{i \phi(\vec{R})} e^{-i \omega_{L} t}+\hat{\sigma}_{-} e^{i \phi(\vec{R})} e^{i \omega_{L} t}\right)$. The Hamiltonian for absorption and emission thus has exactly the form of magnetic -spin resoname?
Going to the rotating frame, having made the RWA
In volute frame: $\hat{H}=-\frac{\hbar \Delta}{2} \hat{\sigma}_{z}+\frac{\hbar \Omega}{2}\left(\hat{\sigma}_{+} e^{i \phi(\vec{k})}+\hat{\sigma}_{-} e^{-i \phi(\vec{R})}\right)$

$$
\Delta=\omega_{L}-\omega_{e g}, \quad \Omega=\frac{-d_{e g} E_{0}}{\hbar}=-\frac{\langle e| \hat{\vec{d}} \cdot \vec{\epsilon}|g\rangle E_{0}}{\hbar}
$$

(Note: For $\Delta m_{e}= \pm 1$, the are no comenter-rotating terms and the RWA is exact)
The coherent interaction between the two-luel atom and the lower held thus leads to Rabi flopping:

A $\frac{\pi}{2}$-puke will cristate an atom is a collat 50 -50 supreciation of $|\mathrm{g}\rangle$ and $|e\rangle$

The component o of the Block vector have important physical interpatatorn. Gwen a (pure) state of the two - leal atom, $|\psi\rangle=c_{g}|g\rangle+c_{c}|e\rangle$

$$
\begin{aligned}
& \left.\begin{array}{l}
u=\left\langle\hat{\sigma}_{x}\right\rangle=\left\langle\hat{\sigma}_{t}\right\rangle+\left\langle\hat{\sigma}_{\rangle}\right\rangle=2 \operatorname{Re}\left(c_{e} e_{g}^{*}\right)=2 \operatorname{Re}\left(\left|c_{e}\right| c_{g} \mid e^{i\left(k_{e}-\phi_{j}\right.}\right) \\
v=\left\langle\hat{\sigma}_{x}\right\rangle=\left\langle\frac{\hat{\sigma}_{+}}{}\right)-\left(\hat{\sigma}_{-}\right\rangle=2 \operatorname{Im}\left(c_{e} c_{g}^{*}\right)=2 \operatorname{Im}\left(\left|c_{e}\right|\left|c_{g}\right| e^{i\left(\phi_{e}-\phi_{j}\right.}\right)
\end{array}\right\} \text { Cohenences } \\
& w=\left\langle\hat{\sigma}_{z}\right\rangle=\left|c_{e}\right|^{2}-\left|c_{g}\right|^{2}: \quad \text { Population inversion }
\end{aligned}
$$

The "coheres" relate to the superposition of $\mid g$) and $|c\rangle$ and lead to oscillator of the atomic lyres Consider the case of a dipole driven by the fuel $\operatorname{Rc}\left(\vec{\in} E_{0} e^{-i c_{L} t}\right) \quad\left(\right.$ phone ϕ_{L} teen $\left.=0\right)$

$$
\begin{aligned}
& \Rightarrow\langle\hat{\vec{d}} \vec{\epsilon}\rangle=\left\langle\psi_{R F}(t)\right| \hat{d}_{R F} \cdot \vec{\epsilon}\left|\psi_{R F}\right\rangle=\operatorname{deg}_{\text {eg }}\left(c_{e} c_{z}^{*} e^{i \omega_{\mathcal{L}} t}+c_{e}^{*} c_{g} e^{-i \omega_{L} t}\right)=2 d_{e g} \operatorname{Re}\left(c_{e}^{*} g e^{-i \omega_{L} t}\right) \\
& \Rightarrow 2 \operatorname{deg} c_{e}^{*} c_{g}=d_{e g}(u-i v) \text { is the comblx amplitude of the dipole oscillate } \\
& \langle\hat{d} \cdot \vec{\epsilon}\rangle(t)=\operatorname{Re}\left[\operatorname{deg}(u-i v) e^{-i \omega_{c} t}\right]=d_{\text {eg }}[\underbrace{u \cos \omega_{2} t}_{\text {in phone }} \underbrace{-v \sin \omega_{0} t}_{\text {in }} t]
\end{aligned}
$$

The u-component of the Bloch vector \Rightarrow dispersive component dipole response the v-component of the Bloch vector \Rightarrow absorphoin-emission compment
$u=-\Delta \frac{\Omega}{\Omega_{t+1}^{2}}\left(1-\sin \left(\Omega_{t+1} t\right)\right), \quad v=\frac{\Omega}{\Omega_{\text {tot }}} \sin \left(\Omega_{\text {tor }} t\right)$: Oscillates between absorphom + emission.
Note: the general two-lual Rabi flopping response of the atom is a nooliver function of the applied amplituale.

