Optical Coherence
and Photon Statistics

R. J. Glauber

Harvard University



FOREWORD

The lectures on which these notes are based were intended to
serve as an elementary introduction to quantum optics. They were
begun, for that reason, with discussions of classical experiments, and
the introduction of quantum mechanical ideas was carried out fa.iriy
grgdually. The most advanced knowledge of quantum electrodynamics
ufmch they require at any point is some acquaintance with the connec-
ttop between the quantization of harmonic oscillators and that of fields.
This is material which is covered in the first two of Professor Kroll's
lectures, or in the initial chapters of a number of elementary texts on
field theory.

These notes are derived from a set which was prepared from tape
recordings and edited by R. Pratesi, L. Narducci, D. Forster, U,

}Ti;ulaer, and P. Kelley. The author is mostgrateful for their generous
elp.

R.J. Glauber
Harvard University

Lecture I. INTRODUCTION

The field of optics, after seeming to have reached a sort of maturity, is begin-
ning to undergo some rapid and revolutionary changes. These changes are connect-
ed with things which we have, as a matter of principle, known about for many years,
but the extent to which we could put our knowledge into practice has, until just a
few years ago, been extremely limited. Thus the electromagnetic character of
light waves has been familiar knowledge since the last century. A vast body of
theory and tec.hnique concerning the generation of electromagnetic waves has been
built up during these years, but virtually all of it has dealt with radio frequency
fields. Light waves of course, are of the same electromagnetic character as radio
waves. But because the only ways we had of generating them in the past were ex-
tremely clumsy (in a sense we shall presently discuss at some length) there har
been very little occasion until recently to apply the insights of radio-frequency
theory in optics. A simple physical reason, as we shall see, lies at the bottom of
this: all of the traditional types of optical sources possess a certain chaotic quality
in common. They are what a radio engineer would refer to as noise generators,
and all of the delicate and ingenious techniques of optics are exercises in the con~
structive use of noise. The invention of the optical maser has removed this barrier
with almost a single stroke. It allows us to presume that we will some day be able
to control fields oscillating at optical or higher frequencies with the same sort of
precision and versatility that have become familiar in radio frequency technology.

Another recent change is the development of detectors which respond strongly
to individual quanta of light. These have permitted us to explore the corpuscular
character of optical fields. All of the traditional optical experiments have not only
dealt with extremely crude sources, but have paid very little attention to the detec-
tion of individual light quanta. The detectors used were typically sensitive only to
substantial numbers of photons and were quite slow in action so that we measured
only intensities which had been averaged over relatively long periods of time. The
new light detectors enable us to ask more subtle questions than just ones about
average intensities; we can, for example, ask questions about the counting of pairs
of quanta, and can make measurements of the probability that the quanta are pres-
ent at an arbitrary pair of space points, at an arbitrary pair of times.

If the instrumentation in optics has made long strides in the direction of deal-
ing with photons, it is worth mentioning that the instrumentation in the radio fre-
quency field is leading in that direction as well. The energies of radio frequency
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photons are extremely small, much smaller than the thermal fluctuation energy xT
(T = noise temperature ~ room temperature for most amplifiers). There has
c_onsequently not been much need in radio frequency technology to date to pay atten-
tion to the corpuscular structure of the field. The recent invention, however, of
low noise amplifiers, such as the microwave maser, has lowered the noise temper-
ature of the detecting device to such a degree that with further progress it seems
not impossible that individual photons may be detected. So, even in the microwave
region, there is now a certain amount of attention being paid to the corpuscular
structure of light,

It is interesting, in any case, to investigate the corpuscular nature of electro-
magnetic fields, because it will set the ultimate limitation to the possibility of trans-
mitting information by means of fields. We will not discuss information theory in
these lectures, but we will have some things to say which are related to noise
theory. Noise theory is the classical form of the theory of fluctuations of the elec-
tromagnetic field and is quite naturally related to the theory of quantum fluctuations
of the field. All of these subjects fall under a general heading which we might call
photon statistics. Coherence theory too, is properly speaking, a rather small area
of the same general subject. Its purpose is simply to formulate some useful ways
of classifying the statistical behaviour of fieids.

The problem to which we shall address ourselves in these lectures is the con-
s.tnfction of a fairly rigorous and general treatment of the problems of photon sta-
t1st§cs. There is no need, in doing it, to make any material distinction between
radio frequency and optical fields {or between these and X-ray fields for that mat-
?er) . A part of the formalism, that which has to do with the definition of coherence
1s suggested in fact as a way of unifying the rather different concepts of coherence '
which have characterized these areas in the past. ’

. We have already remarked that optical experiments have only rarely dealt with
individual photons. Much the.same observation can be made for optical theory as
well. If the photon has to such a remarkable degree remained a stranger to optical
theory some justification for that fact surely lies in the great success of the simple
wave models in the analysis of optical experiments. Such models are usually spoken
of as being classical in character since they proceed typically from some kind of
analogy to classical electromagnetic theory and pay as little attention to the corpus-~
cular character of the radiation as the experimental arrangement will permit.

In these approaches one talks typically about some kind of "optical disturbance
function’ which is assumed to obey the wave equation and perhaps certain boundary
conditions as well. The function may represent the components of the electric vec-
tor or possibly other field quantities such as the vector potential, or the magnetic
field. In many applications in fact one does not need to be very specific about what
it really does or does not represent,
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Let us consider the Young interferometer (Fig. 1) in order to illustrate the"a:f
elementary approaches we are discussing. A plane, quasi-monochromatic wave © #
coming from a point source o impinges on the screen £ with two parallel slits at’
the positions P, and Pz. :

The two waves emerging from the slits give rise to an interference pattern on”
the screen Z', which we can often see with the unaided eye. The simplest way of ¥
predicting the form of the interference pattern is to ignore the vector character oft
the electromagnetic field and introduce a scalar field ¢ which is presumed to deg«?
cribe the "optical disturbance." We then try to find a function ¢ which satisfles
the wave equation together with a set of boundary conditions which we take to re-
present the effect of the screen £, That problem, as you remember, is in general
a good deal too difficult to be solved exactly, and it is customary to make a number
of simplifying approximations such as dealing very crudely with the boundary condi-
tions, and making use of the Huyghens principle, By these familiar methods we @'
reach a simple evaluation of the field distribution ¢ on the screen ='.

Of course, if we are to predict the form of the interference pattern, we must -
at some stage face the question of attaching a physical interpretation to the field ¢,
The most familiar approach is to regard ¢(r,t) as a real field and to identify it,
perhaps, with one of the components of the electric field vector. The experimental
fringe pattern is then predicted quite accurately, as we all know, if the light inten-
sity on the screen is identified with ¢*, the square of our optical field. The ident-
ification possesses the justification, from the standpoint of classical theory, that
the Poynting vector, which tells us the energy flux, is indeed quadratic in the field
strength, In spite of this evident support the identification is not a unique one,
however; it pays too little attention to the way in which the light is detected.

Let us suppose that the light intensity is measured by using a photon counter at
the position of the screen. We then ask how we may predict the response of the
counter as it is used to probe the pattern. Although the use of the wave equation to
find the field amplitude ¢ did not introduce any distinctions betweenthe classical and
the quantum theoretical approaches to the diffraction problem, the use of a photon -
counter as a detector does introduce a distinction. The photon counter is an intrin-
sically quantum mechanical instrument. Its output is only predictable in terms of
statistical averages even when the state of the field is specified precisely. I we
are to predict this average response we must be rather more specific than we have
thus far been about the field which the counter sees and we must treat the detection
mechanism in a fully quantum mechanical way. What we find when we do these
things is that the counter may be more accurately thought of as responding to a
complex field ¢ * rather than the real field ¢, and as having an output proportional,
not to ¢*, but to j¢ * |2, ( The distinction is not a trivial one physically, sinceina
monochromatic field ¢° oscillates rapidly in magnitude while |¢ * |* remains
constant.} Once this answer is known it can be used as a crude rule for bypassing
the explicit discussion of the detection mechanism in applications to other detection
problems.,

The use of such rules as a means of avoiding the explicit use of quantum mech~
anics has several times been called the "'semi-classical approach” . While approa-
ches of this type clearly need a rule of some sort to bridge the gap between their
descriptions of the wave and particle behaviors of photons they may remain perfect-
ly correct approaches in a quantum mechanical senseas long as the rule has been
chosen correctly. The fact that a mistaken form of this rule has been used repeat-
edly in " semi-classical" discussions is a good indication that the fully quantum
mechanical discussion is not entirely beside the point.

One of the properties of the "semi-classical"” approaches that makes them
elementary is that they deal with ordinary numbers and functions. They make no
use of the apparatus of non-commuting operators which, it may appear, ought to
be part of any formal quantum mechanical description of the field. Later inthese
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lectures we shall show that for a certain class of fields there need be no error in
a statistical description of the field which is based upon such ordinary functions as
we find by solving the wave equation. It is possible to describe these fields fully
by means which are rather similar to those used in the classical theory of noise.
Where such a description is available it means that there need be nothing incorrect
about the so-called " classical'” or ' semi-classical" approaches except their
names, which then become totally misleading. It has recently been claimed that
the class of states of the field for which the simple statistical description we have
mentioned is available includes all states of the field, and that consequently the
quantum theory and the " classical’ theory will always yield equivalent results, We
shall have to return to this point later in the lectures when we are better equipped
to discuss it, but for the present we may remark that this claim seems to be based
more upon wishful thinking than upon accurate mathematics, The quantum theory
still offers the only complete and logically consistent basis for discussing field
phenomena.

The general subject we shall be discussing, to give it its most imposing name,
is quantum electrodynamics. It is an extremely well developed subject. Although

it has long been clear that classical electrodynamics is the limit of quantum electro-

dynamics for h—0, there have never been any very powerful methods available for
discussing electrodynamical problems near the classical limit.

All of quantum electrodynamics has historically been developed in terms of
the stationary states | n > of the field hamiltonian #. These correspond to the
presence of an integer number n of quanta, i.e, they obey the equation

#In> = (n+d) Hw |n> . (1.1)

The n-quantum states form a complete set which has usually been regarded as the
" natural” basis for the development of all states of the field. To the extent that
virtually all electrodynamical calculations have been done by means of expansions
in powers of the field strengths, the numbers of photons which have been dealt
with in the calculations have usually been very small integers, The classical limit
of quantum electrodynamics, on the other hand, is one in which the quantum num-
bers are typically quite large. Not only are they large but they are typically quite
uncertain, If, for example, a harmonic oscillator is vibrating in a state with a
relatively well defined phase, it is necessary that it not only be in a state with a

large quantum number, but that the quantumn number of the state alsobe quite uncertain

(AnApz1). When we must deal with quantum states of the electromagnetic field for
which the phase of the field is well defined, they can likewise only be states in which
the occupation number n is intrinsically rather indefinite. In such cases the descrip-
tion of expectation values in terms of the n- quantum states becomes rather awkward
and untransparent.

One of the mathematical tools we shall use in these lectures is a set of quantum
states rather better suited to the description of amplitude and phase variables than
the n-quantum states. The use of these states makes the relationship of the class-

ical and quantum mechanical forms of electrodynamics considerably clearer than it
has been before.

CLASSICAL THEORY

It may help to underscore the close connection between the quantum theory we
shall develop and the classical theory if we begin by discussing the classical theory
alone for a while. We shall describe the classical field in terms of the familiar
field vectors, the electric field E(r,t) and the magnetic field B(r,t). We will take
these to obey the source-free Maxwell equations

v 'E=0, VXE——.'%% ( 2)
1.
v 'BEO, va=lE
c 8t
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by assuming that whatever source has radiated the fields has ceased to radjate ;
mrthseill‘m.ce our detectors are usually sensitive to electric rather than magnstic
fields, we shall confine ourselves to a discussion of the field E(r,t). Or;e of ttr::
first thinés which is done in many classical calculations is‘ tousea F:mr er se : |
or integral to expand the time dependence of the field and in that way to _aeparqtol.
the field into two complex terms: N

E(5t) = E9(r,0) «+ EV (1) (1
]
itive frequency part, E*',
The first of these terms, which we shall call the pos
contains all the amplitu_cl,es which vary as et for w > 0; The other, the qegattve-
frequency part, contains all amplitudes which vary as e it These termsg are co:‘a
plex conjugates of one another

glle EO* 4

and contain equivalent physical information. Either one or the other is t:equte!r:ﬂ?.
used in classical calculations and called eith.er the complex field st;:sngit :ll:la].l g ::
complex signal. The use of these complex fields in cla.ssic'le conte is L;incey
regarded as a mathematical convenience rather than a physical ne%eis;wn e
classical measuring devices tend to respond only to the real field, ‘ditf er nﬂy-
Quantum mechanical detectors, as we have noted, behave rather " c:de. Y s
from classical ones, and for the discussionof these the separation of the fie tﬁn M
positive and negative frequency parts takes on a much deeper s;igr:iﬁca.nc:.ter i
does for classical detectors. As we shall later see, an idegl ;))ho o:s f:c:':s e oed»
which has zero size and is equally sensnitlve to all Irequencfleshn:ih e ot
wct EC (r, t) B (2,1) = IE™ (r,t)17. That, at least, is wha he detector |
would measure if we were capable of prepar;x;g ﬁfeic‘i]snt wr:)tl}iiﬁget(l:ales‘:n 3:) e e
strengths. But of course we are never capat g [ O 1 fiolds are radi-
charges in our sources with very great_ precision. p A B ioal wcertainty.
ources whose behavior is subject to considerable s :
;tlf: ihi'il:s are then correspondingly x;?caelr:ain and what we require is a way of de-
ibing this uncertainty in mathematical terms. .
scmljﬁi more convenient, in describing the randomness of the fields, tp d:va: ';vihtallzl 3
discrete set of variables than to deal with the whole continuum ?,t oml:e. o of opace
therefore only attempt to describe the field I)Iing inside a certain v:ain::n © of space
within which we can expand it in terms of a d1scr|?te set of orth}ogo e fume-
tions. We shall take the set of vector mode functions {4, (r)} to abeyt .

equations

2 R .
vie 25 ) ou () =0, (1.8

which define a set of frequencies {w,} when they are satisfied together with the
constraint
’ .8
v-:u,{r) = 0 _ (1.6)
and a sultable set of boundary conditions. These functions may be ;ssumed toform
an orthonormal set .
Jut () ¢ u(n) dr = by : (L7

which is complete within the volume being studied. They may then be used to ex-
press the electric field vector in the form
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E(r,t) = ZC,u(r) e’ + 2,0 u5 (r)e', (1.8) The field present at P at time t may be approximated by a certain linear supcrposie.
tion of the fields present at the two pinholes at earlier times:
The two sums on the right are then evidently E “} ang g , respectively.

\

(+) ¥ + ’
When the expansion in orthogonal modes is used the field is evidently specified ETUr, 0 = 2 EU(ry, ) 42 EV) (1o, ta) (2.1 .
completely by the set of complex Fourier amplitudes {C,}. To describe random where the times are given by t;,> = t - 8;,2/¢. The coefficients A1, Az depend on i
fields we must regard these numbers as random variables in general, Usually the the geometry of the arrangement, but are taken to be independent of the propertics gj
most we can state about these coefficients can be expressed through a probability of the field. -
distribution p({Cy}) = p(C,C2,Cs, . . .). Then, if we measure some function We shall assume, to begin the discussion, that a photodctector placod at P
of E or of E™® | the most we can hope to predict is its mean value, i.e., if we ‘ measures the squared absolute value of some component of the complex field
measure F(E#)) we can only hope to find the average strength, (At a later point we shall discuss the validity of the assumption in some :
) @ R : detail.) If we write the measured field component as E()(r, t), we then have inin
<F(E'™)> = IP({ck})ﬂE ({Ck})lnxd Cy , (1.9) IEM(I‘, t)|2=EH(r, t)E(”(i.',t): IA.l2 E(.J(h,tl) EM(I‘;,M) i
where the differential element of area is given by d*Cy = d(ReCy ) d (ImCy ). + 12! E(r, t2) EM(ry, t) (2.2
It is important to remember that this average is an ensemble average. To {-) N
measure it we must in principle repeat the experiment many times by using the +2Refd* A B (ry, t) B (52, te) .
same procedure for preparing the field over and over again. That may not be a Now since our preparation of the source rarely fixes the Fourier coefficients C,
very convenient procedure to carry out experimentally but it is the only one which very precisely we must in principle perform the experiment repeatedly and then
represents the precise meaning of our calculation. The fields we are discussing average in order to find a non-random result. The only thing we can really pre-
may vary with time in arbitrary ways. As an example we might take the fleld gen- dict is the ensemble average of |E!*)(r, t)}2 taken over the set of random coeffi-
>rated by a radio transmitter sending some arbitrarily chosen message. There is there- : cients {Cy},
‘ore no possibility in general of replacing the ensemble averages by time averages. 4 2 2 +)e 2 2 - 2
The theory of non-stationary statistical :henomena can only be developed in teirgns <IE(m 917> = u)* < B! Nrn > e 1t < B, 1) 17>
of ensemble averages, : + 2Re X * A2 < EX(ry, ty) E"’(rz, t2} >. (3.3)
The solution of problems in statistical thermodynamics has accustomed us to It - . lation functi
hinking of statistical fluctuations about the ensemble average as being very small, we Introduce the first order correlation function
Ve are thus usually willing to forget about the need in principle to make an ensem- . Gm(rt, rt) = < EV(rt) EV(pe)> , (3. 4)
ile of thermodynamic measurements and are content to compare just a single . - -
neasurement with the predicted ensemble average. While the justification of such we can rewrite Eq. (2, 3) in the following way
thortcuts may be excellent in thermodynamic contexts, it is not always so good in < IB¥x, 12> = 10412 G (roty, Taty) + A2 12 GV (rate, rats)
itatistical optics. Thus when we speak later of the interference patterns produced . n (2.%)
'y superposing light from independent sources we shall find that individual meas- . + 2Re{a* 2o Gruty, mata) .
irements yield results wholly unlike their ensemble averages. The distinction be- ’ We have omitted consideration of vector and tensor indices of the fields and cor-
ween particular measurements and their averages may thus be quite essential, relation functions, respectively, since the vector properties of the field are not
too important in this experiment. We would have to take careful account of them
if somehow a rotation of the plane of polarisation were induced behind one pin-
hole, or if the polarisation were in any way made to play a more active role,

A particular case which occurs almost universally in classic optics is that in
which the incident field is stationary. The term ""stationary'' does not mean that
nothing is happening. On the contrary, the field is ordinarily oscillating quite
rapidly. It means that our knowledge about the field does not change with time,

ecture II. INTERFERENCE EXPERIMENTS More formally, we associate stationarity with invariance of the statistical de-
' scription of the beam under displacements of the time variable. The carrelation
One of the classic experiments which exhibits the coherence properties of light X function G" for such fields can therefore only depend on the difference t - '
i the Young experiment {Fig. 2), Gm(t, t) = G“’(t - t1) (stationary field), {(2,6)

\ (Note that by discussing only a single type of correlation function we are stating

‘ a necessary condition for stationarity, but not a sufficient one, All average

Py Si p } properties of a stationary field must be unchanged by time displacements.} When
\
\

random classical fields are represented by means of stationary stochastic pro-

cesses the models used usually have the ergodic property. That property means
S, Figure 2 that the function G!X(t - t') which is defined as an ensemble average, has the

l ? same value as the time averaged correlation function T/} (t - #)
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600rs, 1y 7) = o 10, 1) = im 5 [ECE, 40 B0, )t
- 0
(3.7)
The properties of the time-averaged correlation functions I'‘" for classical fields
have been discussed fn detail in Chapter X of the text of Born and Wolf,

It may be of some help in the lectures that follow to have some more concrete
applications of interference experiments in mind, Let us take a brief lock at one
of the fundamental techniques of interferometry by considering a case in which the
field incident upon a detector is a superposition of two plane waves, We assume
that the propagation vectors of the two plane waves are only very slightly different,
This might be the case for example for monochromatically filtered light from the
two members of a double star. If we assume that the frequencies of both waves
are equal we may write

EMNr, t) = A elllrot) g otk rut) (2. 8)

The question we now ask is: what kind of measurement can be performed to deter-
mine that we are receiving radiation from two sources and not just one?

Before answering the question let us specify the statistical character of the
coefficients A and B. They are, of course, particular examples of the coefficients
Cyx previously introduced. We will assume A and B to be distributed independently
of one another. This means that the probability function p(A, B) factorizes,

p(A, B) = p1(A) p(B). (2.9)
We will assume further more as properties of the distributions p, and p2, that the
phases of the complex amplitudes A and B are individually random. We then have
<A> =<B>» =0, More generally the mean values of various powers of the ampli-
tudes and their complex conjugates such as <A B*>, <|A|® A* B>, etc, will
vanish. Averages in which the amplitudes are paired with their complex conjugates
however, take on positive values,

<|AI*> =0, <|B[®>=0, n=1,2... (2. 10)

A famous device Invented to answer the question we haye asked is the Michelson
stellar interferometer (Fig. 3).

OPTICAL COHERENCE AND PHOTON STATISTICS - 78 -

The field at the point P and time t is, in effect, the sum of the two fields imp:

on the mirrors M;, M, at the same instant t' (if the optical paths M, Pand M, P
are equal) . Each of these two fields is of the form {2.8) evaluated at the points r,
and r; respectively. The average intensity at P will therefore be

<E(r, ) EM(r,t) >= 2Re(<|A)*+|BI2>

s <JAP>e®mm) 4 < BP>e-(n-m}, ()
where we have used <AB*> = <A > <B* > = 0 in reaching this expression.
If we introduce the correlation function (2.4) ,

G (r ¥, rat) = <EC (1 t) EG(rat)>
. (2.12)
=< [A|*> e-(rm) L < BI?> @ikt (riom) ,

then intensity may be written as

<ES)N(r, ) EM)(r, t)> = 2Re{< |A|2 + |BI™>
" (2.13)
+ Gt t) ),

The correlation function which describes the interference effect is time independent,
because of the stationary character of the field we are treating.

We see from Eq. (2.12) that the correlation function contains two spatially
gscillating terms. The way in which these terms reinforce or cancel one another
will depend on the displacement r; - ra2. I <[A[* > = <|B|*® >, Eq. (2.11) ylelds

<ENr, OE(r,t) >= 4 <JAI* >{1+cos [5 (k+k"): (r, -15)] x
cos [(k-k)« (ry-ra)])

The interference intensity which we see at the point r will be part of a pattern ofparal-
lel iringes which we see at the focus of the telescope. Although we have not at- -
tempted to describe the fringe pattern in detail, the expression (2. 14) for the intensity
does indicate one of the characteristic properties of the pattern, that itwill vanish al-
together when the displacement r; - r; is adjusted so that

(2.14)

cos[% (k-k') + (r: -13) ]

passes through the value zero. By observing the fringes we know that we are deal-~
ing with two sources rather than one, and by finding the values of r, - r; at which
the fringes disappear we determine their angular separation. The Michelson inter-
ferometer has indeed been used to measure the angular separations of double stars,
and for measuring angulardiameters of stars as well. Only a few stellar diameters
have been measured in this way, however, because of the difficulties inherent in
working with a large interferometer. An unusually great mechani¢al stability is
clearly required of the apparatus. Furthermore random variations of the index of
refraction along the optical path can wash out the pattern.

Instruments quite similar to the Michelson stellar interferometer have been
used in radio-astronomy to determine the angular size of celestial radio sources.
They consist of two separated antennas supplying signals to a common detector
system. In the case of these instruments, as well, it is technically difficult to in-
crease the separation of the antennas without introducing random phase differences
in the path between the antennas and the detector. To overcome this difficulty Han~
bury Brown and Twiss have devised another form of radio interferometer (Fig.4).



74 R.J. GLAUBER

The signals at the antennas are detected individually and then the detector outputs,
which are of much lower frequency, are transmitted to a central correlating device
where they are multiplied together and the product is averaged. The angular size
of the source is obtained from measurements of the way in which the correlation of
the intensity fluctuations of the signals varies with the separation of the antennas.
An equivalent arrangement may be used with visible light.

ko K,
74/“ %Yﬂ
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Figure 4

The essence of the trick used by Hanbury Brown, and Twiss was to detect the
signals first and.by taking away the high frequency components of the incoming ra-
diation, to transmit to the central observation point just & measure of the fluctua-
tions of the intensities arriving at the receivers, Since the detector signals are of
relatively low [requency they are easy to transmit faithfully over distances large
compared to the limiting dimensions of Michelson interferometers. This experi-
ment is quite different in nature from the interferometer experiment we described
earlier because it deals with the average of the product of two random intensities
rather than with a single intensity.

It is easy to see that in the average of the product of the two signals there is an
interference lerm, which permits us to resolve the two incoming waves. First we
note that a square-law detector placed at P, gives a response proportional to

IE(ra, 017 = [AI* + [BJ? + AB*e ¥e¥)'m
+ A*B e-liEI)T (2,16)

This output no longer contains the rapid oscillations of the incoming wave. An aver-
age of lhis delected signal, however, would have no interference term (since

< AB* > = 0), What Hanbury Brown, and Twiss did is multiply together the two
detected signals and then, and only then, to measure the statistical average. The
average of the product of two intensities of the form of Eq. (2.16) is

E ) 17 [E(r1 > = <(IAIT +1BI%)? > (2.17)
+2.0A{%IBI*> cos [(k-k') » (rs -13) ]

where we have used the fact that < |A|?A*B > = 0, etc, The cosine term clearly
represents an interference effect, We can use it to resolve the two sources by ob-
serving its behavior as r: - r; is varied, It is important to note that the interfer-

’

OPTICAL COHERENCE AND PHOTON STATISTICS 75"

ence effect has been found by considering the average of a quantity quartic in the #
field amplitudes. In the case of Michelson' s interferometer we deal only with ~ +'1'
expressions quadratic in the field amplitudes, #
Although we have discussed the interferometer experiments in terms of en- <.,
semble averages, it is clear that they are not ordinarily performed in this way, B
but rather as time averages. The calculation of time averages, however, is typ-‘;ﬁ'-’
ically at least a little more difficult than the calculation of ensemble averages ( andtd
often it is incomparably more difficult). To consider the interferometer measure-"
ments as time averages we should have to note that the two plane waves are not, in
general, perfectlymonochromatic, It follows then that the coefficients A and B,
which we were content earlier to evaluate only at a particular instant of time,
actually vary with time. To proceed further we should have to adopt models to -
represent A(t) and B(t) as stochastic functions of time. As we shall see presently,
there are extremely persuasive reasons, when we are dealing with natural light
sources, to take these models to be Gaussian stochastic processes, Then, since
such processes have the ergodic property, we are justified in identifying time
averages with ensemble averages. ¥
7
- REFERENCE 4
M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., London, 1959),
Chap, X. 'y

Lecture I INTRODUCTION OF QUANTUM THEORY

When we describe the electromagnetic field in quantum mechanical terms we
must think of the field vectors E and B as operators which satisfy the Maxwell
equations, The states, 1>, on which these operators act and their adjoints, <!, con-
tain the information which specifies the field. When measurements are made of the
physical quantity which correspond to an operator ©, we can nol expect in general to
find the same results repeatedly. What we find instead is that the measured values
fluctuate about the average value given by the product <|©| >, The fluctuation is
only absent if the state, 1>, happens tobean eigenstate of O, i.e,, if we have -

or> = 0>, (3.1)

where @' is an ordinary number rather than an operator. In that case it is conven-
ient to use Dirac's convention and let the eigenvalue O' be a label for the state by .,
writing the latter as | O'>, '

As in classical electromagnetic theory, it is convenient to separate the field
operator, E(x, t), which is naturally Hermitian, into the sum of its positive frequen=
cy and negative frequency parts:

E(r,t) = E™(rt) + E()(r,t) - (8.2)
These parts, as we have already noted classically, represent complex rather than
real fields. The operators E‘? are therefore not Hermitian, but they are Hermit-
ian adjoints of one another

E7(.t) = {E¥(r,00} 1 . (3.3)

While the fields E(* and E{) play essentially indistinguishable roles in classi-
cal theory, they tend to play quite dissimilar roles in the quantum theory. The
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~
operator E (*) describes the annihilation of a photon while E ) describes the crea-
tion of one, This identification of the operatorsis virtually the only fact we shall
have to borrow from more formal developements of quantum field theory.

We must think fundamentally of all electric field measurements as being made
on the Hermitian operator E(r, t) given by Eq. (3.2). In the classical limit it is
usually true that the complex fields E and E (- make contributions of equal mag-
nitude to our measurements. From a quantum mechanical standpoint that is be-
cause quantum energies are so small in the classical limit (hw — O), that test
charges emit quanta as readily as they absorb them. In the quantum domain, on
the other hand, we must expect that the fields E(” and E (- will make contributions
of altogether different magnitudes to the quantities we measure, such as transition
amplitudes, .

If we are using atomic systems in their ground states as probes of the electric,
field for example, then the atoms have no energy to emit photons and can only ab-
sorb them. In this case, which corresponds in principle to that of a typical photo -
detector, only the annihilation operator E* figures significantly in determining the
transition amplitudes., More exactly, if we do a calculation of the transition ampli-
tude using first order perturbation theory, we easily find that the creation operator
E® contributes only an extremely small amplitude which varies so rapidly with
time that it leads to no chservable effect at ail,. The creation operator can only
contribute materially if the detector contains excitedatoms, (Thermal energies are a
greatdeal too small to furnish atoms excited to optical energies, butat microwave fre-
quencies it may be necessary to take thermally excited atoms into account.)

In the third and higher orders of perturbation theory, the creation operator can
indeed play a tiny role in an absorption experiment. The effect in question is a
radiative correction to the first order absorption probability which all estimates
indicate will be quite small. We see, therefore, that it is fairly accurate to say
that a typical photodetector detects the field E¢*) rather than the field E, Although
this statement is clearly an approximate one rather than a rigorous one it is none
the less important since it furnishes us a reason for formulating the theory in
terms of a set of non-Hermitian operators. The formulation, as we shall see,
allows in turn a great deal of insight into the way the theory passes to the classical
limit.

To gain some further insights into the kinds of quantities measured in photon
counting experiments, let us examine the role played by the field operator in the
calculation of the appropriate transition probabilities. In the next lecture we shall
indicate how these transition probabilities are calculated in some detail by taking
due account of the atomic nature of the detector. Let us for the moment, however,
ignore the detailed dynamics of the detector and assume simply thatitis an ideally
selective device, one which is sensitive to the field E 4 rt} at a single point of
space r at each instant of time t. We may take the transition probability of the
detector for absorbing a photon from the fleld at position r and time t to be pro-
portional to ’

W= 10 EM () 18>, (3.4)
where |i> is the initial state of the fiefd before the detection process, and {f >is a
final state in which the field could be found after the process. In fact we never
measure the final state of the field, VThe only thing we do measure is the total
counting rate. To calculate the total rate we have to sum Eq. (3.4) over all the
final states of the field that can be reached from |i > by an absorption process.
We can, however, extend the sum over a complete set of final states since the
the states which cannot be reached (e.g., states |f> which differ from |i> by two
or more photons) simply will not contribute to the result since they are orthogonal
to the state E®) (xt) [i>,

. Vchen the final state summation is carried out the counting rate becomes, in
effect,

.

OPTICAL COHERENCE AND PHOTON STATISTis m
w = ‘)l: [<E] E®(r, t) HH>1® = <{E(r, 0 E) (1, 1) 11> | (3.5)

where the completeness relation Zf><f: = 1 has been used, The counting rate w
is proportional to the probability per unit time that an ideal photocounter, placed
at r, absorbs a photon from the field at time {, It is, according to Eq. {3,5), given
by the expectation valps3f the positive definite Hermitian operator E Xz t) E¢) (r, ),
taken in the state | i> which the field was in prior tothe measurement. Eq. (3.5)
shows explicitly that the photocounter is not sensitive to the square of the real field
(as has been assumed in many "semi-classical” calculations), but rather to an -
operator which corresponds to the squared absolute magnitude the complex field=
strength. o
We have thus far supposed that we know the state i > of the field, That does
not mean, of course, that we can predict the result of a single measurement made
with our counter. If we repeat the measurement another result will quite likely turn
out, and Eq, (3.5) gives us only the mean value of many repeated measurements,
So quantum mechanics forces us to talk about ensemble averages even if we know
the state of the field precisely. :
In practice, of course, we almost never know the state [1> very precisely.
Radiation sources are usually complicated systems with many degrees of freedom,
so the states |i > depend, asarule, on many uncontrollable parameters, Since -
we have no possibility of knowing the exact state of a field, we must resort to a
statistical description. This description summarizes our knowledge of the field,
by averaging over the unknown parameters, The predictions that we make by using
this description musttherefore, inprinciple,be compared experimentally with en-
semble averages. With this understanding we may write the counting rate as an
ensemble average of Eq, (3.5) over all random variables involved in the state|1>,

w o= {<1|E('J(r,t)E“’ ﬁ',t)f1>}“' overi (3'6)

If we introduce the density operator p = {1i><1il}, ... . wemay write this av-
erage as

w = Tr {pE)(r,t) E¥'(x, 1)} , (5.7)

where Tr stands for the trace of the operator which follows, The density operator
is the average of the projection opgrators on the initial field states. It is obviously
Hermitian, pt= p, Furthermor\%t also has the property of positive definiteness,
<jlplj> = 0 for any state |j >\/It is worth emphasizing that a two-fold averaging
process is implied by Eq. (3.7). That we must average the measurements made
upon a pure state is an intrinsic requirement of quantum mechanics which has no
classical analogue. The ensemble average over initidl states,on the other hand,is
analogous to the averaging over the set of random coefficients {Cx} which we deg-
cribed in the classical theory. N

Equation (3.7) gives the counting rate of a single ideal photodetector in terms
of the quantum mechanical correlation function

GMx,x) = Tr{pEN(NE(x)}, x= {r,t}, (3.8)

which is analogous to the correlation function introduced to describe classical in-
terference experiments. To describe more sophisticated experiments, e.g., the
coincidence experiment of Hanbury Brown and Twiss, it is useful to define a more
general set of correlation functions

G (Xy oo Xp,Xpyyree x,) = Tr{pE M (x,) +++ Et')(xn)E")(xM)
C e EM(x)} (3.9)
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The function G'™ will be referred to as the n-th order correlation function, The
analytical properties of this set .of functions and their relation to experimental
measurements will be discussed later.

We could, of course, have chosen to define a somewhat larger class of cor-
relation functions than the G!™ by dealing with averages such as Tr {pECEME®
E™}, which contain unequal numbers of creation and annihilation operators. If we
have chosen not to set down any special notation for such averages it is because
they are not of the types which are measured in typical photon counting experiments.
Such averagesmay, inprinciple, be measured in other kinds of experiments but they
will always vanish in stationary states of the field and, much more generally, when-
ever the absolute phases of the fields are random. Random absolute phases are,
of course, rather characteristic of optical and other extremely high frequency
fields.,

Lecture IV THE ONE-ATOM PHOTON DETECTOR

Let us now consider the photodetection process in somewhat more detail, We
shall imagine, for the present, that our photon counter is a rather idealized type
of device which has as its sensitive element a single atom which is free to undergo
photoabsorption transitions such as the photoelectric effect, We assume that the
atom is shielded from the radiation field we are investigating by a shutter of some
sort which opens at time t, and closes againattimet. Our problem will be to cal-
culate the probability that a photoabsorption process takes place during this inter-
val and that it is recorded by our apparatus.

The detector will be assumed to be far enough from the radiation source so
that the field behaves as a free field, The hamiltonian of the system (field + detec-
tor) can then be written as

G =Ho+H, Ho=Hoa + Hor ,

where F, is the sum of Hamiltonians of the free field and the atom. The interaction
term 7y is time independent in the Schr8dinger picture, In the interaction rep-
resentation, however, it becomes time dependent. If we make use of the electric
dipole approximation, which is quite accurate at optical frequencies, we can write
the time dependent interaction Hamiltonian as

dx iy
H,= eh ot Ge R ot _ -e?qy(t) «E (rt). (4.1)

In this expression r represents the position of the atomic nucleus and q, the posi-
tion operator of the ¥ -th electron relative to the nucleus. The time dependence of
the field E(r,t) which occurs in Eq. (4.1) is that of the free field uninfluenced by
the presence of the atom,

The Schrddinger equation of the combined system of field and atom in the inter-
action representation is

o 0
o 1> =gt > . (4.2)

Its solution can be written in the general form
It> = UL, t,) Ite>
where U(t, t,) is the unitary time development operator which describes the way in

which the initial state changes under the influence of the perturbation, In the first
order of perturbation theory the solution has the well-known form
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e>= {1+ [ anterar} it> “3)

Let us suppose pa7 that the system is initially in the state |gi> = 1g >I1 >, where
11> is some known state of the field, and |g > is the ground state of the atom,
We ask now for the probability that the system at time t 18 in a specified state
laf> = |a> |2, where |a > is an excited state of the atom and |£> is the final
state of the field, This probability is given by the squared absolute value of the
matrix element

<aflU(tto) [gi> = 3= [* <aflg(t) 1> av . 49
] .

e
(The zeroth order term in U (t, t,) of Eq. (4.3) does not contribute because of the
orthogonality of the electron states |a > and |g>.)} By substituting the interaction
operator from Eq. (4.1) we can separate the matrix element into two parts, a
matrix element for the atom and one for the field:

h
To evaluate the atomic matrix element we recall that

<afiU(ht) 1gi> = F T [ <alq,(t)Ig>« <AE(re)[>ar.  (45)

1 i
ot EL NS EIRY - §%0, at"

i.g( L t
q,(t) = e g (o) e’F q,(0) e

The latter relation holds because the field hamiltonian g, y commutes with the -
atomic Hamiltonian ¥Co 5 and with the electron coordinate q_(0) as well. We may
write the matrix element as '

<a|27q1(t')rg> = M, elvagt
with
M, = <alz,q,0)g> and hwg,=E,-E,,

The matrix element M,, occurs simply as a time independent coefficient in the trans-
ition amplitude

. t *
<af|u(t,t) 1gi> = %‘L{ elwst M, . <fIE(r,t) [1>dt' . (4,6)
0

We can now replace E(r,t') in this expression by the sum of the two operators
E“)(r,t) and E‘X(r,t). The emission operator E((r,t) contains only negative
frequencies,i.e., exponential time dependences of the form e'* for w >0, The
time integrals of these terms clearly oscillate rapidly with increasing t, They are
furthermore quite small in amplitude compared with the terms contributed by the
annihilation operator E‘(r,t). What we are describing, in fact, is the way in which
the transitions are restricted by the conservation of energy. In order to find that
the atomic transitions conserve the energy of the field quanta with an accuracy

AE = liAw, we must leave our shutter open for a length of time t- t,>>1/Aw,

In practice we always have Aw < w_., i,e., the shutter is open for a great many
periods of oscillation and then the contribution of the emigsiom term Et)(r,t) is
entirely negligible, (We are assuming that the detector is at a relatively low tqm-
perature, as we have remarked in the preceding lecture,)

We must next sum the squared modulus of the amplitude {4, 6) over all final
states |{> of the field, since no observations are ordinarily made of those states,
One of the virtues of working with the expression (4.86) for the amplitude is that in
the final state summation we can sum over all the states of a complete set; those
final states which cannot be reached by the field for physical reasons are present
in the sum but contribute nothing, either because the matrix elements leading to
them vanish identically, or because the time integrals of the matrix elements vanish.
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Thus the constraint represented by the conservation of energy, for example, is
actually implicit in the structure of the time integrals in the sum of the squared
amplitudes,

4.7
ﬁfr <aflU(t, t,) |1gl >i?

— e z lw l. 3
= (;) j: 'ftt dtdt!t e aglt'-t) E,M"ig,uMag,v<”Eff)("’t')"

]
E(:)(r,t") 1>,

which has been derived by using the relation
<LIEP1i>Y = <YED 1>

and the completeness relation T, [f> <f | = 1,

We have already discussed the need to average such expression as Eq. (4.7)
over an ensemble of initial states |i> since the initial state is rarely known accur-
ately in practice. We then find for the transition probability the expression

Py (1) = {ZI<aLIU(L, t 181> 17} ooy

2 t .t
= (%) J;D J;aftodt' dat* e wl!“"'t') M:cm Ml{w

(-) +
Tr {pE. (r,)E,'” 1, 1)}

(e 2 £t {w g (1 =t 1

= (£) n'Zy ftofgodt' am o™ ME MG, O (rt, xtv)
T'he definitions of the density operator p of the field and of the first order correla-
ion function G(" have been given in the preceding lecture.

The foregoing discussion has assumed that the atom makes a transition to a
specified final state |a>, Counters employing discrete final states have received
i certain amount of discussion recently, Bloembergen and Weber, for instance,
1ave proposed using a scheme llustrated by Fig. 5.

(4.8)

wp

Figure §

V@en the atom 15 excited to the state a by an incident field of frequency w it is then
-aised to a higher level bby a pumping field at frequencywp. The emission of aphoton
7ith the sum frequency w, = w + w, indicates the absorption of a photon from the
ncident field,

In the detectors used to date, however, the final states {a > of the atoms form
n extremely dense set, ora continuum; the atoms are simply ionized, for instance.
ince a counter of photoelectrons has only a limited ability to select among final
tomic states (e.g., the counting of photoelectrons places only weak restrictions on
heir momenta), we have to sum the probability given by Eq. (4. 8) over at least part
f the continuum of final states |a>. But not all ejected electrons can really be
ounted. Often they are ejected in directions for which the counter is insensitive
r they are stopped by matter., The device might furthermore be builtsoas to intro-
uce some explicit selection according to energies before detecting photoelectrons,

OPTICAL COHERENCE AND PHOTON STATISTICS 81 ...
M

P
-~

We shall not discuss the actual means used for detecting the photoelectrons, in
any detail here. Instead we shall agssume simply that the probability that an elec~
tron ejected by photoabsorption is really registered is given by some function R(a) .
The way in which this function varies with the final state |a > of the electron-ion
system will depend, ingeneral, on the geometrical and physical properties of the 5
actual counting device. If we now sum the probabilities given by Eq. (4.8) over
the final states |a >using the probability R(a) as a weight, we find for the prob- %
ability of detecting a photon absorption in our one-atom detector

pO() = Y R(a) Py (1)

Lk

. t ¢
= (e/M)? “Ev ftof% at de ; R(a) M Mg, (4.9)
xe“"ag(t"—!‘) G(!)uy (l't', rt”).

We now separate the sum over the final states into two parts, a sum over the
final electron energies and one over all other variables such as momentum direc-
tions, spin, etc. We do this by introducing the sensitivity function,

8, () = 2n(3)° T R(a)Myg MY, B(w - wag) (4. 10)

which contains contributions only from transitions with a fixed energytransfer, hw,
(Note that s,,(w), although it is written as a sum of delta functions, isactuallya
well-behaved function for the case we are considering since the sum over states | a>
is really an integrationover states witha continuum of energies, )

By making use of the sensitivity function and of the properties of the delta-
function it contains we may write the counting probability in Eg. (4.9) in the form -

t t g
0 - g far [ Loz s, (we™ " 6,0, 410
o 0 l

Since g,,(w) = 0 for w< 0 we have extended the integral over the variable w from
-0 to+, If we define the Fourier transform of the sensitivity function by

S,(0) =(1/21) [ s, (w)e"“ dw, (4.13)
we finally obtain

t ot
pM(t) = {dt'ft a8t - ) Gl (rtr,rtmy (4.18)
1] o

Eq. (4.13) represents the total transition probability when our shutter is open
from time t, to t. To obtain the rate at which transitions occur we must differen-
tiate with respect to t.

In general there is nothing very localizable in time about the absorption process.
1t is not possible to say that the photon has been absorbed in a particular interval
of time small compared to the total period during which the shutter has been open.
This becomes quite clear if we assume that the sensitivity s, (w)is sharply peaked
with a small width Aw. Then S,.(t'' - t') takes on nonvanishing values for |t'' -t'|
= 1/Aw, whichmaybe an arbitrarily long interval of time for small Aw. The
degree of non-locality in time which enters the integral in Eq. (4. 13) is, roughly
speaking, justthe reciprocal 1/Aw of the bandwidth of our device. If the bandwidth
is narrow the counter measures an average of values of G“’(rt', rt'') with t' quite *
different from £'. In optical experiments a narrow band sensitivity is usually
reached by putting narrow band light filters in front of broad band counters, i.e.,
by ''iltering'* the correlation function G ¥ rather than by discriminating between
photoelectrons. Broad band counters are therefore, in this sense, somewhat more
basic than narrow band ones,

In the limiting case of extremely broadband detection the detection process
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becomes approximately local in time. We have already made some mention in the
preceding lecture of an ideal photodetector. Such a detector, we shall assume, has
a sensitivity function s,,(w) which is constant for all frequencies, To gain a quick
insight into the meaning of this assumption we note that when the sensitivity function
isa constant,s,,, independent of frequency, Eq. (4. 12) reduces to

wa (t) = By 6( t) . (4. 14)

The photon absorption process then becomes, in effect, localized in time, and the '
transition probability given by Eq. (4. 13) reduces to

t
p Pty = = suu{ G (xtr, re)atr. (4.15)
H, v ° .

Now the assumption that 5,,(w) 1s independent of frequency would be quite a
difficult one to meet in practice for @ > 0. When we take negative values of w into
account it becomes, strictly speaking, an impossible condition to meet since
sw(w) = 0 for w < 0. But in fact neither of these troubles stands in the way of
our constructing actual devices which approximate the behavior of ideal detectors
arbitrarily well, as long as we agree to use them on radiation fields of restricted
frequency bandwidth. Once we assume that the field excitations have {inite band-
width all we really require of our detector is that its sensitivity be constant over
the excited frequency band. The detector then functions in an ideal way no matter
how much the sensitivity varies outside the excited band.

To show that we need only be concerned to have the sensitivity remain constant
over the band which is actually excited, we shall examine Eq. (4.11) for the trans-
ition probability in a little more detail. Let us begin by imagining that the time
interval t - t, is exceedingly great, e.g., welett— candt, — -«. Then if we
let K, (w) be the Fourier integral

00
K, (w) = ]:;ft' fw gt't e lw(t"-t) qw(”(ﬂ',!‘t"), (4.16)
it is clear that K, vanishes for frequencies w lying outside the excited band. (e. g.,
The diagonal elements K, (w) are simply proportional to the power spectra of the
three field components.} We may then make use of Kw( w) to rewrite Eq. (4. 11)as

ptt) =(1/27) _f: Zs,(@)K, (0} dw ’ . (4.17)

Now as long as s,,(w) takes on the constant value 8,, over the excited band
(and no matter how it behaves elsewhere} we may write Eq. (4.17) as

pI(t)

z s, (1/21r)fw K, (w) dw
A (4.18)

]

o0 (l)
#zv sl’# :l;c pr (rtr; rt') dt"

and the latter of these expressions again shows the locality in time of-the photon

absorption process which we noted earlier in Eq. (4.15), i.e., the two arguments \

of the correlation function in the integrand are the same. '
In order to derive the foregoing resuilt we imagined that the time interval t ~to

was allowed to become infinite, To see the influence of the fact that the time

interval has a finite length, let us define a time-dependent step function

0 for t' <t,
n(t") = 1fort,<t' <t
( 0fort >t )

.
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i i . (4.11), for example, may be
Then the limits of the time integrations in Eq. ( 11), exa S
extended from - to « if we first multiply the correlation function in the integrand .
by h(t’) 7(t"). This extension of the limits of the time integrations means that
we may use once more an argument of the type which led to Eq. (4.18). But the
difference is that the function K M(w) must now be regarded as the Fourier trans-

form

Py
st

3

0 e n :

K (o) = Lav Lar ewe geo) 6,0 (e, 200 5 (20) (.19)
The bandwidth of this function willingeneral be di?ferent fr:'nn that_ of the radiation
present but the difference will only be significant if the period during which the

i is extremely brief, J
Shuttli:;tlisosp::p:s: the ba.ngwidth of the radiation prgsent, i e., of the fun(:tti;xpl i
G, is 6w, The bandwidth associated with the functions n is of order (:t-do o{.
The frequency width characteristic of Kw(w) is presumably of thtei rr;ag? ‘::tfo of
the larger of these two widths. Then if we assume that the sensitivity fun ne t
our detector only varies appreciably over an interval Aw, we shall secure4 alxg ) X
pression for the transition probability which reduces to the form of Eq. (4. as
long as Aw satisfies the two conditions

Aw > fw and Aw > (t-t)™" .

i
The second of these conditions sets a lower bound 1/Aw to the Ieng?h of time our -
shutter can be open if we want the behavior of our counter tc.> remain ideal. in

If we differentiate Eq. (4. 15) with respect to ti‘me we find that the rate of in- .,
crease of the transition probability, i.e., the counting rate, is

wii(y - B0 - m o6 (et 1) (4.20)

Having carried the tensor indices of the_ s.ensitivity a.m.i correlatigpl .ftqnctio:s
far enough to illustrate their role in determining the transition pr.ol.)a.d:. llleflzv;,tlon
shall now eliminate them by imagining the field to possess a specﬁxe po. at1 .
e . This can be accomplished in practice, of course, by putting a polarization
filter in front of the counter. With the notation

ENr,t) = & - EV(r,1)

) - av. EMr t
Egnh = et E ()-a o (4.21)
GUxt,rt) = Tr {p E(r,t) EV(r, )}
s = uzi e, Svu é: ’
Equation (4.20) may be rewritten as
w(t) = sG(rt,rt). (4.22)

ug justified the assumption, made in the course of the simplified dis-

m:ﬁ; t:ivex: earlier, that an ideal photon counter can bg constrtfcted to ::;]:;l;d,
in effect, to the field at a given instant of time. Its cquntmg rate u; prq&o " ume}
to the first order correlation function evaluated at a single point an ;i s ega e

In deriving the foregoing results we have employed the electric pc;lcon:‘:,}:n-
imation. The use of that approximation has been much more 2 matter at; it
ience than one of necessity. We could as well have retained the gen&;l Wepwould
between the momentum of the atomic electrons and the vector po?en tﬁer i
then have made use of correlation functions for the vef:tor potential rie o o
the electric field. The only difference in the calculations would then
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taking account of the finite size of the atom. Instead of having atomic matrix ele-
ments simply occurring as constant factors in the transition probabilities we would
have to integrate products of the atomic wave functions and the correlation functions.
The transition probabilities, in other words, would be integrals which involve the
correlation functions for finite spatial as well as temporal intervals. Fortunately
these unilluminating complications are not too necessary quantitatively at optical
and lower frequencies.

Lecture V THE n-ATOM PHOTON DETECTOR

The photon counter we have thus far discussed has as its sensitive element
only a single atom. Since that is hardly a very realistic picture of an actual de-
tector, we must generalize our arguments to deal with detectors containing arbi-
trarily many atoms which may undergo photoabsorption processes. We shall carry
out this generalization in two stages. In the present lecture we consider detectors
which consist of a relatively modest number of atoms and show how these can be used to
investigate the higher order correlation properties of the fields. We shall postpone un-
til the last lecture a full discussion of the statistical properties of actual photon counting
experiments, since it will be useful to discuss the coherence properties of fields first.

The one-atom detector, as we have seen, furnishes us with measurements of
the first-order correlation function of the field, G'Y, There exist, however, more
general correlation properties of fields; some of these are related, for example,
to experiments in which we measure coincidences of photon absorption processes
taking place at different points in space and time. Such an experiment has been
performed for example by Hanbury Brown and Twiss, and we shall discuss it in
some detail in the later lectures.

Let us suppose that n similar atoms are placed at different positions ry,r, ...
r, in the field. These atoms, we assume, form the sensitive element of a species
of compound detector. A shutter in front of all of the atoms will be opened during
the time interval from t,to t. We ask for the probability that each of the atoms
has absorbed a photon from the field during that time interval. Though this prob-
lem is still rather artificial in nature, its solution will be an essential part of the
general discussion of photon counting we shall undertake later.

The process in question involves the absorption of n photons, and therefore,
to calculate its probability, we must, strictly speaking, apply n-th order pertur-
bation theory. Needless to say, a number of simplifications are available to us in
doing this,

In order to solve the Schrodinger equation in the interaction representation

i35 It> = B> (5.1)

we have already introduced the unitary time development operator U(t, t,} which
transforms the states according to the scheme

1> = Ut t) 1t >
A formal solution for U(t,t,) may be written in the form
t

Ul t,) = {e % {70 (5.2)

,
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o 1 ,-is ot t n
= - —_— “na v I .2b
Lom (F) Lo f ) el 6 e (5.2b)

vhere the bracket symbol { }, stands for a time ordering operation to be carried
out on all the operators inside the bracket. It requires that the products of oper-
ators be rearranged so that their time arguments Increase from right to left. The
representations (5. 2a and b) for the solution are perhaps most easily derived by
writing the Schrddinger equation (5. 1) as an integral equation and solving the in-
tegral equation by means of a power series,

The interaction Hamiltonlan #4(t) for the n atoms interacting with the fleld is

given by
n
w0 = I (0, (6.3)

where#,(t) represents the coupling of the j-th atom to the field. The individual
coupling terms take the form

gyt = -eZ q (1) - E(r,1), (5.4)

which we have already discussed. We shall assume, for simplicity, that the atoms
are dynamically independent of one another, i.e., that their zeroth order Hamil-
tonians are separable and commaute.

The n-fold absorption process is described, to lowest order, by the n-thorder
termU™(t, t,) of U(t,t,), i.e., the n-th order term of the series in Eq. (5.2b),
By ingerting the Hamiltonlan given by Eq. (5.3) into Eq. (5.2b}, we obtain for
Ul (t,t,) an expression containing n” terms, which represent all of the ways in
which n atoms can participate in an n-th order process. Many of these terms,
however, have nothing to do with the process we are considering, since we re-
quire each atom to participate by absorbing a photon once and only once. Terms
involving repetitions of the Hamiltonian for a given atom describe processes other
thanthose we are interested in. The only terms which do contribute are those in
which each of the #f) ; appears only once. There are n! such terms, and all of .
them contribute equally since the bracket { }. is a symmetric function of the op-
erators it contains. Therefore, the part of U™ (t,t,) we must consider reducesto

4. t )
G L m e - a w), figs (5.5)

Since none of the n atoms can emit a photon (each of them is in the ground
state initially), only the positive frequency part of the electric field operator in
each #fy; will contribute to the transition amplitude. When the electric field op-
erator in Eq. (5.4) is replaced by E' ')(rj, t) w(e‘ shall write the resulting inter-
action Hamiltonian as #f; J[‘. The operators 7, ; “commute with each other since
the atoms are dynamically independent and the fields E(’J(r,, t) commute. We can
therefore drop the ordering bracket { }, in the expression (5.5), and write the
desired part of U'™( t,t,) as an n-fold product of single integrals

-iyn P LI FO R .
(F7 R ey () ar _ (5.8)

The result is a simple one. The operator which induces the transitions which .
interest us is simply a product of the operators which induce the individual ab-
sorption processes. This does not mean, however, that the matrix of the trans-
ition operator factorizes.

In evaluating the matrix element of the operator (5. 6) between two states of
the entire system we must note that the individual atoms which are all in the same
ground state initially may make transitions to final states a, which are different
for different atoms. If we indicate these initial and final states for the atoms with
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I{gh>> and [{a;} >, and use the symbols i, {g} > and 1, {a,} > for the initial and

final states of the entire system, then the matrix clement of (5. 6) or of U‘")(t, t,)
takes the forni

<t {a Hu™, ) 1, {e) > =
(5.7)

¥

ie.n rt 't _— ) . o .
() ft ,Jta e Fragl  <HEM(rt) 0. E (rit,) 11> My, ity

where we have introduced notation for the atomic matrix elements and frequencies
analogous to that of the preceding lecture, and have eliminated tensor indices by
assuming the field to have a unique polarization as in Eq. (4.21),

We must next carry out upon the amplitude (5. 7} the now familiar procedures
of squaring, summing over final states of the field and averaging over initial states
of the field. The expression we derive in that way is a transition probability for
each of the atoms to reach a specified final state la;>. Since each of these final
states is in general part of a continuum we must sum the probability we have de-
rived over all the relevant final atomic states. We shall again assume that our
counting device does not record all of these final states with equal likelihood, but
is characterized by a certain probability R(a,) that any particular photoabsorption
process is recorded, For simplicity we shall take this recording probability to be
the same function for each of the n atoms of the detector, We may then carry out
the final state summations for the atoms by introducing the sanie sensitivity func-
tions we discussed in Eqs. (4.10) and (4.12) of the preceding lecture. When these
simple sums and averages are all carried out we find for the n-fold counting proba-

bility
t it n
p("’(t) B Jto“' 'L jl=lls(t'lr - t'j) G(n’(rxl'x R A VS K ANEREE LD B
n
LG At (5.5

In this expression G'" ig the n-th order correlation function for the field defined by

G (%) ot xan) = Tr{pE(x,) .. EV GG E Y x,,) o B (xy) )
with x; = {r,t}.
For broad band detectors eq. (5.8) reduces to the simpler form

t t
P(nl(t) = snjt... '{ G(ﬂ)(rxt'l et Tt e pptty) -ﬁldt'j . (5.9)
[ o

An ideal n-atom counter thus measures a time integral of the n-th order correla-
tion function.

We have thus far considered the n atoms which undergo photoabsorption to be
part of a single detector. But a detector constructed in this way is not very dif-
ferent, really, from a set of n detectors of the one-atom variety we discussed in
the last lecture, If we regard the n atoms as the sensitive elements of a set of
i1 independent detectors, then the n-fold photoabsorption process we have been dis-
cussing furnishes the basis of a primitive technique for n-fold coincidence counting
of photons.

The technique may be refined a little if we imagine that there is a separate
shutter in front of each one-atom detector. Then we may assume that all the shut-
ters open at the same time t, but that the time at which each of them is closed maybe
varied arbitrarily. Let us suppose that the time at which the j-th shutter is closed
is t;. Then the j-th atom only sees the field from time t, toty. The effect of
closing the shutter may be simulated by assuming that the atom is decoupled from

il <
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i step function
the field at time t,. For this purpose we may introduce the step

o) = \ 0fort <0 (5.10)

?1fort>0

. . . t of
and write an effective interaction Hamiltonian (i. e., one which takes accoun
the closing of all the shutters) as

> 5.11
#i(t) = Z o0t -t) gy (0. (6.11)

The calculation of the probability that a} pl:;)toagsorggc:; at:l:ess fll?c:sl? h:a::l-
is essentially the same with the effective am v
Sz’l;:.fitoorf »lvi have described earlier. The onli'l x‘-}e::l dtl{ffer;:;:‘;e;gfli:;ieiss thnz:n:n 01[1 toud
i i t etection
i tation, ig that the answer for the Fo J
:?rt:: I;.rl;fegral ’1n which the upper limits of integration are the times t;. For the
broad band case the answer is, for example

t
p(“’\(tI tn) = g" rt[dt'z sae ‘[ '(ljt"n G(“’(rlt’l- - rnt',,, rnt'n' . l'1t';) . (5.12)
P 4, .

The times t] AL tn may be var iEd uldependently. An Il-fold delayed COh‘c‘deIlCe
rate, i.e. y @ cou'ntlng rate pel (mllt tune) ’ I'!la} t'hex eSOIe be defu.ed as
t B
p ( tl tl'-l)

() - ¢
Wit b = e (5.13)

=5“G(")(r1t1 oo Tty Tptyee e rity) .

This result verifies the statement we made earlier that coincidence exg::i;;g::i_
performed with ideal detectors furnish measurements of the higher or
ationltfur:.llzml):gs\.vorth emphasizing that the kinds of measurement processesto‘wr:at;aﬁf;
been desciibing differ both in method and in spirit from those thatntre ;:: omart
discussed in the formal quantum mecha:_llcaltt;;::lc.)ry h:,z; xtnhiasphu;':;r;:l i.nterpx'et.atlon
f measurement has been useful in es is : :
g;e::gnfur? mechanical expressions. But becatlise thefr:ah arti :z:y a:::i .:nmwat::hthe
i j ons of the s

ct statements meeting the required assump t :
:L;;lications of the formal theory have been guite restricted to da.:) trast, explic-

The kinds of field measurements we have discussed are, by o r, o
itly approximate in character. We have only calcul:::{;c:l th:eh :;?sm t ::i r?mombtion -

ltions occur, e
to the lowest order in which the trans D ndor
dual atomic transitions, the hig

bo too difficult to remedy for indivi : t o
Z?ftects in multi-atom detectors wouid be found to h'fwe qu1::§-l :ec::;glti;::ic:‘ mahe
matical structure. It is implicit in the approximation we s e are
tromagnetic influences {as well as other influences) of one af on':d e A eich
ienored. That can be seen, for example,from the fact that the E‘* ope e for
z)g:::?lr ir; the correlation function G{™ all commute. The transition xt':te A th S ;’)o o

i f the times t;-- +t, even thou
le, does not depend on the ordering o he ol
iftagnxlr?a;’have time-like relationghips to one tial.nother and electromagnetic di
indeed s {from one point to another.
anceswc]zillré 1the atoﬁ?: may influence one anothef electromagnetm'ailayu mev;:.:esmn:lty
described by our lowest-order results, those mf%uences are typ;m enZa.l o To take
mall and are sometimes of a kind that can be eliminated exper .ion O rocoss
. specific example, let us suppose, that instead of a simple photoabso:'pt on
?n alljtom 1, we have, a type of Raman efiect which produce;sh anot:eez;b p;x;:rgned b atom
; ited photon may then
hotoelectron { Fig, 6). The emm 2
Ezts ;r;:)ducing a second photoelectron. Not only does this type of process have
1
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Figure 6
extremely small cross section, but it may be eliminated entirely by choosing detec-
tor atoms with ionization potentials greater than(1/2)hw, :

We have mentioned the electromagnetic influences of the atoms upon one another
just to underscore the fact that we have not been describing an exact theory of meas-
urement. It may none the less be an extremely useful and accurate theory.

Lecture VI PROPERTIES OF THE CORRELATION FUNCTIONS

The n-th order correlation function was defined as the expectation value
(m - - *
G (xy +o e xan) = Tr{pE N (xs) o+ B (X B (%py) o+ P (x,)} . (6.1)

The averaging process we carry out to evaluate this expression is the quantum
mechanical analogue of the classical procedure introduced in the first lecture.
There we spoke of averages over a set of random Fourier coefficients. The re-
semblance between the two approaches is not yet a very persuasive one, but it will
become more so as we proceed.

As a first property of the correlation functions we note that when we have an
upper bound on the number of photons present in the field then the functions G'™
vanish identically for all orders higher than a fixed order M. To state the prop-

erty more explicitly, if n> is an n-quantum state and the density operator is
written in the form

p=Zc,ln><m|, (6.2)
m,n

then if we have ¢ | = 0 whenever n > M or m > M, it follows from the nature of
the annihilation operators E¥ | that :

EM(x)) o0 Ex)p= 0 (6.3)
forp > M
Furthermore, the conjugate relation
PE (x)+-r ETx,) =0 (6.4)
also holds for p > M. Thus it follows that

6P = o (6.5)
forp > M,
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This property of the correlation functions must be regarded as a rather strange
one when viewed from the standpoint of classical theory. There the correlation
functions are essentially sums of moments of the probability distribution for the
Fourier coefficients, and it would be quite difficult to imagine a case for which the
moments higher than a certain order vanish identically. We have, in fact, construc-
ted states which have no classical analogue by imposing an upper bound on the num-
ber of photons present, However, that should not be surprising since in the limit
fi— 0 these are states whose total energy goes to zero.

A further property of the correlation functions can be derived from the general
statement

Tr(At) = (Tray (6.8)
which holds for all linear operators A. Applying this identity to the correlation
function (6. 1), we find

[G("’(xl “ee X)) * = Tr{E('](in) cor B (tam) Em(x.)-o-E(*)(meT}
(6.7)
= Tr {pE 2, -+« B EPNx) - BV} = 6xzneee 1)

Here we have made use of the Hermitian character ofp and of the invariance of the
trace of a product of operators under a cyclic permutation.

As a consequence of the commutation properties of the E and E”'we can free-
ly permute the arguments (X «++ Xn) and (X, y+++ Xza) without altering the value
0f GIV{xy +-« Ky Xpe1-++ X2n). We cannot, however, interchange any of the first
n arguments with any of the remaining n, unless suitable terms are added, sincethe
corresponding operators do not commute,

A number of interesting inequalities can be derived from the general statement

Tr{p ATA} = 0. (6.8)

This relation, which follows from the positive definite character of the operator in
the brackets, holds for any linear operator A. To prove the inequality we note
that p is Hermitian and therefore can be diagonalized. Thus, in some representa-
tion it has the form

<k | pIm> = §,p, . (8.9)
It follows immediately from the definition of the density operator that
p, = <klplk> = {<kli> <ilk> },, = {I <ilk>(%},, = 0. (6.10)

(Furthermore, since Tr p= X p,= 1, not all the p, vanish.) Now a simple appli-
cation of the completeness relation gives

Tr {patA} = = p<xialaik>
k ‘ (6.11)
=ZpZ <klATm><miAlk> = ZpZ I<mlAlk>1* = 0.
kK “m k *m

Of course this value for the trace is independent of the particular representation
used. Hence the proof of the inequality (6.8) is completed.

A number of results may be derived from the general inequality (6.8) by means
of various substitutions. For example the choice A = E{*(x) gives at once

Gil(x,x) = 0, (6.12)
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Similarly the substitution A = E‘¥ (x,) -++ E(*(x,) give us
G'¥¢xy *** X, Xpre0 Xa) =0, (6.13)

These two relations are also evident from the physical meaning of the 'diagonal"
forms of the G®, The forms are interpretable as photon intensities and coinci-
dence rates respectively, and are thus intrinsically positive.

These results and all of our later ones can be generalized immediately to deal
with vector fields E “M (x) rather than the scalar field E/*'(x). We need only as-
soclate a vector index p; with each coordinate x;. We can thus consider x, as a
shorthand for the set of variables {r,,t, u;} instead of simply {r),t;}.

Another possible choice for the operator A is

A= j;*:l aEYx) (6.14)

where the Ay are a set of arbitrary complex numbers. For this case (6.8) gives

us
§A*,x,c“’(x,,x,) = 0. ' (6.15)

Thus the set of correlation functions G“)(xi, x,) forms a matrix of coefficients for
a positive definite quadratic form. Such a matrix has, of course, a positive de-
terminant,

det [G"(x,x)] = O (6.16)
For n = 1 this is simply the relation (6.2). For n= 2 we {ind
G“)(x,,xl) G“)(Xh xz) = | G M (xixa) 1%, {6.17)

which is a simple generalization of the Schwarz inequality.

By proceeding along the same line we can derive an infinite sequence of in-
equalities. We shall confine ourselves however, to mentioning the quadratic ones
for the higher order correlation functions. I we write

+) + {+)
A= EPx) s BN (x) + EC(x ) E Tk, (6. 18)
then the positive-definiteness of the related quadratic form requires that we have

G{n,(XI c** Xay Xpvo- Kl) G(n)(xm“" Xong X2n ** ¢ xn#l)
(6.19)

= | G[n)(X1 oo Xp, xml... xzn)lz_

SPACE AND TIME DEPENDENCE OF THE CORRELATION FUNCTIONS

We note that the operators E/¥(r,t) occurring in the correlation functions,
obey the Maxwell equations and furthermore satisfy whatever boundary conditions
we ordinarily require of the electric field vector (e.g., periodic boundary condi-
tions or the conditions for conducting walls). As a result the functions G {x ---
X2n) oObey 2n wave equations and 2n sets of boundary conditions, one for each of the
space-time variables.

Let us now consider the structure of the functions G in stationary fields. The
best way to define stationarity in quantum mechanics is to require that the density
operator commute with the Hamiltonian, This criterion is equivalent to the state-
ment that p is independent of time in the Schrodinger picture. (In the Heisenberg

L.
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picture, however, the density operator for isolated systems is always time-inde-
pendent.) If we use this definition and the familiar interpretation of the Hamilton-
ian as an infinitesimal time-displacement operator we may write

) B () K Her
Tri{pE " (x:) -+ EV(xen)} = Tr{eW pE "(x)) -+ E(xa)e™ ¥ }
ir e X7 “) _ixr 1y (9 M
Tpef efF E(x)e ™ «..e F E (xm)é® }

il

Trie

B (+)
Tr{pE ™ (ri,t, +7) -+ E (Tan,ten + D},

]

where T is an arbitrary time parameter. We have thus shown that for stationary
fields the correlation functions obey the identity

G™(rity oo ronten) = G (rity 4T, e Tonten +7) , (6.20)

i.e. they are not changed by a common time displacement of all the arguments. As
a result, the G!™ may be thought of as depending only on (2n-1) time differences.
The same sort of argument can also be constructed for dealing with spatial dis-
placements. When the density operator commutes with the components of the mo-
mentum of the field, the correlation functions are invariant under displacement of
the spatial coordinates in the corresponding directions.

One further mathematical property of the correlation functions is a consequence
of the way in which the functions are constructed from the positive and negative
frequency parts of the fields. The function G™(t; +++ tn, t puyv+- tzn) has a time
dependence which, according to our convention, contains only positive frequencies
for the variables t ,,, +++ t2n and only negative frequenciesfor t; --- tan. Thus, for
example, if we ignore the spatial dependences we may write
et g T (6.21)

)
GU(LE) = Ty e

with w, and we, > 0.

Now if we consider G'''( t,t') as a function of two complex time variables, t and

t', it is clearly an analytic function of t' in the half plane Imt' = 0, and an analytic
function of t in the half-plane Imt = 0. .

We can therefore use the Cauchy theorem of complex function theory to con-
struct identities such as

(n ’
2)) 1y - L mG (._tzt' "
ety = o fc A (6.22)
Im1"
€
o TRt
R
C
Figure 7.
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where C is the contour in the complex t'* -plane which is shown in Fig, 7.

Now from the boundedness of the coefficients ¢, in Eq. (6.21) we may see
that the semi-circular part of the contour in the lower half plane gives no contri-
bution in the limit as the radius R goes to infinity. Furthermore we note that the
contribution of the infinitesimal semi-circular contour in the upper half-plane is
just -7i times the residue at the pole. In this way we find
Mt

1)
e e (6.23)

{n i *
¢ty =-p [

m -0
where the integration is performed along the real axis and the symbol P denotes the
Cauchy principal value. When we take the real and imaginary parts of Eq. (6.23),
we obtain the pair of relations

10 1 mReG“](t t)

ImG (t, t') = p P w———im‘!——‘ dat't ) (6.24)

; .0 (n Tt
Re G'"(t, 1) = _;_ PJ Im G'(t,t'") ar. (6.25)
-0

-t

These relations enable us in principle to calculate the imaginary part of the cor-
relation functions once we know the real part and vice versa.

Hilbert transform relationships of this type have received a considerable
amount of attention in physics and electrical engineering in connection with the
requirement that linearly responding systems behave causally. The relations such
as (6.24) and (6.25) which are obeyed by the correlation functions, however, have
nothing to do with causality. They are simply consequences of the way in which the
functions have been defined.

Lecture VII DIFFRACTION AND INTERFERENCE

From a mathematical standpoint, the quantum mechanical treatment of dif-
fraction problems need not differ too greatly from the classical treatment. The
field operators are required in general to obey the same linear differential equa-
tions and boundary conditions as the classical fields. The problem of constructing
such operators may be reduced to the problem of finding a suitable set of mode ~
functions in which to expand them (i.e., a set of mode functions which satisfies
the wave equation together with suitable boundary conditions on any surfaces pre-
sent). To find these modes we naturally resort to the familiar methods of the
classical theory of boundary value problems. The solution for the mode functions
is not a quantum dynamical problem at all. On the other hand, the fact that it is a
well-explored '*classical’* problem does not mean, as we all know, that it is nec-
essarily a simple one.

Let us return, for example, to the discussion of Young's experiment, illustra
ted in Fig. 2. When we said that the field at points on the screen . is simply a
linear combination of the fields at the two pinholes P; and P:, evaluated at appro-
priate times, we were not solving the diffraction problem exactly, but making a
number of physical approximations, One approximation, for example, was an im-
plicit neglect of the fact that transmission of light through the pinholes has a slight-
ly dispersive character. (This effect can be quite small if the bandwidth of the in-
cident radiation is not too broad.) Approximations such as these are essentially
classical in character. They are present simply because we have not taken the
trouble to solve the classical diffraction problem more precisely,

¥
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With this understanding we can now discuss Young's experiment in fully quantum
mechanical terms. The positive frequency part of the field E(r,t) when evaluated
on the screen Z; will be given, just as in the classical theory, by a linear combin-
ation of the fields E(* evaluated at the pinholes and having the form of Eq. (2. 1),
The only difference is that the fields E{¥ are now operators. If we assume that the
two pinholes are not only quite tiy compared with their separation but equal in size
then we shall have A; = Az in Eq. (2.1) and we may let the constant A stand for
both coefficients. Now if our observations of the interference pattern on the screen
g are made with an ideal photon detector, the counting rate of the detector will be
proportional to G'(r t,r t). In othet words, the intensity observed will be pro-
portional to

1= Tr{pE"(rt) EWV(x)} =

Te{oln? [E7(x) + EO(x) ] [Ex) + EM(xa) ]} 4 (1)

where we have again let x; stand for the point (r;,t,). This intensity may be ex-
pressed in terms of first order correlation functions by expanding the product ih
Eq. (7.1). We then find

1= A2 {G"M (%1, x1) + Gm(x,_,x,)+ 2 Re G'V(x,,%2)} - (1.2)

The first two terms on the right side of this equation are the intensities which
would be contributed by either pinhole in the absernce of the other. These are, ac-
cording to the assumptions we have made, rather slowly varying functions of x;
and x2. The third term on the right side of Eq. (7.2} is the interference term, as
we have already noted in the classical discussion. The correlation function for X,
# Xa in general takes on complex values. If we write it as

G"Mxixz) = IG“’('xlxz)|e“""1"‘z’
then the intensity becomes
I= F{G0(xix1) + G (xaXz) + 216 (xaxz) [c08 @(xa%2)} (7.3

and we see in the osciliation of the cosine term the origin of the familiar interfer-
ence fringes.

SOME GENERAL REMARKS ON INTERFERENCE

The discussion we have given of Young's experiment is so closely related to
the usual classical analysis that it may not be too clear in what way the interfer-
ence phenomenon is a quantum mechanical one. A few general remarks about the
quantum mechanical interpretation of interferences may therefore be in order. In-
terference phenomena characteristically occur in quantum mechanics whenever the
probability amplitude for reaching a given final state from a given initial one is the
sum of two or more partial amplitudes which have well defined phase relations.
The individual partial amplitudes are usually contributed by alternative ways in
which the system can evolve from its initial state to the final one. ’

The Young experiment furnishes a simple illustration of these generalities.
We may consider as the initial state of the system one in which a wave packet re-
presenting a single incident photon lies to the left of the first screen o (Fig. 2.)
which has the single pinhole, We assume that Initially all atoms of our photodetec-
tor are in the ground state. The final state of the system will be taken to be one in
which the photon has been absorbed and one of the atoms of the counter has been
correspondingly excited. The amplitude for reaching this final state is the sum of
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two amplitudes, each associated with the passage of the photon through one of the
two pinholes in the screen Z;.

It is interesting to note that the existence of the interference effect is linked
quite essentially with our inability to tell which of the possible paths the photon
actually takes. Neils Bohr has shown, in a famous argument, that any attempt to
determine which of the two paths the photon has followed will wipe out the inter-
ference fringes. One way of making such an attempt, for example, is by trying to
measure the recoil of the screen X, when it deflects the photon. The photon may
transfer either of two different recoil momenta to the screen (if it excites the
counter), However, if we are to make sufficiently accurate measurements of the
momentum of the screen we must be prepared to accept an uncertainty in its posi-
tion which will mean that no fringes appear when the experiment is performed re-
peatedly.

This lesson is one which can be generalized to apply to all of the quantum
mechanical situations we have described earlier, The different paths by which a
system may evolve will contribute amplitudes with well-defined phase relations only
as long as we have no way of telling which path the system takes. When we make
observations to determine the path we characteristically alter the system by making
the phases of the partial amplitudes random relative to one another, i.e., we wipe
out any interference of the amplitudes on the average.

The alternative paths we have been speaking of are evolutionary paths or his-
tories. For single particle systems such histories may often be identified with
spatial trajectories, but for systems with many particles or variable numbers of
particles the concept is a much more general one, [t is important to emphasize
that the quantities which interfere in quantum mechanics are amplitudes associated
with particular histories, since the terminology which has been used has often in-
vited confusion on this score.

An example of a statement which is often quoted and easily misinterpreted is
made by Dirac in the first chapter of his classic text, The Principles of Quantum
Mechanics (Ozxford, Clarendon Press, 3rd edition, 1947, p. 9.) There Dirac
points out that the interference of the two componentbeams of the Michelson Inter-
ferometer cannot be interpreted as taking place because the photons of one beam
sometimes annihilate photons from the other and sometimes combine to produce
four photons. ''This would contradict the conservation of energy. The new theory,
which connects the wave functions with probabilities for one photon, gets over the
difficulty by making each photon go partly into each of the two components. Each
photon then interferes only with itself. Interference between two different photons
never occurs.'' These remarks were only intended to refer to an experimental
situation generically similar to thatof Young's experiment, one in which the interfer-
ence pattern is revealed by detecting single photons. To attempt to apply Dirac's
remarks as a general doctrine for dealing with other types of interference experi-
ments may lead to contradictions, as we shall presently see,

FIRST-ORDER COHERENCE

The word "' coherence'! is used not only in optics, but in a variety of quantum
mechanical and communication theoretical contexts as well, We shall not attempt
to construct an encyclopedia of these usages here, We shall try instead to give
the term a precise meaning when applied to electromagnetic fields, The meaning
we shall adopt is in fact one which links several of these conventional usages to-
gether.

The familiar concept of optical coherence is associated with the possibility of
producing interference fringes when two fields are superposed. Let us return to
the expression {7.3) for the intensity observed in Young's experiment. It is clear
that no fringes will be observed if the correlation function G'"'(x,, x,) vanishes,
and we may describe that condition by saying that the fields at x, and x; are
incoherent.
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It is only natural, on the other hand, to'associate the highest degree of coher-~
ence with a field which exhibits the strongest possible interference fringes. Now,
in the last lecture, we have derived a general inequality, (Eq. 6. 17), which states

1
IGm(xixz)l = {G“)(xlxl) G(l)(xzxz)}z

When we keep the intensities G‘”(xlxl) and G' " (x2x,) fixed, the strongest con-
trast of the fringe intensities which is possible corresponds to using the equality
sign in this relation. Thus we have established the necessary condition for coher-
ence

IG[H(XL, X2) 1 = {G“)(Xa,xx) g (Xz.xz)}% . (7.4)

If we introduce the normalized correlation function
G'" (X, X)

(0 -
g (%1, %z) = 16" (x1, x1) G (xa, %5) } 2 ’ (7.5)

the condition (7. 4) becomes
18" (x1, x2) | =1 (7.8)

or, in other words,
e iw(xl, x5

g(n(xia X} =
Substitution in (7 3) now gives for the intensity in Young's experiment
’ 1
Ar? 1= G (x1, x1) + GV (%, %) +2{G (1, %1} G (e, Xa)} 2 cO8 @ (x4, X2)

H 1
= |{G<IJ(X1, x1)}2 elu(fl.xz)_'_ {G”'(xa, x2)}? 2' (1.1

This intensity varies between the limits

= (6 (x, 1) - {6V (3, x)P)? (7.8)
and :
= ({6 (xi, 1)} + {6 M (%2, x)}D)F . (7.9)

The paramete}' which is usually called the visibility of the fringes is given by

P 1
Toax = Imin _ Z{G“'(x“ X1) Gm(xzx 'xz)}z (7.10)
- G“, (xly xl) +GU)(X2, xﬁ) *

v =
Imax + I min

If the fields incident on the two pinholes have equal intensity, i.e., if G“’( X1, X3)
= G'"(xz, xz), then the intensity varies between zero and 4G“’(x1, x,) and the
visibility is v = 1.

The condition (7.4) is only a condition on the fields at two space-time points
x1 and x,. When it is satisfied we might speak of the fields at these two points as
being coherent with one another. That would correspond to the usage adopted by
Born and Wolf in their discussion of classical fields on the basis of time-averaged
correlation functions.

In quantum mechanics one characteristically thinks of the entire field as a
dynamical system It will be rather more convenient, therefore, for many analyt-
ical and statistical purposes to think of coherence as an idealized property of
whole fields. That property can be described in terms of the condition (7.4}, but
an equivalent and mathematically more useful description can be given in terms
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of the requirement that the first order correlation function factorize. Let us sup-
pose that the correlation function G! "(x;, Xz) separates into a product of two
functions A(x,) and B(x2). Then from

G (%1, %2) = A(x)) B(xz) (7. 11)

we conclude via the symmetry relation, Eq. (6.7), that the functions A and B obey
the identity

A(xz) B(x1) = A*(x,) B*(xa)

or
Alxa) _ AM(x1)
) “Bx) (7.12)

Since in the latter relation a function of x; is equated to one of x2 both functions
must be constant. Furthermore the constant, let us call it 4, must be real as we
can see by equating x; and x2. We thus have

A(x) = p B¥(x), (7.13)

and from the fact that G“’( X, X) is positive it becomes evident that p is positive.
Hence, if we define the function

6 (x) =V B(x), (7.14)

we see that the first order correlation function falls into the form

G M (xe, %2) = 6%(x1) & (x2). (7. 15)

This explicit construction of the factorized form of the correlation function shows
that, when factorization does take place, the function &(x) is almost uniquely deter-
mined. The only ambiguity which remains is that of a constant multiplicative
phase factor,

We shall find it most convenient to use the factorization property (7. 15) as
our definition of optical coherence or first-order coherence of the field. Itis
immediately evident that this condition implies the conditions (7.4) and (7.6) on
the absolute values of the correlation functions. In fact, it is also true that the
latter conditions, if they hold at all points in the field, imply in turn the factoriza-
tion condition (7.15). We shall demonstrate that shortly and thereby show that the
two ways of discussing coherence are equivalent, But first let us discuss some
examples of coherent fields.

The most elementary example of a field for which G '" factorizes is any clas-
sical field for which the Fourier coefficients C, are precisely determined, i.e.,
any field for which the probability distribution P({C,}) reduces to a product of
delta-functions. In that case the function g (x} is simply the classical field E“’(x)
itself. We perceive here a first hint of the close association which exists between
coherence and noiselessness, an association which we shall presently explore
further. The absence of randomness or noise in the specification of the Fourier
coefficients of a field has long been the criterion used by communication engineers
for speaking of a "'coherent'' signal.

To see another illustration of coherence let us note that one of the possible
ways of performing Young's experiment, though perhaps not the most practical one,
is to begin with a single photon wave packet incident upon the first pinhole. Then
if we repeat the experiment many times, duplicating the wave packet precisely in
each repetition, we should expect to see the familar interference fringes in the
statistical distribution of photons received on the final screen. That pure states
for single photons are always capable of giving rise to fringes, in this statistical
sense, may be seen by examining the first-order correlation function. Let us
suppose that the field is in some pure single-photon state which we denote by
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|1 phot,>>. Then the density operator for the field is

o = |1 phot,> < 1 phot. | {"7.16)
and the first order correlation function reduces to

G'P(x1, %) =< 1phot. IE(x,) EM(xz) 11 phot.> . (1.17)

Now since E!” is aphoton annihilation operator, the state EM(xg) 11 phot, > can
only be a multiple of the vacuum state which we denote as | 0>, It is therefore
possible to insert the projection operator upon the vacuum state, 10> <0l, between
the E{" and E ™ operators in Eq. (7.17) without altering the value of the correla-
tion function, When we do that we find

G'"M(x1, xa) =< 1 phot, [E™(x) 10> <0IE(xz) 1 phot. >, (17.18)

which is exactly the factorized form required by Eq. (7.15). Hence any pure state
in which the field is occupied by a single photon possesses first order coherence.
(In this way the optical definition of coherence makes contact with some of the ways
in which the term is used quantum mechanically in connection with pure states. )

We have, of course, only proved that a pure one photon state is coherent. I,
for example, we repeat our hypothetical one-photon interference experiment with-
out duplicating the same wave packet each time, i.e., if we consider a mixture of
pure states, then we can not expect in general to observe intensity fringes of maxi-
mum contrast. Certain particular mixtures of one photon states may, however,
preserve the factorization property (7.15) of the correlation function and thereby
preserve the coherence property. Hence we must not think of pure states as the
only ones which bring about coherence.

To give an example, let us suppose that only one mode of the field is excited,
say the k - th, Then, since the other modes ali remain in their ground states, it
is easily seen that we may ignore them altogether in calculating the correlation
function. Now if the density operator for the k - th mode assumes the general form

p=), Com!n><mi, (1.19)
nm
where |n > is the n-th quantum state for the mode, we may write the first-order
correlation function as

G“.(nti, rztz) 2%ﬁwk Z‘, Cim < mlakT akln >u :(r;)uk(rz)e l‘"k“!"ﬁ,
n,m

e -l 7. 20

=C% ol (r)e' Ny (r)e ™ (7.20)

where in the iirst of these expressions we have anticipated some of the notation of
Eq. (8. 21) andinthe second we have used the definition

C*=ho ) ncw . (7.21)

It is clear from the possibility of writing

g(r, 1) = Cu(rye (7.22)

that the correlation function (7.20) falls into the factorized from (7.15). Hence
the excitation of a single mode, whether it is ina pure state oran arbitrary mixture,
leads to fields with first-order coherence.

Although we have been able to give some simple examples of fields which
possess first order coherence, it is worth pointing out that the factorization condi-
tion (7.15) is quite a restrictive one. It is, for example, not satisfied by pure
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states of the field in general as one may easily verify by calculating the correlation
function for a state in which two or mofe photons are present and occupy different
modes. Initial states such as these may lead to fringes in Young's experiment but
the fringes will not, as a rule, satisfy the condition of maximnm contrast. While
the coherence condition is a restrictive one, we shall show presently that there
exists a much broader class of states which satisfy it than those we have considered
thus far.

Let us note particularly that no statement has been made requiring that coher-
ent fields be monochromatic. The fields which satisfy the factorization condition
(7.15), or for which interference fringes of maximum (instantaneous) contrast
occur, can have arbitrary time dependences. The functions & (r, t) which deter-
mine the correlation functions of these fields may consequently have arbitrary
Fourier spectra. What seems perhaps curious about these statements is that the
experimental effort to produce nearly coherent beams of light has chiefly been a
struggle to produce highly monochromatic ones. The reason for this connection
has been that all of the effort has involved the use of stationary light sources.

Such sources lead to fields for which the first order correlation function depends
only on the difference of two times,

G(”(tlr t2) =GVt -t) . (7.23)

If such fields are to be coherent the correlation function must factorize to the form
(n *

G (ty -tz) = & (t1) §(t2), (17.24)

but this is a functional equation which has only exponential solutions. Since the
dependence of G’V on the variable t2, can only contain positive frequencies we
must have & (t) ~ e ! for some w > 0. In other words, a coherent field which is
stationary can only be monochromatic.

After giving so precise a definition to first order coherence we must add that
it is a rather idealized condition, as is nearly any condition one places upon quan-
tum mechanical states. We must not expect correlation functions for actual fields
to obey the factorization condition (7. 15) over unlimited ranges of the variables
xy and x». In practice we define coherence lengths and times to describe the ranges
of the spatial and temporal variables over which the factorization holds to a good
approximation.

FRINGE CONTRAST AND FACTORIZATION

In the foregoing section we have defined coherence, mainly for reasons of
mathematical convenience, in terms of a factorization property of the correlation
function, That factorization property, we then showed, implies the condition (17, 4),
on the absolute value of the correlation function, i.e., the condition that the fringes
show maximum contrast, Now it is possible to show that the latter condition, pro-
vided it holds forall space-time points, also implies the factorization property. The
proof we present is taken from a forthcoming paper by U. Titulaer and the author,

When the relation

fG(”(XI’ XZ) ]2 = G“‘(x;, X1) G“)(Xg, Xz) (7,25)

holds it places severe constraints upon the density operator for the field, These
constraints may be found by first noting that Eq. (7.25) implies the existence of
operators A such that

Tr(p ATA) =0 . (17.26)

To exhibit such operators A we choose an arbitrary space-time point x, at which
the intensity of the field is non-vanishing, G!*{(x,, x0) # 0, and write

’
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(n .
A=ENx - g(—n&fx’—,’z) EM(xd) . (1.27)

It then follows that

[@3]

ﬁi@ﬂ‘ﬂz_ =0 (1.28)

T =
Tr(p Al A) =G T xe )

(% %) -

for all points x. Now the density operator p can be written as an average of prod-
ucts of the state vectors of the system having the form

p=1 p li><il (1.29)

i . :
where the probabilities p, are all positive, The vanishing of the trace given by
Eq. (7.26) means that . .

v op<ualati>=0 . (7.30)
i

Siﬁce all the terms entering the sum are intrinsically positive, we may conclude
that

<ij AT Ali>=0 (1.31)
for all states |i> for which p, = 0. But this relation implies in turn that these
states |i> are eigenstates of A with eigenvalue zero

Aji>=0 . (7.32)

What we have shown is that the vanishing of the trace (7. 26) implies the pair
of operator relations
ao-pal=0 . (7.33)

Since these relations hold when the operator A takes on th'e value given by Eq.
(7.27), the density operator must obey the pair of identities

EY(x) p= G0 (xo, X By p (7.34)
G“)(xo ’ xo)

(0 )
pEV(x) = S (B X) 5 g0y

(7.35)
G (xy,x,)

.

These identities may now be used to shift the arguments of correlation functions
to a common reference point xg. If we let x = x, in the first of these identities and
X = X, in the second of them we may then use them to construct the relation

6190, xa),

(4] - 4+
el BV (x) EM(x2)} - Gl xo)pe{p B () E )(x")}G‘“(Xo.m)

G(”(X(}, Xo)

which can also be written as the functional identlty

(R} (1) ¢y x
G“)(xx) Xz) = G (x(lii) XO) ¢ (xo) 2) .

G (%, Xo)

Now we have only to define the function € (x) as

€ (x) = G Mix, x) 1 (1.36)
{Gm(xo, xo)}i

in order to see that the first order correlation function takes onthe faetorized form
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G(l)(xl, x2) =& ¥(x1) E(xz2) . (7.3

There is no need to repeat this demonstration in order to deal with the tensor
structure of the correlation functions for fields which are not fully polarized. Al
we need to do is to consider each coordinate x as specifying a tensor index as well
as a pogition and time.

Lecture VIO INTERPRETATION OF INTENSITY
INTERFEROMETER EXPERIMENTS

In the preceding lecture we have discussed Young's experiment at some length
as an example typical of the interference experiments which are based upon the
measurement of a first order correlation function. While all of the older interfer-
ence experiments share this character, we have discussed in the second lecture
some more recent experiments which are of a fundamentally different type. These
are the intensity interferometry experiments of Hanbury Brown, and Twiss which
measure, in effect, the second order correlation function of the incident field.

We have given a simple classical discussion of the way in which the correlation
fringes appear in the intensity interferometer when the field is produced by a pair
of sources with small angular separation. It is interesting, therefore, to investi-
gate the quantum mechanical origin of these same fringes. If we remember that
the intensity interferometer functions by first detecting the incident fields in each
of two receivers, we see immediately that pairs of photons must be involved in the
interference effect, i.e., nothing is recorded at all unless different photons are
incident on each of the two detectors at more or less the same time. It is at pre-
cisely this point that one is confronted by a serious dilemma if he attaches too
great a generality to Dirac's statement that "' interference between two different
photons never occurs,'

The general discussion of interference which we gave in the last lecture should
make il clear that no such dilemma need exist. The things which should be re-
garded as interfering are not, strictly speaking, the photons, but alternative
"histories'' of the system as a whole, Let us imagine that the initial state of the
system is one in which two (generally overlapping) single-photon wave packets
are present in the lield and the atoms of the two detectors (represented by photon
counters) are in the uround state. We may take the final state of the system to be
one in which both photons have been absorbed and one atom in each of the counters
is correspondingly excited. Il we label the photons 1 and 2, and the two counters
a and b, we see that there arc two alternative ways in which the final state may be
reached. Either photon 1 is absorbed by counter a and 2 by b, or 1 is absorbed by
b and 2 by a.

| T T - e g

2 =TT TN 0y

| L)
Figure 8

If the packets had altogether different average propagation vectors these al-
ternative histories would be distinguishable by means of careful measurements

.
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made in the counters. But the circumstances in which the fringes are cbservable
are precisely those in which the packets have nearly the same average pr9pagat10n
vectors (e.g., packets with the same frequencies, small angular separation of the
sources). In other words the fringes appear once again just when. the alternative
histories of the system become indistinguishable. Since the amplitudes for the two
histories interfere,- it becomes meaningless to ask which counter absorbed which
photon.

HIGHER ORDER COHERENCE AND PHOTON COINCIDENCES

We recall from our classical discussions of the second lecture that the inten-
sity interferometer measures the second order correlation function of the incident
field. Radiation fields generated by natural sources tend to have a chactic quality
which allows us to construct these correlation functions from a knowledge of the
first order functions. However, no such constructions are available in general
for dealing with radiation from man-made sources such as the laser or radio tm-
mitters. The fields, generated by these sources can have much higher regularity
than is ever possible for natural sources. It will be useful, therefore, to sharpen
the concept of coherence by defining higher order analogues of optical coherence.

We begin once more by stating conditions on the absolute values qi the corre-
lation functions. For full coherence we shall require that the normalized form
of the n-th order correlation function,

GV (st xz)
== , (8.1)

(D (xy *+* Xgy) = L
g 2n jﬁl{Gm(x” x,)}z
have modulus unity for all n and all combinations of arguments x. If the functions
have unit modulus only for n = M we shall speak of M-th order col.lere-nce.

The concept of M-th urder coherence has a simple interpretation in terms of
n-fold (delayed) coincidence experiments. We know that G“"(_xp o Xy, KgttoXa)
is an average coincidence rate for n ideal photo—detectors_reglstering a:t the points
X1 -+ X,. Since this value of the function is real and positive the condition that
g™ have unit modulus for n= M implies that

g("}(XL “vv Xpy, Xt xl) =1

for n< M. Hence for fields with M -th order coherence, it is clear from the defi-
nition of g™ that we have
n
G"‘)(x; cee Xy, Xp oot X1) =jI~]l Gr”(x, x,) (8.2)
= M.

for nExpressed in experimental terms, this means that the n-fold coincidence rateis
just the product of the counting rates which would be measured by each counter
individually in the absence of the others. Thus there is no tendency toward statis-
tical correlation of the photon counts. In a field with coherence of order M = n the
n photon counters register in a statistically mdepe_ndgng way. )

Several investigations of light beams using coincidence counting of photons or
equivalent experimental procedures have in fact been carried t_.)ut during the last
few years. The first of these to detect a tendency toward statistical correlation of
the arrival times of photons was performed (in addition to the othex: exper!ments
we have mentioned) by Hanbury Brown, and Twiss, ! In the experiment light
from a source S (Fig. 9) passes through a pinhole P and then reaches a half-silver-
ed mirror m, which splits it into two beams. Detectors D, and D; are pl_aced
symmetrically with respect to the mirror. Their photocurrgnts are multiplied to-
gether by the correlator C whose average output is the quantity measured. We may
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consider the half-silvered mirror m as a device, which permits us, in effect, to
place two different photodetectors -at essentlally the same position in the beam.

|,

Figure 9

Shortly after the original experiment had been performed another version of
it with a slightly more direct interpretation was performed by Rebka and Pound. ®
In the latter experiment D, and D, are counters of individual photons, and C is a

device for registering delayed coincidences. The experiment measures the average

coincidence rate as a function of delay time while the counters remain fixed in
their symmetrical positions relative to the mirror. Now, even if the photon beams
incident on the two counters were statistically independent of one another, there
would be a certain background counting rate of accidental coincidences. Th1s rate
would, however, be independent of any time delay. Thus any observed dependence
of the coincldence rate on the time delay indicates a lack of statistical independence.

The result of the experiments is indicated in Fig. 10. If the responses of the
counters were statistically independent the coincidence rate would be independent
of time delay. The observation of a small ""bump"* in the experimental curve

| Coincidence rate or
average photocurrent
correlation

———r

0 Time delay : '

Figure 10

indicates that the photons have a distinct tendency to arrive in pairs. Although the
effect was at first difficult to observe it is, as we shall show, not necessarily a
small one at all. The amall magnitude of the cbserved '"bump'* and its particular
shape in these experiments were determined almost entirely by the relatively slow
response times of the counters.

Let us note that, if the counters are placed symmetrically with respect to the
mirror, the fields which are incident upon them are essentially identical, apart
from a constant multiplicative factor. It follows then that if r; and r; are mirror-
image points in the two detectors we have

>
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lg'M(rit, r2t) ] = 1 (8.8)

, the fields which fall on the two detectors have essentially perfect first order
coherence. The observation of a positive correlation in the coincidence rate
demonstrates, on the other hand, that the fields are not coherent in the second
order sense. ‘We shall show presently that this result is a characteristic one for
all experiments performed with natural light sources. These have a random char-
acter which destroys second order coherence.

FURTHER DISCUSSION OF HIGHER ORDER COHERENCE

Let us return now to the definition of higher order coherence. We have, by
analogy with first order coherence, defined M~th order coherence in terms of the
succession of conditions

2n
1G5 [y o+ %y )1 -1 6 (x,, x,) (8.4)

on the absolute values of the correlation functions for n =< M. Just as in the first
order case we found it convenient to express the coherence condition in an alterna-
tive way, as a factorization property of the correlation function, we shall find it
even more convenient here to do much the same thing. We shall therefore state
as an alternative definition the requirement that there exist a single complex
function g (x)such that

G0 o+ xg) = € (x) jﬁ" &(x,) (8.5)
= =n+1

for all n = M. If this factorization holds for all n we shall speak of full coherence.
If we note that the definition (8.5) contains the statement

GIV(x, x) = 16(x) 2, (8.6)

then we see immediately that it requires that the correlation functions obey the
absolute value conditions (8. 4).

It is possible, on the other hand, to show that the absolute value conditions
also imply the factorization properties. To do that we note that M-th order coher-
ence always requires first order coherence. We may therefore make use of the
identities which were shown in the last lecture to be consequences of first order
coherence. In particular, since the operators Ef ’(x,) for j=1,--+n all commute
with one another, as do the operators E* )(x ) for j=n+1, -+« 2n, we can use
each of the two ideutities (7.34) and (7.35) n times in order to shift all of the
arguments of the n-th order correlation function to a particular reference point xg.
More specifically, we write

Trip EV0x) - E9x) EWx,,, ) EO(x, )}

n (0 K K
= S EeX) g B k) BV o) B xg) )

izt G'M(xa, x0)
2 (n J
ﬁ G(l)(xo
el G (xov xo)
which is the identity n
i g 1 6", x
(n) GMx %) G(xy xn)j:m! ko, x,)

G (x: ttxy, ) = G (xq, xo) I7 {th(x‘, %) J"
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If we introduce the function ¢ (x) which is defined by Eq. (7.37) , and make use of
the normalized form of the correlation function, we may write the latter identity
in the form

M, . T ook 2n
G (xr ot Xgn) =g V(%0 00 X0) ,ﬂ €™ (xy) e xy). (8.7

1
Now, as we have shown earlier, the functions (x) can only depend on the
cholce of the arbitrary reference point x, through a constant phase factor. Since
that phase factor cancels out of the product which occurs in Eq. (8. T, it follows
that for fields with first order coherence the functions g™ (x, + -+ x,) are inde-
pendent of x,. Tn other words, the condition of first order coherence alone
is sufficient to bring all of the higher order correlation functions into a factor-
ized form, although not exactly the form, in general, which 'is required
for higher order coherence. The difference is that Eq. (8.7 contains the
constant factors g (" ( Xo ... %) which should be unity if higher order
coherence is to hold. Now the higher order coherence conditions (8. 4) do require
these coefficients to have unit absolute value for n = M. Then, since the
g™ (xo:.- Xo) must be real and positive, they must bé equal to one.
Hence the conditions (8. 4) do indeed imply the factorization condition (8. 5).

TREATMENT OF ARBITRARY POLARIZATIONS

From a mathematical standpoint, very little need be added to our earlier dis-
cussions in order to treat fields with arbitrary polarization properties rather than
the fully polarized fields we have been discussing., All we need do, as we have
already noted, in order to deal with the general tensor character of the correlation
functions, is to think of every coordinate in the formulae we have derived as
specifying a tensor index as well as a position and time.

Thus the relations {6.7) for n= 1 and (6.17), for example, may be general-
ized to read

{Gl) (xu x)}* =6 (%, x) (8.8)

and

. (1)
]G:\l: (X],, Xz)[zi Gpp (Xx, XJ,) G(v? (Xa, X2) . (8-9)

It may be worth noting that all information about the state of polarization of the
field 1s contained in the correlation tensor G‘u'l {x,x). Let us denote this tensor
by G” v~ We see immediately that ¢, is a Hermitian matrix, ¢ m,* =Qpu. H
we substitute A = %:1 Ay E:,*) (x) in the general inequality Tr{p AT A} = 0 we find

2

*
% AN G, =0 . (8.10)
B,v=1

Thus @ py i8 also positive definite. Because of its Hermitian character ¢ wy can
be diagonalized, that is to say there exist three real and positive eigenvalues Ap and
three (generally complex) eigenvectors e"”, such that

c:l . %‘P)* = Ap e(P) * ; e(l-‘l . c = hpém . ) (8. 11)

Note that both the Ay and the e"’ 4 depend in general on the space-time point x, that
occurs in the definition of G.
The 8P are either found to be mutually orthogonal if the X's have nodegeneracy,

OPTICAL COHERENCE AND PHOTON STATIS 1 . 4 105

or they can be chosen orthogonal if the A's are degeneréte. Hence we may assume
M i

& & "= 5, . (8.12)

Since the tensor product

) *
e® . g .8 - s (8.13)

expresses the correlation of the field components in the directions of & and ¢/
there are three ""directions" (i.e., complex directions) in which the field compo-
nents are mutually uncorrelated. Any field may thus be regarded as a superposi-
tion of three orthogonally polarized fields whose amplitudes are (instantaneously)
uncorrelated. )

The eigenvalues A{")are the intensities corresponding to the three polarizations.
The total intensity is given by

Tr g = 22, . (8.14)
A set of normalized intensities can be defined as
Ap
IP:W (p=123)

i=1
These numbers can be interpreted as specifying the degree of polarization of the
field. In an isotropic radiation field we must haveI,= 1/3, (p =1, 2,3). I the
field is stationary i. e., [p,H| = 0 then @ is time independent and the A pand I, and
¢‘® become fixed at any spatial position r.

If we are considering a beam with a single direction of propagation E, then
clearly k- G = ¢ .k= 0 (since light is a transverse wave). Hence Kk is an eigen-
vector of § corresponding to the eigenvalue A = 0. Then there are two remaining
eigenvalues A, p= 1,2, The net polarization of the beam is usually defined as
IT - I2i = IX - 2z1/(x;+ 22). The two polarizations &® for p = 1, 2 clearly lie in
the plane perpendicular to k.

The higher order correlation tensors are defined by

(n}

- (6]
G Hyoee Hgn (Xl"‘XZn) = Tr {pEl‘l( Y (xl)"'El-ln (xn)EM(;)] (xml)..-

B (xy) 09

«

The coherence condition, Eq. (8.5), may evidently be restated for fields of arbi-
trary polarization by requiring that there exist a vector function éu(x) such that

(Xaveoxam) = 1 é*pj(x,)j=§l &, (x,) (5. 16)

G * e
#a K 2q j=1

forn <= M.

As a last remark on polarizations we note that first order coherence implies
full polarization of the field, i.e., if we have ’

[£)] - =
Guy (X = g, = 6,260 @.17)
then clearly the vector & (x) itself is an eigenvector. The corresponding intens-
3
ity 8% 16,(x) 1, which is the full intensity of the field present.
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Let us try to construct states in which the fields have full coherence, that is
to say, states in which all the correlation functions G factorize according to
Egs. (8.5) or(8.16). If there existed simultaneous eigenstates of the operators
E{% and E ), such eigenstates would clearly bring about the desired factorization.
However, since E* and E? do not commute {and have a commutator which is a
¢~ number) it is clear that no such eigenstates exist. We may reduce our demand
to a more plausible level by noting that in the correlation functions the field opera-
tors always occur in normal order. Therefore, it is sufficient to secure coherence
if the state of the field is simply an eigenstate of E *) in the restricted sense

(+)
E u(x)l> = 5u(x)[> . (8. 18)

This is true because the adjoint relation is

<|E L" (x) = €, *(x) <1 . (8.19)

and together the two relations lead to the desired factorization of the correlation
functions, '

Since the operator EY is neither Hermitian nor normal (i.e., it does not
commute with its Hermitian adjoint), there is no a priori reason why eigenstates
of this form should exist. Indeed it is easily shown that the similar relation

<IE% = € (0 < (8. 20)

can have no normalizable solution at all. The simplest way to show that Eq. (8. 18)
has solutions is to construct them.

If any solution of Eq. (8.18) is to exist then it is clear that the function & (x)
must satisfy the same wave equation and boundary coaditions as the operator
E™ (x). The latter has the Fourier expansion
g 1 9A™

)] _.18a
E (rt) = c ot

. fiwg ) 1/2 -iw, t
= 1% {—2—-, agu{rje

(8.21)

Here the time independent operators a, are described completely by means of
their commutation relations

[awaw]| = [ahap!] = 0
(8.22)
[ak, ap'] = O '
For &(r,t) we must have a corresponding expansion
. 1/3
&(r,t) = 1%{.‘329—‘.‘-‘ afk|,1k(r)e"“’kt , (8.23)

where the coefficients o, are a set of numbers which can take on arbitrary com-

plex values,

Now if we substitute the expansions (8.21) and (8.23) in the equation which
determines the eigenstates, we see that the coefficients of each mode function
must separately be equal. Hence the eigenstate must satisfy the conditions

agl > =ay | > (8.24)
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for all modes k.

The coefficients «, correspond in a simple way to the classical Fourier coef-
ficients Cy which we introduced in the first lecture. More specifically if we com-
pare Equations (1.8) and (8.23) we see that the correspondence is

1/2
_ hw !J
Ch=13 ( ay . (8.25)
This relation shows that to describe classical fields we shall have to deal with par-
ameters a, of large modulus, i.,e., if we leti — 0 then @, increases ash -1/2,

To construct the desired eigenstate we can begin with the construction of a

state | o>, for the single mode k, such that

ale,> = ala > . © {8.26)
The state for the entire system is then given by the direct product
I>= Mig> . (8.27)

We shall call these states the coherent states. From the fact that they remain the
same, up to a numerical factor, when we apply an annihilation operator a,, it fol-
lows immediately that they cannot be eigenstates of the photon number operator.
The sense in which states of the type (8.27) are coherent includes, of course,
optical coherence (they secure factorization of the first order coherence function).
But it also includes a sense used in communication theory which we have mentioned
earlier, There a coherent signal is a pure signal, one that has no noise. A class-
ical signal of this type is ideally one with a precisely defined set of Fourier coef-
ficients C,. But this is exactly the kind of field we are talking about in the more
general quantum mechanical context, Our precise specification of the Fourier co-
efficients «, means, as we shall see, that we are as close as possible to having
no noise in the signal. It can not mean, however, that there is no noise at all.
Unpredictably fluctuating fields are present even in the vacuum, Our detectors
detect individual photons, and photons tend to arrive randomly. Even when we
specify the field as accurately as we can, we can only make predictions about the
response of our counter in statistical terms; there will be some inevitable noise
and the coherent states of the field only tend to reduce that noise to a minimum, '
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NOTE ON LECTURES IX - XI

Following the introduction of the coherent states, Lectures IX through XI
presented the techniques for using them as a basis for the expansion of arbitrary
states and operators, and for the representation of density operators in particular.
Since the subject matter of these three lectures overlapped materially, if not pre-
cisely, the content of a recent paper by the lecturer, we are including a reprint of
the paper itself at this point, rather than a repetition of its conlents.. _The
reader who has followed the lectures this far should have no difficulty in beginning
the paper at Section III (Coherent States of a Single Mode), and following its pre-
sentation through Section IX (Density Operators for the Field). Following the re-
print, the notes begin again with those of Lecture XII. That lecture resumes the
story near the end of Section IX of the paper, which it is intended to amplify.

Reprint Errata

P. 2770 Eq. (3.23) first line Instead of O read 0 >

t

T
second line Instead of e**' read e®*

P. 2783 Eq. 9. 19) Replace o] anda, bya! anda,
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Methods are developed for discussing the photon statistics of arhitrary radiation fields in Tully quantum-

mechanical terms. In order to keep the classical limit of
use is made of the coherent states of the fisld. These

quantum electrodynamics plainly in view, extensive

slates, which reduce the field correlation functions to

factorized forms, are shown to offer & conyenient basis for the description of fislis of all types. Althopugh
they are not arthoganal to one acother, the coherent states form a complete set. It is shown that any quan-
tum state of the field may be expanded in terms of them in & unique way. Expansions are also developed
for arbitrary operators in {erms of products of the coherent state veciars. These expansions are discussed as s
general method of representing the density aperator for the field. A particular farm is exhibited for tha

density operatar which makes it possible to carry out
resembling those of classical theory, This representati
between the quantum and classical descriptions of ¢

many quantum-mechanical cafculations by methods
on permits clear insights into the essentia) distinction
he field. It leads, in zddition, tp & simple formuylation

of a superposition Jaw for photon fields. Detailed discussions are given of the incoherent fields which ars
generated by superposing the outputs of many stationary sources, These fields are all shown te have inti-
mately related properties, some of which have been known for the particular case of blackbody radistion.

L. INTRODUCTION

FEW problems of physics have received more atten-
tion in the past than those posed by the dual wave-
particle properties of light. The story of the solution of
these problems is a familiar one. It has culminated in
the development of a remarkably versatile qQuantum
theory of the electromagnetic field. Yet, for reasons
which are partly mathematical and partly, perhaps, the
accident of history, very little of the insight of quantum
electrodynamics has been brought to bear on the
problems of optics, The statistical properties of photon
beams, for example, have been discussed to date almost
exclusively in classical or semiclassical terms. Such
discussions may indeed be informative, but they in-
evilably leave open serious questions of self-consistency,
and risk overlooking quantum phenomena which have
no classical analogs. The wave-particle duality, which
should be central ta any correct treatment of photon
statistics, does not survive the transition to the classical
limit. The need for a more consistent theory has led us

*Supported in part by the U. 8. Air Force Office of Scientific
Resurrc’muder Cop:lratt No. AF 49(638)-589.

to begin the development of a fully quantum-mechanical
approach to the problems of phatan statistics, We have
fuoted several of the results of this wark in a recent
note,! and shall devote much of the present paper to
explaining the background of the material reported
there,

Most of the mathematica! development of quantum
electrodynamics to date has been carried out through
the use of a particular set of quantum states for the
field. These are the stationary states of the non-
interacting field, which corresponds to the presence of
a precisely defined number of photans. The need ta use
these states has seemed almost axiomatic inaamuch ss
nearly all quantum electrodynamical calculations have
been ~1rried out by means of perturbation theory, It is
characteristic of electrodynamical perturbation theory
that in each successive order of approximation it
describes processes which either increase or decrease
the number of photons present by one, Calculations
performed by such methods have only rarely been abla
to deal with more than a few photons at a time. The

I R. J. Glauber, Phys. Rev, Letters 10, 84 {1963),
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description of the light bewms which occur in eptics, on
the other hand, may require that we deal with states in
which the number of phatans present is large and in-
trinsically uncertain. It has long been clear that the use
of the usual set of phaton states as a basis offers at best
anly an awkward way of approaching such problems,

We have found thul the nse of a rather different set
of states, one which arises in a natural way in the
discussion of correlation and coherence?* properties of
fields, offers much more penctrating insights inlo the
role played by photons in the description of light beams.
These states, which we have called enberent ones, are
of a type that has long been used Lo illustrate the time-
dependent behavior of harmonic escillators. Since they
tack the convenient property of forming an orthogonal
set, very little attention has been paid them as 2 set of
hasis states for the deseription of ficlds. We shall show
that thesestales, though not orthogonal, do form a com-
Metesetand thatanystateof thefield may hevepresented
simply and uniquely in (erms of them. By suilably
extending the methods userd to express arbitrary stales
interms of the coherent states, we may express arbilrary
aperators in terms of products of the corresponding
slate vectors, Tt is particularly convenient to express
the density aperalor for the field in an expansion of this
1vpe, Such expansions have the property that whenever
Lhe field possesses a classical limit, they render that
limit evident while at the same time preserving an
intrinsically quantum-mechanical description of the
field.

The earlier sections of Lhe paper are devoted ta a
detailed introduction of the coherent states and a survey
of some of their properties. We then undertake inSecs.
IV and V the expansion of arbitrary states and operators
in lerms of the coberent states. Section V1 is devoled 1n
a discussion of the particular properiies of density
operators and the way these properties are represented
in the new scheme. The application of thé formalism te
physical problems is begun in Scc. VII, where we intro-
duce a particular form for the density operator which
seems especially suited to the treatment of radiation by
macroscopic sources, This form for (he density operator
leads to a particularly simple way of describing the
superposition of radiation ficlds. A form of the density
operator which corresponds to a verv commonly
occurring form of incobierence is then discussed in
Sec. VIII and shown to be closely related to the density
operator for blackbedy radiation. In Sec. IX the resulls
established earlier for the treatment of single mades of
Lthe radialion field are generalized to treat the entire
field. The photon fields generated by arbitrary distriba-
tions of classical currents are shown to have an especi-
ally stmple description in terms of coherent states.
Finally, in Sec. X the methads of the preceding sections

VR. J. Gisuher, in Praccedings of the Third International

arc illustrated in a discussion of certain forms of
coherent and incoherent fields and of their spectra and
correlation funelions,

II. FIELD-THEORETICAL BACKGROUND

Wehave, in an earlier paper,? discussed the separation
of the electric field operator E(rf) into its positive-
frequency part E(rf) and its negative-frequency part
E&)(xt). These individual fields were then used to define
a succession of correlation functions G, the simples(
of which takes the form

G )= tr(pE, S () E D (1)), (2.1)

where p is the density operator which describes the field
and the symbol tr stands for the trace. We noted, in
discussing these funclions, that there exist quantum-
mechanical states which are eigenstates of the positive-
and negative-frequency parts of the fields in the senses
indicated by the relations

B0 )= 8uer)] ), 22
B () = 85 (et)( | (2.3)

in which the function &,(rf) plays the rale of an cigen-
value. It is possible, as we shall note, to find cigenstates
| } which correspond Lo arbitrary choices of the eigen-
value function &, (rt), provided they obey the Maxwell
equations satisfied by the ficld operator E.(rt) and
vontain only positive frequency terms in thetr Fourier
resolutions,

The importance of the eigenstates defined by Eqs.
(2.2) and (2.3) is indicated by the fact that they cause
the correlatinn functions 1o factotize. I{ the field is in
an cigenstate of this type we have p=| }{ |, and the
first-nzder correlation function 1herefore reduces 10

G (e r't)= 8, (1) 8,{r'!). (249

An analogous separation intu a product of 2u factars
takes place in the nth- order correlation function. The
exisience of such factorized forms for the correlation
functions is the condition we have used to define fully
coherent ficlds. The 'eigenstates | ), which we have
therefore called the coherent sfates, have many prop-
erlivs which it will be interesting ta study in detail. For
this purpase, it will he uscful to introduce some of Lthe
mare directly related elements of quantum electro-
dynamics,

The electric and magnetic ficld operators E(r) and
B(rt) may be derived from the operator A(rt), which
represents the vector potentiai, via the relations

194
E=—=-—, B=yXA, (2.5)
' ¢ dt

We shall find it convenient, in discussing the quantum

Conference on Quantum Electranics, Paris, Trance, 1963 (to he / states of the field, to describe the field by means of a

pubtished).
'R, J. Glauber, Phys. Rev. 138, 2529 (1963).

discrete succession of dynamical variables rather than
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a continuum of them. For this reasun we assume Lhat
the field we are discussing is confined within a spatial
volume of finile size, and expand the vector potential
within that volume in an appropriate set of vector mode
functions. The amplitudes associated with (hese
oscillation modes then form a discrete set of variables
whose dynamical behavior is easily discussed.

The most convenient chaice of a set of mode func-
tions, u,(r), is usually determined by physical considera-
tions which have little direct bearing on our present
work. In particular, we need not specily the nature of
the boundary conditions for the volume under study;
they may be either the periodic boundary conditions
which lead to traveling wave modes, or the conditions
appropriate to reflecting surfaces which lead 1o standing
waves. If the volume contains no refracting materials,
the mode function uk(r), which corresponds to fre-
quency wx, mayv be taken to salisfy the wave equation

. wy
V."llk+?llg=() (26)

at interior points. More generally, whatever the form
of the wave cquation or the boundary conditions may
be, we shall assume (hat the mode functions form a
complete set which satisfies the orthonormality condi-
tion

[ s () mi()dr=bur, @0

and the transversality condition
Vo {r)=0. (2.8)

The plane-wave mode functions appropriate lo a
cubical volume of side L may be written as

ne(r) = L7376 exp(ik-1) (2.9)

where & is a unit polarization vector. This example
illusirates the way in which the mode index %2 may
represent an abbreviation for several discrete variables,
i.e., in this case the polarization index (A=1,2) and the
three Cartesian components of the propagation vector
k. The polarization vector ™ is required to be perpen-
dicular 10 k by the condition (2.8), and the permissible
values of k are determined in a familiar way by means
of periodic boundary conditions.

The expansion we shall use for the vector potential
takes the form

PET!
A(rl)=c):,(~——-)
& ng

X (asu (Ve iarttatu,’ (e, (2.10)

in which the normalizalion factors have been chosen to
render dimensionless the pair of complex-conjugaie
amptitudes ax and ax'. In the classical form of electro-

magnelic theory these Fouri¢s amplitudes are complex
numbers which may be chosen arbitrarily but remain
constant in \ime when no charges or currents are
present. In quantum electrodynamics, on the other
hand, these amplitudes must be regarded as mutually
adjoint operators. The amplitude opetators, as we have
defined them, will likewise remain constant when no
field sources are active in the system studied,

The dynamica! behavior of the field ampliludes is
governcd by the electromagnetic Hamiltonian which,
in rationalized units, takes the form

H=}f(E’+B’)dr. Co{21)

With the use of Egs. {2.7,8) and of a suitable set of
boundary conditions on the mode functions, the
Hamiltonian may be reduced to the form

H=1 T hus(afartaiant). (2.12)

This expression is the source of a weli-known and
exiremely {ruitful analogy between the mode ampli-
tudes of the field and the coordinates of an assembly of
one-dimensional harmonic oscillators. The quantum
mechanical properties of the amplitude operators ax
and 4! may be described completely by adopting for
them the commulation relations familiar from the
example of independent harmonic oscillators:

[ac.av]=[ast0x1]=0, (2.13a)
Lanant]=du. (2.13b}

Having thus scparated the dynamical variables of the
different modes, we are now free o discuss the quantum
states of the modes independently of one another, Qur
knowledge of Lhe state of each mode may be described
by & state veclor | )i in a Hilbert space appropriate to
that mode. The states of the entire field are then defined
in the product space of the Hilbert spaces for all of the
modes,

To discuss the quantum states of the individual
modes we need only be familiar with the most elemen-
tary aspects of the treatment of a single harmonic
oscillator. The Hamiltonian $koi{artes+aiar') has
cigenvalues hwp(ni-+3), where ny is an integer
(#:=0,1,2 - -). The state vector for the ground state
of the oscillator will be written as | ). Jt is defined by
the condition ‘

d.'o)j=0. (2-1")

The state veclors for the excited states of 1the oscillator
may be obtained by applying integral powers of the
operator &’ 1a | 0). These states are written in normal-
ized form as
(@™
frede=———[0), (m=0,1,2--:). (2.15)
("' !)lll N .
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The way In which the vperators ¢y aud a4t act npon
these siates is indicaled by Lhe refations

ax[ =l B =10, (2.16)
at | me)= (e 102 et 1), (2.17)
atan| ey =1ni|ns). {2.18)

With these prefiminaties completed we are now teady
to discuss the coherent states of the field ih greater
detail. The expansion {2.10) for the vector potential
exhibits its positive frequency part as the sum contain-
ing the photon annihilation operators @, and {18 negative
frequency part as that involving the creation operators .
a'. The positive frequency part of the electric field
operator is thus given, according to (2.10), by

Ew® (n):i); Fho) aup(neive,  (2.19)

The cigenvalue funciions &(tf) defined by Eq. (2.2)
must clearly satisfy the Maxwell equations, just as the
operator E(rt) does. They therefore possess an
expansion in normal modes similar to Eq. (2.19). In
other words we thay iutroduce a set of ¢-number Fourler
coefficients e, which permit us to write the eigenvalue
function as

E@) =i (Ghus)Pasug(e)e =4, (2.20)
x

Since the mode functions u,(r) form an orthogonal set,
it then follows hat the eigenstate | ) for the field obeys
the infinite succession of relations

el y=asl }, (2.21)

for all modes &, To find the states which satisfy these
relations we seek stales, |au), of the individual modes
which individually obey the relations

ﬂkl“l>k=ak|ﬂ'k)kv (2-22)

The coherent states | ) of the field, considered as a
whole, are then seen to bhe direct products of the
individual states |oy),

| )=I} lawds. (2.23)

II. COHERENT STATES OF A SINGLE MODE

The next few sections will be devoted 1o discussing
the description of a single mode oscillalor. We may
therefore simplify the notation a bit by dropping the
more index & as a subscript 1o the state vector and to
the amplitude parameters and operators. To find the
oscillator state |a) which satisfies

ala)=ala), (.0

we begin by taking the scalar product of both sides of
the equation with the nth exciled state, {n|. By using
the Hermitian adjoint form of the relation (2.17), we

STATES OF RADIATION FIELD

find the recursion relation
(n+ 1)+ 1 a)— aln|a) (3.2)

for the scalar products {n]a). We immediately find from
the recursion telalion that

aN
{t)ay=——(0]a). (3.3)

(” !)Ir'z

These scalar products are the expansion coefficients of
the state |a) in terms of the complete orthonermal set
|#) (#=0, 1, ---). We thus have

la)=2 |n}n|a)

aﬂ
=(0fa) § (_,,1)m|”>‘ (3.4
The squared length of the vector |a} is thus
talzn
(alay=[Ola)[*
" nl
= [ (0] a)]Telot*, (3.5

If the state [«) is hormalized so thal {a]a)=1 we may
evidently define its phase by choosing

(Olay=etan, (36)

The coherent states of tlie oscillator therefore take the
forms

Jay=gHat? I’.Z (:T;mln) (3.1
and
o
(a] =¢ilal Z,.: Wﬂ . (3.8)

These forms show that the average occupation number
of the sth state is given by a Poisson distribution with

mean value |a|?,
2a

l e lel, (3.9

[ (n}a)(?=

They also show that the coherent state |a) correspond-
ing lo a=0 is the unique ground state of the oscillator,
i.e., the state |#) for n=0,

An alternative approach o the coherent states will
also prove quite uscful in the work to follow. For this
purpose we assume that there exisls a unitary operator
D which acts as a displacement operator upon the
amplitudes of and a:Welet D be a function of a complex
parameter 8, and require that it displace the amplitude
operators according to the scheme

D(8)aD{B)=e+8, (3.10)
DBt D(B)=c'+8". (3.11)

-
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Then if |a) obeys Eq. (3.1), it follows that D-'(8)|a) is
an eigenstate of a corresponding to the eigenvalue a—8,

al(8)|a)= (a—B}D(B) |a). (3.12)
In particular, if we choose B=a, we find
2D (a)|a)=0.

Since the ground state of the oscillator is uniquely
defined by the relation (2.14), it follows that D*{a)|a)
is just the ground state, |0). The coherent states, in
other words, are just displaced forms of the ground
state of the oscillator,

|ay=D(a)]0). (3.13)

To find an explicit form for the displacement operator
D(a), we begin by considering infinitesimal displace-
ments in the neighborhood of D(0)=1. For arbitrary
displacements do, we see easily from the commutation
rules (2.13) that D{da) may be chosen to have the form

D{(do)=14a'da—ada", (3.19)

which holds to first order in da. To formulate a simple
differential equation obeyed by the unknown operator
we consider increments of « of the form da=ead\ where
A is a real parameter. Then if we assume the operators D
to possess the group multiplication property

D{a(A+adn))=D{ad\)D(ar}, (3.15)

we find the differeritial equation

d
5D(a)\)= (ea® —a"a)D(e)), | (3.16)

whose solution, evaluated for A=1, is the unitary
operator
D(a)=¢ost—o's (3.17)

The coherent states |«) may therefore be written in the
form
la) = e=at—<"2| 0) (3.18)

which is correctly normalized since D(a) is unitary,

It is interesting to discuss the relationship between
the two forms we have derived for the coherent states,
For this purpose we invoke a simple theorem on the
multiplication of exponential funclions of operators.
If @ and ® are any two operators, whose commutator
{@,8] commutes with each of them,

[[e.®]e]=[[e,&8]®&]=0, (3.19)

it may be shown* that
exp(@) exp(®) =exp{G+B+I[R,B]}. (3.20)
If we write @=a' and ®=a, this theorem permits us

to resolve the exponential D(a) given by Eq. (3.17) into

Y A. Messiah, Quanium Mechanics (North-Holland Publishing
Company, Amsterdam, 1961}, Vol. I, p. 442.

the product ,
D(a.) = e—ﬂul'ztlf‘—.‘-. (32‘)

Products of this type, which have been ordered so that
the annihilation operators ali stand to the right of the
creation operators, will be said to be in normal form.
Their couvenicnce is indicated by the fact that the
exponential exp[—a‘a], when applied to the ground
slate |0), reduces in effect to unity, i.e., we have

"o [0)=10}, (3.22)

since the exponential may be expanded in series and
the definition (2.14) of the ground state applied. It
follows then that the coherent states may be written as

[a)=D(e)|0)
=¢llal’net|0) (3.23)
(aa)
=¢ ety ——10). (3.24)
= n!

Since the excited states of the oscillator are given by
[m)=(n})"'7(a*}*|0), we have once again derived the
expression

u.
lay=eH="T —|n).
a n!

It may help in visualizing the coherent states if we
discuss the form they take in coordinate space and in
momentum space, We therefore introduce a pair of
Hermitian operators ¢ and p to represent, respectively,
the coordinate of the mode oscillator and its momentum.
These operators, which must satisfy the canonical
commutation relation, [¢,p]=1#, may be defined for
our purposes by the familiar expressions

q= (#/2w)'"(a*+a), (3.258)
p=ilho/2)(a'~a). (3.25b)

To find the expectation value of ¢ and p in the coherent
states we need only use Eq. {3.1), which defines these
states, and its corresponding Hermitian adjoint form.
We have then

{a|gla= (24/u)'" Rea, (3.262)
(e pla)= (2} Ima, {3.26b)
where Rea and Ima stand for the real and imaginary

parts of a.
To find the wave functions for Lhe coherent statee
we write the defining equation (3.1) in the form

(2hw) 2 (wg+-ip)la)=ala), (32N

and take the scalar product of both members with the
conjugate state {g’|, which correspends to the eigen-
value ¢’ for ¢. Since the momentum may be represented
by a derivative operator, i.c., {¢’| p= — ih{d/dg'){¢’|, we
find that the coordinate space wave function, {¢|a),
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obeys the differential equation

%(7'|u)=—2(%)”’[(%)“’11’—(:](q’la). (3.28)

The equation may be integrated immediatcly to yield
a solution for the wave function which, in normalized
form, is

(' )= {w/mt) W exp{ —[(/ 22)'g'~a ) . (3.29)

An analogous argument furnishes the momentum space
wave function. If we take the scalar product of Eq.
(3.27) with a momentum cigenstate (p’{, and use the
relation {p’|q=#(8/3p’}(p’|, we reach a differential
equation whose normalized solution is

(' le)= (whuo)™ expl — [ (B} 112p'+iaF) . (3.30)

Both of these wave functions are simply displaced
forms of Lhe ground-state wave function of theoscillator.
The parameters (3/w)* and (fw)'?? correspond to the
amplitudes of the zero-point fluctuations of the coordi-
nate and momenium, respectively, for an oscillator of
unit mass. The fact that the wave functions for the
coherent states have this elementary structure should
be no surprise in view of the way they are generated in
Eq. (3.13), by means of displacements in the complex
a plane.

The time-independent states |a) which we have been
describing are those characteristic of the Heisenberg
picture of quantwm mechanics. The Schridinger
picture, alternatively, would make use of the time-
dependent states exp(—iH{/4)|«). If we omit the zero-
point energy 35w from the oscillator Hamiltonian and
write if = hawata, it is then clear from the expansion (3.7}
for |a) that the corresponding Schridinger state takes
the same form with a replaced by ag~“!. We may thus
write the Schrédinger state as | e, With the substi-
tution of ae~#“* for « in Eqgs. (3.26a) and (3.26b), we see
that the expectation values of the coordinate and
momentum carry out a simple harmonic motion with
coordinate amplitude (24/w)”]a]. The same sub-
stitutions in the wave functions (3.29) and (3.30) show
that the Gaussian probability densities characteristic of
the ground state of the oscillator are simply carried back
and forth in the same motion as the expectation values.
Such wave packets are, of course, quite familiar; they
were introduced to quantum mechanics at a very carly
slage by Schrédinger,® and have often been used to
illustrate the way in which the behavior of the oscillater
approaches the classical limit.

Another connection in which the wave packets (3.29)
and (3.30) have been discussed in the past has to do
with the particular way in which they localize the
coordinate ¢’ and the momentum p’. Wave packets can,

*E. Schrodinger, Naturwissenschaften 14, 664 (1926), For a

more recent treatment see L. 1. Schifl, Quanium Mechanics
(Mﬁt:',Gmw-Hill Book Company, Inc., New York, 1955), 2nd ed,,
p. 67.
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of course, be found which locatize either variable more
sharply, but only at the expense of the localization of
the other, There is a sense in which (he wave packets
(3.29) and (3.30) furnish a unique compromise; they
minimize the preduct of the uncertainties of the
variables ¢’ and p’. If we represent expectation values
by means of the angular brackets { ) and define the
vatiances

(agr={)—{(g¥, (3.31a)
(BpY={")— (), (3.31b)

we find, for the wave functions (3.29) and (3.30}, that
the product of the variances is

(apy(aqy=1#.

According to the uncertainly principle, this is the
minimum value such a product can have.® There thus
exists a particular sense in which the description of an
oscillator by means of the wave functions (3.29) and
(3.30) represents as close an approach lo classical
localization as is possible.

The uses we shall make of Lhe coherent states in
quanlum electrodynamics will net, in fact, require the
explicit introduction of coordinate or momenium
variables. We have reviewed the familiar representa-
tions of the coherent states in terms of these variables
in the hope that they may be of some help in under-
standing the various applicalions of the siates which
we shall shortly undertake,

One property of the states [a) which is made clear by
the wave-function representations is that two such
states are not, in general, orthogonal o one another. I{
we consider, for example, the wave functions {¢’|«) and
{¢’|a’) for values of o’ close to a, it is evident that the
functions are similar in form and overlap one another
appreciably. For values of o’ quite different from a,
however, the overlap is at most quite small, We may
therefore expect that the scalar product {x|a’), which
is unity for &’=q, will tend 1o decrease in absolute
magnitude as e’ and & recede from one another in the
complex plane. The scalar product may, in fact, be
calculated more simply than by using wave functions if
we employ the representations (3.7) and (3.8). We then
find

b @)pm
{a|f)y=c 11181 Em

{n]m),

which, in view of the orthonormality of the |n) states,
reduces to

(alf)=expla’f~}la|*—4(817.  (3.32)
The absolute magnitude of the scalar product is given

by
| {ai8)|?*=exp{—|a—8[*}, (3.33)

$W. Heisenberg, The Physical Principles of the Quantum Theory
(University of Chicago Press, Chicago, 1930, reprinted by Dover
Publications, Inc., New York, 1930), pp. 16-19.

o

-

ROY J. GLAUBER 115

which shows that the coherent states tend to become
approximately orthogonal for values of @ and 8 which
are sufficiently different. The fact that these states are
not even approximately orthogonal for |a—pg| of order
unity may be regarded as an expression of the overlap
caused by the presence of the displaced zero-point
fuctuations.

Since the coherent states do not form an orthogonal
set, they appear to have received little attention as a
possible system of basis vectors for the expansion of
arbitrary states.” We shall show in the following section
that such expansions can be carried out conveniently
and uniquely and that they possess exceedingly useful
properties. In later sections we shall, by generalizing
the procedure to deal with bilinear combinations of
states ja) and (8], develop analogous expansions for
operators! as well,

IV. EXPANSION OF ARBITRARY STATES IN
TERMS OF COHERENT STATES

While orthogonality is a convenient property for a
set of basis states it is not 2 necessary one. The essential
property of such a set is that it be complete, The set of
coherent states |a) for a mode oscillator can be shown
without difficulty to form a complete set. To give a
proof we need only demonstrate that the unit aperator
may be expressed as a suitable sum or an integral, over
the complex a plane, of projection operators of the
form |e)a|. In order to describe such integrals we
introduce the differential element of area in the « plane

da=d(Rea)d(Im o} (4.1)

(i.e., Fa is real), If we write a= |a|e", we may easily
prove the integral identity

f(u‘)"a"e"“"d"a

L 2y
=/ Ialnmle—lar’dlalf 2im—n)0
a 0

=1 um, 4.2)
in which the integration is carried out, as indicated,
over the entire area of the complex plane, With the zid

of this identity and the expansions (3.7,8) for the
coherent states, we may immediately show

[1eXeldamr T 1nxat.
Since the n-quantum states are known to form a com-

7 Uses of these states as generating functions for the n-quantum
;tinste(sl g;;)e. however, been made by J. Schwinger, Phys. Rev. 91,

plete orthonormal set, the indicated sum over w is
simply the unit operator, We have thus shown!

1
Z f la)afda=t, 4.3)

which is a completeness relation for the coherent states
of precisely the type desired.

An arbitrary state of an oscillator must possess an
expansion in terms of the s-quantum states of the form

1=,

-5 (') 0
=L ‘"(sT)”'l ) )

where T |¢a|?= 1. The series which occurs in Eq. (4.4)
may be used to defire a function f of a complex vari-
able z,

[@=F corm— {4.5)

-'
(nipa’

It is clear from the normalization condition on the ¢y
that this series converges for all finite 2, and thus
represents a function which is analytic throughout the
finite complex plane. We shall speak of the functions
J(2) for which 3 [¢a|*=1 as the set of normalized entire
functions. There is evidently a one-to-one correspond-
ence which exists between such entire functions and
the states of the oscillator. One way of approaching the
description of the oscillator is to regard the functions
J(2) themselves as the elements of a Hilbert space. The
properties of this space and of expansions carried out
in it have been studied in some detail by Segal® and
Bargmann? The method we shall use for expanding
arbitrary states in terms of the caherent states has been
developed as a simple generalization of the usual method
for carrying out changes of basis states in quantum
mechanics, It is evidently equivalent, however, to one
of the expansions stated by Bargmann,

If we designate the arbitrary state which corresponds
to the function f(z) by |f), then we may rewrite
Eq. (4.4) as

[fy=1(a"]0). (4.6)
To secure the expansion of | f} in terms of the states

|a), we multiply | f} by the representation (4.3) of the
unit operator. We then find

1
In=- f Ja)] f(a") O,

31, E, Segal, nlinni.r; J. Math, 6, 520 (1962},
* V. Bargmann, Commun. Pure and Appl. Math. 14, 187 (1961);
Proc. Natl. Acad. Sdi. U. 5. 48, 199 (1962).
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which reduces, since {¢| f{a)={2| f@@"), 10

1
|f)=—[la)/(n‘)e"""'d’a, (4.7)
T

which is an expansion of the desired type.

It is worth noting that the expansion (4.7) can easily
be inverted to furnish an explicit form for the function
f(a") which corresponds to any vector [ f). For this
purpose we take the scalar product of both sides of
Eq. (4.7) with the coherent state {8], and then, using
Eq. (3.32), evaluate the scalar product (8{a) to find

1
(81 /) =—even f Feletfa)de. (48)
x

Since f(z") may be expanded in a convergent power
series we note the relation

1
- f e elo (") = (8%)", (4.9)

x

from which we may derive the more general identity

1
Z / el f ()%= f(8"). (4.10)

x
On substituting the latter identity in Eq. (4.8) we find

1(8")=21"%g1 f). (4.11)

There is thus a unique correspondence between func-
tions f{a") which play the role of expansion amplitudes
in Eq. (4.7) and the vectors | f) which describe the
slate of the oscillator.

An expansion analogous te Eq. (4.7} also exists for
the adjoint state veclors. If we let g{a®) be an entire
function of a* we may construct for the state (g| the
expansion

1
el =- f Le@ )Tl oes. (412)

The scalar product of the two states {g| and | f} may
then be expressed as

(9= [ (£ 1) xpif'a~ el |81 Pus.

The identity (4.10) permits us to carry out the integra-
tion over the variable « to find

1
== f LT HE ) Es.  (4.13)

This expression for the scalar product of two vectors is,
in essence, the starting point used by Bargmann in his
discussion! of the Hilbert space of functions f(z).

" Some of Bargmann's srgumsnts are summarized by S.
Schweber, J. Math, Phys. 3, ﬂl {1962), who has used thc{n in
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It may be worth noting, for its mathematical interest,
that the coherent states |a) are not linearly independent
of one another, as the members of a complete orthogonal
set would be. Thus, for example, the expansion (4.7)
may be used to express any given coherent state
linearly in terms of all of the others, i.e., in view of
Eqgs. (4.11) and (3.32) we may write

[a>=1 [m),ra—nal'—!m'dzp_ (4.14)
L3

There exist many other types of linear dependence
among the states [a). We may, for example, note the
identity :

f |adameHalPa=0, (4.15)

which holds for all integral n>0. It is clear from the
latter result that if we admitted as expansion coefficients
in Eq. (4.7) more general functions than f(a"), say
functions F(ae’), there would be many additional
ways of expanding any state in terms of coherent states.
The constraint implicit in Eq. (4.7), that the expansion
function must depend analytically upon the variable o’
is what renders the expansion unique. The virtue of an
expansion scheme in which the coefficients are uniquely
determined is evident. It becomes possible, by inverting
the expansion as in Eq. (4.11), to construct an explicit
solution for the expansion coefficient of any state, no
matter what representation it was expressed in initially.

V. EXPANSION OF OPERATORS IN TERMS OF
COHERENRT STATE VECTORS

QOur knowledge of the condition of an osciliator mode
is rarely explicit enough in practice to permit the
specification of its quantum state. Instead, we must
describe it in terms of 2 mixture of states which is
expressed by means of a density operator. The same
reasons that lead us to express arbitrary states in terms
of the coherent states, therefore, suggest that we develop
an expansion for the density operator in terms of these
states as well. We shall begin by considering in the
present section 2 rather more general class of operators
and then specialize to the case of the density operator
in the section which follows.

A general quantum mechanical operator T may be
expressed in terms of its matrix elements connecting
states with fixed numbers of quanta as

T=2 |mTan(m|, .1

=3 Tam{nlml)~112(at)*|0)(0]a™. (5.2)

connection with the formulation of quantum mechanics in terms,
of Feynman amplitudes, We are indebted to Dr, S, Bergmann for
calling this reference to our attention.
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I we use this expression for T to calculate the matrix
element which connects the two coherent states {a| and
{B| we find

(@| T|8)=3 Tum(nlm))12(a")"8%(x[0}0]8). (5.3)

It is evidently convenient to define a function ¥'(a",8) as

7 f)= T Tunlalm) i) m. (54)

The operators which occur in quantum mechanics are
often unbounded ones such as those of Eqs. (2.16)-
(2.18). Those operators and the others we are apt to
encounter have the property that the magnitudes of the
matrix elements Tnm are dominated by an expression
of the form Mnim* for some fixed positive values of M,
7, and &. It then follows that the double series (5.4)
converges throughout the finite a* and g planes and
represents an entire function of both variables,

To secure the expansion of the operator T in terms of
the coherent states, we may use the representation {4.3)
of the unit operator to write

1
7= [leMal Tia)81 a8, (5.5)
1
-5 [0 a1 el0volarass,

1
-5 [0 1 expt—4 el 18112
{5.6)

The inversion of this expansion, or the solution for
7'(,8), is accomplished by the same method we used
to invert Eq. (4.7) and sccure the amplitude function
(4.11). The result of the inversion is

7("8)=(a| T|8) explila]®+318%.  (5.7)

We see, thus, thal the expansion of operators, as well a8
of arbitrary quanium states, in terms of the coherent
states is a unique one.

The law of operator multiplication is easily expressed
in terms of the functions 7. If T=TT3and 7, and 75
are the functions appropriate to the latter two operators,
we note that

(| T|8)=(a| T\T:|8)
1
- [ @I T TPy, (58)

The function ¢ which represents the product is there-
fore given hy

1
e )= f M) Tl By, (59)
L 2

The expansion function for the operator T, the
Hermitian adjoint of T, is obtained by subatituting
Twa' for Towin Eq, (5.4). 1t is given by [¢(5° ). If
the operator T is Hermitian the function ¥ must satisfy

the identity
7' B)=[T6' )T, (5.10)
since the expansions of T and 7 are unique.

The functions ¢(*8) which represent normal
products of the operators gt and g such as (") a* are
immediately seen from Eqgs. (5.7) and (3.32) to be

T{a"8)= («")"8= exp[a’B]. (8.11)

In particular, the unit operator corresponds to w= s =0,

It may be worth noting at this point that many of
the foregoing formulas can be ebbreviated somewhat
by adopting a normalization different from the con-
ventional one for the coherent states, If we introduce
the symbol [a) for the states normalized in the new way
and define these as

flaey= [adelter, (5.12)

then we may write the scalar product of two such
states as (af|8). We see from Eq. (3.32) that this scalar
product is

(aliB)=expla’f]. (8.13)
We may next, following Bargmann! introduce an
element of measure du(a) which is defined as

1
dufa)=—¢ ety (5.14)
r

With these alterations, all of the Gaussian functions,
and factors of w, in the preceding formulas become
absorbed, as it were, into the notation, The Eqgs. (5.6)
and (5.7), for example, reduce to the briefer forms

T= f (lor) 7" 88| s ()ee () (.15}
and
(" By= (el Ti8). (s.16)

A more significant properly of the states |kx) is that
they are given by the expansion

al
||u>=); Wln) 5.17)

and thus obey the relation

a
atlla)= a—ﬂlla>. (5.18)

While the properties of the alternatively normalized
states [la) are worth bearing in mind, we have chosen
not to adopt this normalization in the present paper in
order to retain the more conventional interpreiation of
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scalar products as probability amplitudes. The advan-
tage afforded by the relation (5.18) is not a great one
since all of the operators we shall have to deal with are
either already in normally ordered form, or easily so
ordered.

V1. GENERAL PROPERTIES OF THE
DENSITY OPERATOR

The formalism we have developed in the two preced-
ing sections has been intended to provide a backgrouz}d
for the expression of the density operator of a mode in
terms of the vectors that represent coherent states.
Viewed in mathematical terms, the use of the coherent
state vectors in this way leads to considerable simplifica-
tion in the calculation of statistical averages. The fact
that these states are eigenstates of the field operators
E@} (52} means that normally ordered products of the
field operators, when they are to be averaged, may be
replaced by the products of their cigenvalues, ie.,
treated not as operators, but as numbers. The field
correlation functions such as G® given by Eq: (2.1) are
averages of just such operator products. Their evalua-,
tion may be carried out quite conveniently through use
of the representations we shall discuss.

Any density operator p may, according to'thc mel}_lods
of the preceding section, be represented in a unique
way by means of a function of (wo complex j;a.na_.bles,
R{a*,§), which is analytic throughout Eh'e finite «" and
8 planes. The function R is given explicitly, by means
of Eq. (5.7),as

R(a"B)={alp|B) explhla|?+36|2].  (6.1)
If we happen to know the matrix representation of p in

the basis formed by the n-quantum states, the function
R is evidently given by

R )= 5 (n]plm)(nim )26, (62)

If we do not know the matrix elements {1|p|m) they
may be found quite simply from a !mowledge. of
R{",8). One method for finding them is to consider
R{a" B) as a generating function and identify its Taylor
series with the serics (6.2). A second method is to note
that if we multiply Eq. (6.2) by o*(8") exp[—(la|?
+]8|%] and integrate over the a and § planes, then all
terms save that for n=1 and m=j vanish in the sum on
the right and we bave

Lol = f R(8) (617 )b (8" Wl o,
- (6.3)

Given the knowledge of R{a",8), we may write the
density operator as

p=‘:?f |a)R(a" B){Ble e Pad.  (6.4)
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The statistical average of an operator T is given by the
trace of the product pT". If we calculate this average by
using the representation (6.4) for p we must note that
the trace of the expression [a)}8|7, regarded as an
operator, is the matrix element (8(7|a). Then, if we
express the matrix element in terms of the function
7'(a"8) defined by Eq. (5.7) we find

1
tr lPT}=;fR(a'.ﬁ] TG @)1= 1ARad?8,  (6.5)

If T is any operator of the form (a')"a™, its representa-
tion (8" ) is given by Eq. (5.11). In particular frfr
n=m=10, we have the unit operator T=1 which is
represented by 7(§"2) = exp[fa]. Hence, the trace of
p itself, which must be normalized to unity, is

trp=1
1
Tr f R(o" ) explB'a— la] '~ 8" }Fad.

Since R{a',8) is an entire function of &’, we may use
Eq. (4.10) to carry out the integration over thea p!_apc.
In this way we see that the normalization condition

onRis
1
- f R(g"B)ctP'Pa=1. (6.6)
"

The density operator is Hermitian and hence has real
eigenvalues, These eigenvalues may be imerprclled as
probabilities and so roust be positive numbers.. Since p
is thus a positive definite operator, its expectation value
in ariy state, e.g., the state | f) defined by Eq. (4.6),
must be non-negative,

{flal 20 6.7

If, for example, we choose the state | f} to he‘a Cf)herent
state |a) we find that the function R, which is given by
Eq. (6.1), satisfies the incquality

R(a',a)'Z(l. 6.8)

i we let the state | f) be specified as in Eq. (:4.7) by an
entire function f(e*), then we find from the mequahly
(6.7) the more general condition for posilive definiteness

f [f(a")] {8 )R (" B i=™1Wdad 620, (6.9)

which must hold for all entire functions f.

In many types of physical experiments, particularly
those dealing with fields which oscillate at extrem.ely'
high frequencics, we cannot be said to have any & priori
knowledge of the time-dependent parameters. The
predictions we make in such; circumstances are un-
changed by displacements in time. They may be derived
from a density operator which is stationary, that is, one
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which commutes with the Hamiltonian operator or,
more simply, with a'c. The necessary and sufficient
condition that a function R{a",8) correspond to a
stationary densily operator is that it depend only on
the product of its two variables, a’8. There must, in
other words, exist an analvtic function $ such that

R ,8)=3("B). (6.10)

That this condition is a sufficient one is clear from the
invariance of R under the multiplication of both « and
B by a phase factor, £i*. The condition may be derived as
a necessary one directly from the vanishing of the
commutator of p with a'a. An alternative and perhaps
simpler way of seeing the result depends on noting that
astationary p can only be a function of the Hamiltonian
for the mode, or of a'a. It is therefore diagona! in the
basis formed by the w-quantum states, ie., {n]p|m)
= 8am{n|p| ). Examination of the series expansion (6.2)
for R then shows that it then takes the form of Eq.
(6.10).

VII. THE P REPRESENTATION OF THE
DENSITY OPERATOR

In the preceding sections we have demonstrated the
generality of the use of the coherent states as a basis.
Not all fields require for their description density
operators of quile so general a form. Indeed for a broad
class of radiation felds which includes, us we shall see,
virtually all of those studied in optics, it becomes
possible to reduce the density operator to a considerably
simpler form. This form is one which brings to light
many similaritics between quantum electrodynamical
calculations and the corresponding classical ones. Its
use offers deep insights into the reasons why some of (he
fundamental laws of optics, such as those for super-
position of fields and calculation of the resulting
intensities, are the same as in classical theory, even
when very few quanta arc involved. We shall continue,
for the present, to limit consideration to a single mode
of the field.

One type of oscillator stale which interests us
particularly is, of course, a coherent state. The density
operator for a pure state la) is just the projectivn
operator

p=J) al. .0

The unique representation of this operator as a function
R(8',y) is easily shown, from Eq. (6.1}, to be

RE 1) =exp[fatvye’~lal]. (1.2)

Other functions R(8",y), which satisfy the analyticity
requircments necessary for the representations of
density operators, may be constructed by forming lincar
combinations of exponentials such as (7.2) for various
values of the complex parameter a. The functions R,
which we form in this way, represent statistical mix-
tures of the coherent states. The most general such

function R may be written as
R~ [ Pe) xplffect et a0, (1)

where P(a) is 2 weight function defined at all points of
the complex @ plane. Since R(8%y) must satisfy the
Hermiticity condition, Eq. (5.10), we require that the
weight function be resl-valued, i.e., [P(a) T = P(a). The
function P(a) need not be subject to any regularity
conditions, but its singularities must be integrable
ones.!! It is convenient to allow Pla) to have delta-
function singularities so that we may think of a pure
coherent state as represented by a special case of
Eq. (7.3). A real-valued two-dimensional delta functios
which is suited to this purpose may be defined as

§W(a)=3(Rea)s({Ima). (14)

The pure coberent state |8) is then evidently described
by
Ple)=8§v(a—8), (1.5)

and the ground state of the oscillator is specified by
seiting §=0.

The density operator p which corresponds to Eq, (7.3)
is just a superposition of the projection operators (7.1),

o= [ Pla)]a)alda. (r.6)

It is the kind of aperator we might naturally be led to
if we were given knowledge that the oscillator is in a
coherent state, but -one which corresponds 1o an un-
known eigenvalue a, The function P(e) might then be
thought of as playing a role analogous 10 & probability
density for the distribution of values of a over the
complex plane.” Such an interprelation may, as we
shall sec, be justified at times. In general, however, it is
nat possible to inlerpret the function P(a) as a proba-
bility distribution in any precise way since the projec-
tion operators |ar){ar| with which it is associated are not
orthogonal to one another for different values of a.
There is an approximate sense, as we have noted in
connection with Eq. (3.33), in which two states |a)
and o) may be said to become orthogonal to one
another for |a—a’[3>1, i.e., when their wave packets
(3.29) and those of the form (3.30) do not appreciably
overlap. When the function P(x) tends to vary little
over such large ranges of the parameter «, the non-
orthogonality of the coherent states will make litde
difference, and P(a) will then be interpretable approxi-
mately as a probability density. The functions Pla)

1 If the singularities of P{a) are of types atronger than those of
delta functions, eg,, derivatives of m- {unctions, the field
represented will have no classical analog,

The existence of this form for the density operator bas alse
been abserved by E. C. G. Sudarshan, Phys, Rev. Letters 18, 377
{1963). His note is discussed briefty at the end of Sec. X,



120 COHER

which vary this slowly will, in general, be associated
with strong fields, ones which may be described approxi-
mately in classical terms.

We shall call the expression (7.6) for the density
nperator the P representation in order 1o distinguish it
from the more general form based on the functions R
discussed earlier. The normalization property of the
density operator requires that P(a) obey the normaliza-
tion condition

trp= fP(u)a“a= 1. (1.7}

It is interesting to examine the conditions that the
positive definiteness of p places upon P(a). If we apply
the condition (6.9) to the function R(8"y) given by
Eq. (7.3) we find

[T 1P expletva' it~ (a1 [+17]

Xdad'pdy>0. (7.8)

The vy integration may be carried out via Eq. (4.10) and
the 8 integration by means of its complex conjugate.
We then have the condition that

[ [f@")|?P(a)et='d'a2 0 (7.9)

must hold for all entive functions f(*). In particular,
the choice f(a")=exp[Ba"—}|8|?] leads to the simple
condition

[ Pla)e1=#'d>0, (7.10)

which must hoid for all complex values of 8. It corre-
sponds to the requirement (8| a]8)> 0. These conditions
are immediately satisfied if P(a) is positive valued as it
would be, were it a probability density. They are not
strong enough, however, to exclude the possibility that
P(a) takes on negalive values over some suilably
restricted regions of the plane.® This result serves to
underscore the fact that the weight function P(a) can-
not, in general, be interpreted as a probability density.1

If a density operator is specified by means of the P
representation, its matrix elements connecting the #-,

1 An example of a weight function P{a) which takes on negative
m}u{u but leads to & positive-definite density operator is given by
€ form
Pla) = (142) (x2) ™ exp{— ||/ ]— 23" ()

for n>0 and O <A <w™", The matrix representatiun of the corre-
sponding density operater, which is given by Eq. (7.12), is scen
to Le diagonal and to have only positive cigenvalues.

“ A familiar example of & function which ;la‘iays a role analogous
to that of & probability density, but may take on negative values
in quantum-mechanical contexts is the Wigner distribution
function, E. P. Wigner, Phys. Rev. 40, 749 (1932).
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quanium states are given by
twlolm)= [ Peale)aimia. @11

When Egs. (3.3) and (3.6) are used 1o evaluate the
scalar products in the integrand we find

(] p|m)= (n tm )12 [ PlaYar (o)1, (7.12)

This form for the density matrix indicates a funda-
mental property of the fields which are most naturally
described by means of the P representation. If Pa) is
a weight function with singularities no stronger than
those of delta function type, it will, in general, possess
nonvanishing complex moments of arbitrarily high
order. [ The unique exception is the choice P(a) = §® (&)
which corresponds to the ground state of the mode.] It
follows then that the diagonal matrix clements (n|p|n),
which represent the probabilities for the presence of #
photons in the mode, take on nonvanishing values for
arbitrarily large n. There is thus no upper bound to the
number of photons present when the function P is well
behaved in the sense we have noed,!®

Stationary density operators correspond in the P
representation to funclions P(a} which depend only
on |e|. This correspondence is made clear by Eq. (7.2)
which shows that such P(a) lead to funclions R(8v}
which are unaltered by a common phase change of 8
and . It is seen equally well through Eq. (7.12) which
shows that {s|p|m) reduces to diagonal form when the
weight function P(e) is circularly symmetric.

Some indication of the importance, in practical
terms, of the P representation for the density operator
can be found by considering the way in which photon
fields produced by different sources become superposed.
Since we are only discussing the behavior of one mode
of the field for the present, we are only dealing with a
fragment of the full preblem, but all the modes may
eventually be treated similarly. We shall illustrate the
superposition law by assuming Lhere are two different
transient radiation sources coupled to the field mode
and that they may be switched on and off separately.
The first source will be assumed, when it is turned on
alone at time f;, to excite the mode from its ground
state |0) to the coherent state |a,). If we assume that

-the source has ceased radiating by a time #;, the state of

the field remains |e) for all later times. We may
alternatively consider the case in which the first source
remains inaclive and the second one is switched on at

¥ Density operators for fields in which the number of photons
present possesses an upper bound ¥ are represented by funciions
R(B*,y) which are polynomials of ¥th degree in #* and in v. It is
evident from the behavior of such polynomials for large |8} and
|| that any weight function P{a) which corresponds to R(8*y)
through Eq. (7.2) would have to bave singularities much stronger
t ose of 8 delta function. Such fields are probably represented

more conveniently by meana of the R function.
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time fs. The second source will then be assumed to
bring the mode from its ground state to the coherent
state |as). We now ask what state the mode will be
brought to if the two sources are allowed to act in
succession, the first at ¢, and the second at 4.

The answer for this simple case may be seen without
performing any detailed calculations by making use of
the unitary displacement operators described in Sec.
III. The action of the first source is represented by the
unitary operator D{a,) which displaces the oscillator
state from the ground state to the coherent state
las)=D(a:)|0). The action of the second seurce is
evidenily represented by the displacement operator
D(as), so that when it is turned on after the first source,
it brings the oscillator to the superposed state

| ¥== D(aa)D(as)| 0). (7.13)

Since the displacement operalors are of the exponen-
tial form (3.17), their multiplication law is given by
Eq. (3.20). We thus find

D{as) Dia) = D{oyt-as) exp[Hewn’ —ar'a)].  (7.14)

The exponential which has been separated from the D
operators in this relation has a purely imaginary
argument and, hence, corresponds to a phase factor, The
superposed state, (7.13), in other words, is just the
coherent state |a;+as) multiplied by a phase factor,
The phase factor has no influence upon the density
operator for the superposed state, which is

o= |artas)(ertasl . (7.15)

To vary the way in which the sources are turned on in
the imaginary experiment we have described, e.g., to
turn the two sources on at other times or in the reverse
order, would only alter the final state through a phase
factor and would thus lead to the same final density
operator. The amplitudes of successive coherent
excitations of the mode add as complex numbers in
quantum theory, just as they do in classical theory.

Let us suppose next that the sources in the same
experiment are somewhat less ideal and that, instead of
exciting the mode to pure coherent states, they excite
it to conditions described by mixtures of coherent states
of the form (7.6). The first source acting alone, we
assume, brings the field to a condition described by the
density operator

pi= [ Pufan) o | . (7.16)

The candition produced by the second source, when it
acts alone, is assumed to be represented by

p= _/Pl(dz)laz)(azld’ah

- [ Pafas)D(as) | 0)(0| D (ap)das.

If the second source is turned on after the first, it brings
the field to a condition described by the density operator

p= f FCHIZCHT 2 al CAT

=fP:(al)Pl(al)|ﬂl+d:)(a|+ua|d’uxd'q.. (7.17)

The latter density operator may be written in the
general form

p= fP(a)Ia)(a|d’a,

if we define the weight function P(a) for the superposed
excitations to be

Plo)= f 59 (a—ar—an) Py(a) Prlan)Paas,  (1.18)

= fP.(a—a')P,(a')d’a'. (7.19)

We see immediately from Eq. (7.18) that P is correctly
normalized if P, and P, are. The simple convolution
law for combining the weight functions is one of the
unique features of the description of fields by means of
the P representation. It is quite analogous to the law
we would use in classical Lheory to describe the proba-
bility distribution of the sum of two uncertain Fourier
amplitudes for a mode.

The convolution theorem can often be used to
separate fields into component fields with simpler
properties. Suppose we have a field described by a
weight function P(«) which has a mean value of a given
by

&= fal’(a)d’a. (7.20)

1t is clear from Eq, (7.19) that any such field may be
regarded as the sum of a pure coherent field which
corresponds to the weight function §% (a—&) lnd%l\
additional field represented by Pla-+&) for which the
mean value of a vanishes. Fields with vanishing mean
values of a will be referred to as unphased fields.

The use of the P representation of the density
operator, where it is not too singular, leads to simplifica-
tions in the calculation of statistical averages which go
somewhat bevond those discussed in the last section.
Thus, for example, the statistical average of any
normally ordered proguct of the creation and annihila-
tion operators, such as (a')"e®, reduces to a simple
average of (a*)%™ taken with respect to the weight
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function P(a), i.e., we have

te{pla!)am) = f P(a)a] (a)am | a)da,

= [P(a) (") "a~da. (7.21)

This identity means, in practice, that many quantum-
mechanical calculations can be carried out by means
which are analogous to those already familiur from
classical theory.

The mean number of photons which are present in a
mode is the most elementary measure of the intensity
of its excitation. The operator which represents the
number of photons present is seen from Eq. (2.18) Lo
be ata. The average photon number, written as (n), is
therefore given by

(n)=1r{pa'a}. (1.22)

According to Eq. (7.21), with its two exponents set
equal to unity, we have

(”)=fP(a)[a|’d’u. (7.23)

i.e., the average photon number is just the mean squared
absolute value of the amplitude «. When wwo fields
described by distributions P, and Py are superposed,
the resulting intensities are found from rules of the form
which have always been used in classical clectromag-
netic theory. For unphased ficlds the inlensities add
“incoherently”; for coherent states the amplitudes add
‘““coherently.”

The use of the P representation of the density
operator in describing fields brings many of the results
of quantum electrodynamics into forms similar to those
of classical theory. While these similaritics make
applications of the correspondence principle particularly
clear, they must not be interpreted as indicating that
classical theory is any sort of adequate substitute for
the quantum theory, The weight functions P(a) which
occur in quantum theoretical applications are net
accurately interpretable as probability distributions,
nor are they derivable as u rule from classical treatments
of the radiation sources. They depend upon Planck’s
constant, in general, in ways that are unfathomable by
classical or semiclassical analysis.

Since a number of calculations having to do with
photon statistics have been carried out in the past by
essentially classical methods, it may be helpful to
discuss the relation betwgen the P representation and
the classical theory a bitﬁ’urlher. It is worth neting in
particular that the dcfinition we have given the ampli-
tude a as an eigenvalue of the annihilation operator is
an intrinsically quantum-mechanical one. If we wish to
represent a given classical field amplitude for the mode
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as an eigenvalue, then we see from Eq. (2.20) that the
appropriate value of a has a magnilude which is
proportional to #7'%, In the dimensioniess terms in
which « is defined, the classical description of the mode
only applies to the region [a|>>1 of the complex «
plane, i.e., to amplitudes of oscillation which are large
compared with the range of the zero-point fluctuations
present in the wave packet (3.29) and (3.30). Classical
theory can therefore, in principle, only furnish us with
the grossest sort of information about the weight
function Pla). When the weight function extends
appreciably into the classical regions of the plane,
classical theory can only be relied upon, crudely speak-
ing, 1o tell us average values of the funciion P{a) over
areas whose dimensions, {Aa|, arc of order unity or
larger. From Eq. (7,10) we see that such average values
will always he positive; in the classical limit they may
always be interpreted as probabilities,

VIII. THE GAUSSIAN DENSITY OPERATOR

The Gaussian ‘function is a venerable statistical
distribution, familiar from countless occurrences in
classical statistics. We shall indicate in this section that
it has its place in quantum field theory as well, where
it furnishes the natural description of the most com-
monty occurring type of incoherence.!

Let us assume that the field mode we are studying is
coupled to a number of sources which are essentially
similar but are statistically independent of one another
in their behavior. Such sources might, in practice,
simply be several hypothetical subdivisions of one large
source. If we may represent the contribution of cach
source (numbered j=1, - -+ ) to the cxcitation of the
mode by means of a weight function p{a;), we may then
construct the weight function P(a) which describes the
superposed fields by means of the generalized form of
the convolution theorem

Pla)y= f&"’(a—r}f:; a,) iI‘ pladda;. (8.1}

Since the weight functions. which appear in this
expression are zll real valued, it is sometimes convenient
to think of the amplitudes a in their arguments not as
complex numbers, but as two-dimensional real vectorse
(i.e, @z==Rea, e,=Ima). Then if A is an arbitrary
complex number represented by the vector %, we may
use a two-dimensional scalar product for the abbrevia-
tion

ReA ReatImAIma=a-d. (8.2)

Using this notation, we may define the two-dimensional
Fourier transform of the weight function p(a) as

E(l)=f exp(-a)p(e)da. (8.3)
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The superposition law (8.1) then shows that the Fourier
transform of the weight function P(a) is given by

EQ)= / exp(ia- o) P(e)d%,

=[¢)]%. (8.4)

If the individual sources are stationary ones their
weight function p(a) depends only on |e[. The trans-
form £(X) may then be approximated for smatl values
of |A] by

to)=1-1at [ (ol 'p()Fa,

=1-13%(e[?). (8.5)

For values of |A] which are smaller still (ie., |A]*
<N'%(|ajh), the transform E for the superposed
field may be approximated by

E@)=exp{ — PN (la]). {8.6)

Since the weight function p{a) may take on negative
values it is necessary at this point to verify that the
second moment {]a|?) is positive, That it is indeed
positive is indicated by Eqgs. (7.22) and (7.23) which
show that (|a{?) is the mean number of photons which
would be radiated by each source in the absence of the
others. For large values of N the transform Z() there-
fore decreases rapidly as |A| increases, Since the
function becomes vanishingly small for || lying outside
the range of approximation noted earlier, we may use
{8.6) more generally as an asymptotic approximation
to (A} for large N, When we calculate the transform of
this asymptotic expression for Z(3) we find

Ple)=(2r) f (i EGY,

1
=mexp(-—u’/fv<lulg»- ®&.7)

The mean value of |a{? for such a weight function is
evidently N(|a|?), but by the general thearem expressed
in Eq. (7.23), this mean value is just the average of (he
total number of quanta present in the mode. If we write
the latler average as (n), and resume the use of the
complex notation for the variable a, the weight funciion
(8.7) may be written as

P(u)él_e—\al’/(n), (8.8)
x{n)

The weight function P(a) is positive evervwhere and
takes the same form as the probability distribution for
the total displacement which resulis from a randum
walk in the complex plane. However, because the
coherent states |a) are not an orthogonal set, P{e) can

only be accurately interpreted as a probability distribu-
tion for (n)>>1. We may note that it is not ultimately
necessary, in order to derive Eq. (8.8), to assume that
the weight functions corresponding to the individual
sources are all the same. All that is required to carry
out the proof is that the moments of the individual
functions be of comparable magnitudes, The mean
squared value of |a| is then given more generally by
25{[a, %), rather than the value in Eq. (8.7), but this
value is still the mean number of quanta in the mode, as
indicated i Eq. (8.8). '

It should be clear from the conditions of the deriva-
tion that the Gaussian distribution P(a) for the excita-
tion of a mode possesses extremely wide applicability.
The random or chaotic sort of excitation it describes is
presumably characteristic of most of the familiar types
of noncoherent macroscopic light sources, such as s
dischirges, incandesant radiators, ete,

The Gaussian density operator

= ! lal3i{n}
’*Tn) f e |a)a|da (8.9)

may be seen to take on a very simple form as well in the
basis which specifies the photon numbers. To find this
form we substitute in Eq. (8.9) the expansions (3.7)
and (3.8) for rhe caherent states and note the identity

r"(llml)‘”’[ exp[ —Cla|¥Jat (a")"Pa= §i.C- o),

which holds for C>0. If we write C= (14 (n))/{x) we
then find

L O
Trm s {H_(T,)l [m)m].  (8.10)

In other words, the number of quanta in the mode is
distributed according to the powers of the parameter
(n)/{14{n)}. The Planck distribution for blackbady
radiation furnishes an Hlustration of a density operator
which has long been known to take the form of Eq.
(8.10). The thermal excitation which leads to the black-
bedy distribution is an ideal example of the random type
we have described earlier, and so it should not be sur-
prising Ihat this distribution is one of the class we have
derived. It is worth noting, in particular, that while the
Planck distribution is characterstic of thermal equili-
brium, no such limitation is implicit in the genera!‘gm
of the density operator (8.9). It will apply whenever
the excitation has an appropriately random quality, no
matter how far the radiator is from thermal equilibrium.

The Gaussian distribution function exp[— [a|t/{x)]
is phrased in terms which are explicitly quantum
mechanical. Tn the limit which would represent s
classical field both |a|? and the average quantum
aumber (1) become infinile as &, but their quotient,
which is the argument of the Gaussian function, remains



124 COHERE..+ AND INCOHERENT

well defined. The form which the distribution-takes in
the classical limit is a familiar one. Historically, one of
the origins of the random walk problem is to be found
in the discussion of a classical harmonic oscillator which
is subject to random excitations.!® Such oscillators have
complex amplitudes which are described under quite
general conditions by a Gaussian distribution, If we
were armed with this knowledge, and lacked the
quantum-mechanical analysis given earlier, we might
be tempted to assume that a Gaussian distribution
derived in this way from classical theory can describe
the photon distribution. To demonstrate the fallacy of
this view we must examine more closely the nature of
the parameter (#) which is, after all, the only physical
constant involved in the distribution, We may take, as
a simple illustration, the case of thermal excitation
corresponding to temperature 7. Then the mean photon
number is given by ()= [exp(f/xT)— 11", where x is
Boltzmann’s constant, and the distribution Pla) takes
the form

Pla)=—[e1— 1] expl— (i Dlal7]. (811
k2

To reach the classical analog of this distribution we
would assume that the classical field energy in the mode,
H=4f(E+B%)dr, is distributed with a probability
proportional to exp[—H/xT7). The distribution for the
amplitude « that results is

Pale) = (huo/meT) exp[—husla|/xT],  (8.12)

which is seen to be a first approximation in powers of %
to the correct distribution. (Again, we must remember
that the quantity #]a|? is to be construed as a classical
parameter.) The distribution Pe(a) only extends into
the classical region of the plane, |a|>>1, for low-
frequency modes, that is, only for (Aw/xT)<1 are the
modes sufficiently excited to be accurately described by
classical theory. For higher frequencies the two distri-
butions differ greatly in nature even though both are
Gaussian. The classical distribution retains much too
large a radius in the & plane as fw increases beyond T,
rather than narrowing extremely rapidly as the correct
distribution does.!” That error, in fact, epitomizes the
ultravialet catastrophe of the classical radiation theory.
The example we have discussed is, of course, an ele-
mentary one, but it should serve to illustrate some of
the points noted in the preceding section regarding the
limitations of the classical distribution function.

The expression for the thermal density operator of an
oscillator in terms of coherent quantum states appears

1 Lord Rl‘.iylcigh, The Theory of Sound, (MacMillan and
Company Ltd., London, 1894), 2nd ed., Vol. 1, p. 35; Scientific
Papers (Cambridge University Press, Cambridge, England,
1899-1920), Vol, I, p. 491, Vel. TV, p, 370.

17 For frequencies in the middle of the visible srectrum and
temperatures under 3000°K the quantum mechanica distribution
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to offer new and instructive approaches to many
familiar problems. It permits us, for example, 1o derive
the therma! averages of exponential functions of the
operators ¢ and a' in an elementary way. The thermal
average of the operator D(8) defined by Eq. (3.17) is
an illustration, It is given by

1
trloD(ﬂ)l=m f gtet oo D(B) ). (8.13)

The expectation value in the integrand is, in this case
(| D) |a) = 01 D@ DE D)0,
=exp[fa’—8a](0| D(B)] 0},
=exp[fa”—Fa](0]8),
=exp[Ba’—B'a—1%(6(2], 814

where the properties of D{a) as a displacement operator
have been used in the intermediate steps. When the
integration indicated in Eq. (8.13) is carried out, we find

tr{eD(®)) =exp[— (A1?(m)+H)],  (8.15)

which is a frequently used corollary of Bloch’s theorem
on the distribution function of an oscillator coordinate.!

IX. DENSITY OPERATORS FOR THE FIELD

The developments introduced in Secs. III-VIIT have
all concerned the description of the quantum state of &
single mode of the electromagnetic field. We may
describe the field as a whole by constructing analogous
methods to deal with all its modes at once. For this
purpose we introduce a basic set of coherent states for
the entire field and write them as

| [ﬂk))EI.I las)s, (9.1)

where the notation {a;), which will be used in several
other connections, stands for the set of all amplitudes
ax. It is clear then, from the arguments of Sec. IV, that
any state of the field determines uniquely a function
{({as")) which is an entire function of each of the
variables a;’. If the Hilbert space vector which repre-
sents the state is known and designated as | f}, the
function f is given by

Sl N={a | NepG Tilax]d),  (92)

which is the direct gencralization of Eq. (4.11). The
expansion for the state | f) in terms of coherent states
is then

9= [ Hahstlarn I evesttas, O

which generalizes Eq. (4.7).
All of the operators which occur in field theory possess

(8.11) will have ara dius which corresponds to |a{'«K10™4, ie., 7 expansions in terms of the vectors |{a:}) and their

the distribution is far from classical in nature. Comparab
characterize the distributions for nonthermal incoberent sources.

W F, Bloch, Z, Physik 74, 295 (1932).
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adjoints, To construct such representations is simply a
matier of generalizing the formulas of Sec. V to deal
with an infinite set of amplitude variables, We therefore
procecd directly to a discussion of the density operator.
For any density operator p we may define a function
R({ax"},{8:)) which is an entire function of each of the
variables ;" and 85 for all modes 4. This function, as
may be seen from Eq. (6.1}, is given by

R{{es’),(8:1) = ({au} | o] {8:))
Xexp[3 T (Jel™+[8:(D]. (9.4)

The corresponding representation of the density
operator is

p= [ He k(a1 80| TLr
k

X emHam BN gy, 428, (9.5)

If ll]c set of integers {n} is used to specify the familiar
stationary states which have », photons in the kth
mode, we may regard R as a generating function for the
matrix elements of p connecting these states, i.e, as a
generalization of Eq. (6.2) we have

R((M’Hﬁkl):‘ .F; I(f”k”ﬂ“’"t})
XI,‘I (el 183 (@) )8 (9.6)

The matrix elements of p in the stationary basis are
then given by

({nmd o] (o))

- f&lm’“ﬁd) T2 b )2 (Ba7)
Xellmtiaibery, 418, . (9.7)

The normalization condition on R is cleariv
[ R({Bx'),{ﬁk})I.I il apg, =1, (9.8)

The positive definiteness condition, Eq. (6.9), may also
be generalized in an evident way to deal with the full
set of amplitude variables.

It may help as a simple illustration of the foregoing
formulae to consider the representation of asingle-photon
wave packet. The state which is empty of all photons is
the one for which the amplitudes a; all vanish, If we
write that state as [vac), then we may write the most
general one-photon state as 3_; g(k)as! | vac), where the
function (%) plays the role of a packet amplitude. The
function f which represenis this state is then

f(laa'})=):,_' q(B)eu’, (©.9)

and the corresponding function R which determines the
densitv aperator is

Rlfas) (8= o(Blas’ E ¢ W6y, (910

The normalization condition (9.8) corresponds 1o the
requirement Y |g(k)|?=1. Since Lhe state we have
comnsidered is a pure one, the function R factorizes into
the product of two functions, one having the form of f
and the other of its complex conjugate. If the packet
ampliludes g(k) were in some degree unpredictable, as
they usually are, the packet could no longer be repre-
sented by a pure state. The function R would then be an
average taken over the distribution of the amplitudes
g(k) and hence would lose its factorizable form in
general, Whenever an upper bound exists for the
number of phatons present, i.e., the number of photons
is required to be less than or equal to some integer X,
we will find that R is a polynomial of at most N'th
degree in the variables {a.’} and of the same degree in
the {8:).

There will, of course, exist many types of excitation
for which the photon numbers are unbounded. Among
these are the oncs which are more conveniently de-
scribed by means of a generalized P distrihulion', ie,
the excitations for which there exists a reasonably well-
behaved real-valued function P({e;)) such that

RUB) fmal) = [ ()
Xﬂp[ ; (B art e — lo‘xl’)] 1. (9.11)

\\’hep R posstsses a representativn of this type the
density operator (9.5) may be rcduced by means of
Eq. (4.14) and its complex conjugate to the simple form

o= f Pl @) X(ed| T dus, (912

which is the many-mode form of the P representation
given by Eq. (7.6). The function P must satisfy the
positive definiteness condition

/|f(lat'})i’P(lm})He"""a‘atZO 9.13)

for all possible choices of entire functions f({ay’}}. The
matrix elements of the density operator in the repre-
sentation based on the s-photon states are

(om0l tmad)= f Pifes))

XI*I (e !’m. D13 i (et ymbe~ =iy . (9.14)
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Stationary density operators, i.e., ones which commute
with the Hamiltonian correspond to functions P({o:)}
which depend on the amplitude variables only through
their magnitudes { |aa]}.

The superposition of two fields is described by {form-
ing the convolution integral of their distribution func-
tions, much as in the case of a single mode. Thus, if two
fields, described by P1({8.}) and Pa((vs)), respectively,
are superposed, the resulting field has a distribution
function

P({a.])=f1:[5m(m~ﬁk—'n)
XP{{B)Pa{ve)) T Foudre.  (9.15)
¥

For fields which are represented by means of the
density operator (9.12) all of the averages of normally
ordered operator products can be calculated by means
of formulas which, as in the case of a single mode,
greatly resemble those of classical theory. Thus, the
parameters {a;} play much the same tole in these
calculations as the random Fourier amplitudes of the
field do in the familiar classical theory of microwave
noise.” Furthermore, the weight function P({e:}) plays
a role similar to that of the probability distribution for
the Fourier amplitudes. Although this resemblance is
extremely convenient in calculations, and offers
immediate insight into the application of the corre-
spondence principle, we must not lose sight of the fact
that the function P({ay}) is, in general, an explicitly
quantum-mechanical structure, It may assume negative
values, and is not accurately interpretable as a proba-
bility distribution except in the classical limit of
strongly excited or low frequency fields.

In the foregoing discussions we have freely assumed
that the density operator which describes the field is
known and that it may, therefore, be expressed either in
the representation of Eq. (9.5) or in the P representa-
tion of Eq. (9.12). For certain types of incoherent
sources which we have discussed in Sec. VIII and wiil
mention again in Sec. X, theexplicit construction of
these density operators is not at all difficult. But to find
accurate density operators for other types of sources,
including the recently developed coherent ones, will
require a good deal of physical insight. The general
problem of treating quantum mechanically the inter-
action of a many-atom source both with the radiation
field and with an excitation mechanism of some sort
promises to be a complicated one. It will have to be
approached, no doubt, through greatly simplified
maodels.

Since very little is known about the density operator
for radiation fields, some insight may be gained by
examining 1he form it takes on in one of the few com-

B[ Lawwm wnd €, ¥, Chisabeck, Throshold Neise Signals
Ml oraw i1 Bomk Conmpany, Sin.., New York, 1950), pp. 33-56.
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pletely soluble problems of quantum electrodynamics.
We shall study the photon field radiated by an electric
current distribution which is essentially classical in
nature, one that does not suffer any noticeable reaction
from the process of radiation. We may then represent
the radiating current by a prescribed vector function of
space and time j(r,¢). The Hamiltonian which describes
the coupling of the quantized electromagnetic field to
the current distribution takes the form

: 1
Hy(t)=—- fi (r,1)- A(r,t)dr. (9.16)
3

The introduction of an explicitly time-dependent
interaction of this type means that the state vector for
the field, | ), which previously was fixed {(corresponding
Lo the Heisenberg picture} will begin to change with
time in accordance with the Schridinger equation

2
| Y=H(O)] ), ©.17)
ot

which is the one appropriate to the interaction repre-
sentation. The solution of this equation is easily found ®
If we assume that the initial state of the field at time
=— « is one empty of all photons, then the state of
the field at time ¢ may be written in the form

|=>=exp{ﬁic f P f $60) A )dr+ip()| [vac).
- {9.18)

The function ¢(f) which occurs in the exponent is a
real-valued ¢-number phase function. It is easily
evaluated, but cancels out of the product |¢){¢{ and so
has no bearing on the construction of the density
operator. The exponential operator which occurs in
Eq. (9.18) may be expressed quite simply in terms of
the displacement operators we discussed in Sec. ITI.
For this purpose we define a displacement operator Dy
for the kth mode as

Di(84) = explfccs! —Bi'as])- (9.19)

Then it is clear from the expansion (2.10) for the vector
potential that we may wrile

- exp!ﬁi f ‘ ar [ i(r,t‘)-A(t,l’)dr} =TI Di[a:(8)], (9.20)
) [

where the time-dependent amplitudes o, (¢) are given by
H
(2’!@)”’

The density operator at time ¢ may Lherefore be written

a ()=

f' dt'fdru;,'(r)vj(r,l')e""". 9.21)

® R. J. Glauber, Phys. Rev. 84, 395 (1951).
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as

[ =I,'I Dyfax(0)]| vac)(vac| I;I Dy '[oe(8)]  (9.22)

= [{as () ){er ()} ] . (9.23)

The radiation by any prescribed current distribution,
in other words, always leads to a pure coherent state.

It is only a slight generalization of the model we have
just considered to imagine that the current distribution
j(r,t) is not wholly predictable. In that case the ampli-
tudes ax(f) defined by Eq. (9.21) become random
variables which possess collectively a probability distri-
bution function which we may write as p{{a:},). The
density operator for the field radiated by such a random
current then becomes

o()= f et | TLdn. (920

We see that the density operator for a field radiated by
a random current which suffers no recoil in the radiation
process always takes the form of the P representation
of Eq. (9.12). The weight function in this case does
admit interpretation as a probability distribution; but
it has a classical structure associated directly with the
properties of the radiating current rather than with
particular (nonorthogonal) states of the field, The
assumption we have made in defining the model, that
the current suffers negligible reaction, is a strong one
but is fairly well fulfilled in radiating systems operated
at radio or microwave frequencies. The fields produced
by such systems should be accurately described by
density operators of the form (9.24).

X. CORRELATION AND COHERENCE PROPERTIES
OF THE FIELD

Any eigenvalue function &(rf) which satisfies 1he
appropriate field cqualions and contains only positive
frequency terms detcrmines a set of mode amplitudes
{ex} uniquely through the expansion (2.20). This set of
mode amplitudes then determines a coherent state of
the field, |{as}), such that

ED (n) | {ou}) = £(rt) | (i) (10.1)

To discuss the general form which the field correlation
funclions take in such states it is convenient to abbrevi-
ate a set of coordinates (r;t) by a single symbol z;. The
nth-order correlation function is then defined as?

Goypooaa ™ (1 o 2an) = tefpB, ) -
XE {2 ) By (i) By (22m)) . (10.2)

The density operator for the coherent state defined by
Eq. (10.1) is the projection operator

o= {a) M{au) | . (10.3)

For this operator it follows from Eq. (10.1) and its
Hermitian adjoint that the correlation functions
to the factorized form

T -x..)=1;1q 8, (%) EL ). (104)

In other words, the field which corresponds to the state
[ {oe) ) satisfies the conditiona for full coherence accord-
ing to the definition? given earlier.

It is worth noting that the state |{e.}) is not the
only one which leads to the sel of correlation functions
(10.4). Indeed, let us consider a state which corresponds
not to the amplitudes {a}, but to a set (%} which
differs by a common phase factor (i.c., ¢ is real and
independent of k). Then the corresponding eigenvalue
function becomes ¢*&(rt), but such a change leaves the
correlation functions (10.4) unaltered. It is clear from
this invariance property of the correlation functions
that certain mixtures of the coherent states also lead to
the same set of functions. Thus, if |(ax}) is the state
defined by Eq. (10.1), and £(¢) is any real-valued
function of ¢ normalized in the sense

v
[ stonen, (t03)
0
we see that the density operator
2w
o= [ 2ol teraiiiemilde  (106)
L]

leads for all choices of £(¢) to the set of correlation
functions (10.4). Such a density operator is, of course,
a special case of the general form (9.12), one which
corresponds to an over-all uncertainty in the phase of
the {as}. The particutar choice £(¢)= (2x)~%, which
corresponds 10 complete ignorance of the phase, repre-
sents the usual state of our knowledge about high-
frequency fields, We have been careful, therefore, 1o
define coherence in terms of a set of correlation functions
which are independent of the over-all phase.

Since nonstationary fields of many sorts can be
represented by means of cigenvalue functions, it
becomes a simple matter to construct corresponding
quantum states. As an iliustration we may consider the
example of an amplitude-modulated plane wave. For®
this purpose we make use of the particular set of mode
functions defined by Eq. (2.9). Then if the carrier wave
has frequency w and the modulation is periodic and bas
frequency {w where 0<{ <1, we may write an appro-
priate eigenvalue function as

s \ M2
8(rl)=i(—~) Moy
2103 .

X {14 M cos3 (k- r—ah)—8]jei®r—n_  (10.7)



128 COHERLwWT AND INCOHERENT

When this expression is expanded in plane-wave modes
it has only three nonvanishing amplitude coefficients.
Tlhiese are ay itself and the two sideband amplitudes

ayo-p=FM (1 =) e oy,

(10.8)
an(ipy =M (1) e oy
The coherent stale which corresponds to the modulaled
wave may be constructed immediately from the know-
ledge of these amplitudes. In practice, of course, we will
not often know the phase of ax, and so the wave should
he represented not by a single coherent state, but by a
mixture of the form (10.6). Representations of other
forms of modulated waves may be canstrurted similarly.
Incoherent fields, or the broad class of fields for
which the correlation functions do not faclorize, must
he described by means of density operators which are
more general in their structure than those of Egs. (10.3)
or (10.6). To illustrale the form taken by the correlation
functions for such cases we may suppose the field to be
described by the P represenlation of the density
operator, Then lhe first-order correlation function is
given by

G,.,“‘(rl,t't')=[P([ak})E'%ﬁ(W')m“k;(l')u»',(r')

Noe'ape @' ] day. (109}
]

Fields for which the P representation is inconveniently
singular may, as we have noted earlier, always be
described by means of analytic functions R{{ax"},{8:})
and corresponding densily operators of the form (9.3).
When that form of density operator is used to evaluate
the first-order correlation function we find

G0 (rl,f’[') — [R((ﬂk",{ﬂk})‘g,‘%ﬁ(wlw”)‘u

X uk‘»‘ (l’)ﬂk";(f')ﬁk"ﬂi"C‘(“"_“”',)

XI;[ eBredplon)du(B),  (10.10)

where the differentials duler) and du(8)) are those
defined by Eq. (5.14). The higher order correlation
functions are given by integrals analogous Lo (10.9) and
(10.10). Their integrands contain polynomials of the
2nth degree in the amplitude variables ax and 8 in
place of the quadratic forms which accur in the first-
order funclions.

The energy spectrum of a radialion field is easily
derived from a knowledge of its first-order correlation
function. If we return for a moment to Lhe expansion
(2.19) for the positive-frequency field operator, and-
write the negative-frequency field as its Hermitian

STATES OF RADIATION FIELD

adjoint, we see that these operators obey the identity

2[ E(x1)- B9 (xt')dr
=Y hwaitar explin(—¢)].  (10.11)
i

If we take the statistical average of both sides of this
equation we may write the resulting relation as

> fG,.,“) (et,rt)dr=3 3 halme) exp[iw(t—¢)], (10.12)
» *

where (#:) is the average number of photons in the kth
mode. The Fourier representation of the volume integral
of 3.,G,." therefore identifies the energy spectrum
hew(an) quite generally,

For fields which may be represented by stationary
density operators, it becomes still simpler to extract the
energy spectrum from the correlation function. For such
fields the weight function P({a:)) depends only on the
absolute values of the oy, so that we have

[ PQashawane TT Par={far [Hoers
.—-(ny)ﬁk';,w. (10-13)

By using Eq. (10.9) to evaluate the correlation function,
and specializing to the case of plane-wave modes, we
then find

= G (et} =417 T hwlme e, (10.14)
n B

in which we have explicitly indicated the role of the
polarization index A, If the volume which contains the
field is sufficiently large in comparison to the wave-
lengths of the excited modes, the sum over the modes
in Eq. (10.14) may be expressed as an integral over k
space [3x—/L3(2x)*k]. By defining an energy
specirum for the quanta present (i.e., an energy per
unit interval of w) as

ww)= () k8T f(m,;)dﬂ., (10.15)
)

where 0, is an element of solid angle in k space, we
may then rewrite Eq. (10.14) in the form

Y. G (rtrt) =} j w(w)ewt-Odw,  (10.16)
»® []

With the understanding that w{w)=0 for w <0, we may
extend the integral over w from — « Lo <. It is then
clear that the relation (10.16) may be inverted to ex-
press the energy spectrum as the Fourier transform of
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the time-dependent correlation function,

x »

1 o
:u(w)=-f ¥ G (r0t)eietdt.  (10.17)

A pair of relations analogous to Eqs. (10.16) and
(10.17), and together called the Wiener-Khinichine
theorem, has long been of use in the classical theory of
random fields.?! The relations we have derived are, in a
sense, the natural quantum mechanical generalization
of the Wiener-Khintchine theorem. All we have assumed
is that the field is describable by a stationary form of
the P representation of the density operator. The proof
need not, in fact, rest upon the use of the P representa-
tion since we can construct a corresponding statement
in terms of the more general representation (9.5).

Stationary fields, according to Eq. (6.10), are
represenited by entire functions R=8({ax'fs}), ie.,
functions which depend only on the set of products
ai*B». For such felds, then, the integral over thea and 8
planes which is required in Eq. (10.10) takes the form

Bran)= f (e TL 0 adu(h).
(10.18)

Since the range of integration of each of the « and 8
variables covers the entire complex plane, this integral
cannot be altered if we change the sigos of any of the
variables. If, however, we replace the particular
variables a4 and i by —aps and — B+ the integral
is seen to reverse in sign, unless we have

{Braw)=buarr(Baows). (10.19)

The average (8'as), we may note from Egs. (5.11) and
(6.5), is just the mean number of quanta in the kth
mode,

Brlan)y=tr{pa"ar) = (). (10.20)

We have thus shown that the general expression {10.10)
for the first-order correlation function always satisfies
Eq. (10.14) when the field is described by a stationary
density operator. The derivation of the equations
relating the energy spectrum to the time-dependent
correlation function then proceeds as before.

The simplest and most universal example of an
incoherent field is the type generated by superposing
the outputs of stationary sources. We have shown in
some detail in Sec. VIII that as the number of sources
which contribute to the excitation of a single mode
increases, the density operator for the mode takes on a
Gaussian form in the P representation. It is not difficull
to derive an analogous result for the case of sources

% The Wicner-Khintchine theorer js usually expressed in terms
of cosine transforms since it deals with a real-valued correlation
funclion for the classical fild E, rather than a camplex one for
the fields E(), The complex lation functi iderabl:

are
more convenient to use for quantum mechanical purposes, as is
shown in Ref. 3.

which excile many modes at once. We shall suppose
that the sources (7=1 «-- N') are essentially identical,
and that their contributions to the excitation are
described by a weight function p{{an}). The weight
function P({a.}) for the superposed fields is then given
by the convolution theorem as

N N
Pltash)= f EIG"’(a-— > «») IT p((an) T] B
(10.21)

Since the individual sources are assumed to be sta-
tionary, the function p({e;s}) will only depend on the
variables a; through their absolute magnitudes, joul.

The derivation which leads from Eq. (10.21) to a
Gaussian asymptotic form for P({as}) is so closely
parallel to that of Eqgs, (8.1)-(8.8) that there is no need
to write it out in detail. The argument makes use of
second-order moments of the function p which may,
with the same type of vector notation used previously,
be written as

(Tt /um-p((n}) IlI day. (10.22)

The stationary character of the function p implics that
such moments vanish for 2>4’. With this observation,
we may retrace our earlier steps to show that the many-
dimensional Fourier transform of P takes the form of a
product of Gaussians, one for each mode and each
similar in form to that of Eq. (8.6). It then follows
immediately that the weight function 2 for the field as
a whole is given by a product of Gaussian factors each
of the form of Eq. {8.8). We thus have

Pl{a))=1I ..erltum , 1 23)
x wlm)

where (n:) is Lthe average number of photons present in
the kth mode when the ficlds are fully superposed, One
of the striking features of this weight function is its
factorized form. It is interesting to remember, therelore,
that no assumption of factorizability has been made
regarding the weight funclions # which describe the
individual sources, These sources may, indeed, be ones
for which the various mode amplitudes are strongly
coupled in magnitude. It is the stationary property of
the sources which leads, because of the vanishing of the
moments (10.22) for k»#', to the factorized form for
the weight function (10.23).

The density operator which corresponds to the
Gaussian weight function (10.23) evidently describes
an ideally random sort of excitation of the field modes.
We may reasonably surmise that it applics, at leastasa
good approximation, to all of the familiar sorts of
incoherent sources in laboratory use. It is clear, in
particular, from the arguments of Sec. VII that the
Gaussian weight function describes (thermal sources
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carrectly. The substitution of the Planck distribution
{m)=[exp (hwe/aT)— 11" into Eq. {10.23) leads to the
density operalor for the entire thermal radiation field.
To the extent that the Gaussian weight function (10.23)
may describe radiation by a great variety of incoherent
sources Lhere will be certain deep-seated similarities in
the photon fields generated by all of them. One may,
for example, think of these sources all as resembling
thermal ones and differing from them only in the
spectral distributions of their outputs. As a way of
illustrating these similarities we might imagine passing
blackbndy radiation through a filter which is designed
tn give the spectral distribution of the emerging light a
particular line profile. We may choose this artificial line
profile to be the same as that of some true emission line
radiated, say, by a discharge tube. We then ask whether
measurements carried out upen the photon field can
distinguish the true emission-line source from the
artificial one. If the radiation by the discharge tube is
described, as we presume, by a Gaussian weight func-
tion, it is clear that the two sources will be indistin-
puishable from the standpoint of any photon counting
experiments. They are equivalent sorts of narrow-band,
quantum-mechanical noise generalors.

Tt is a simple maitter to find the correlation functions
for the incoherent fields® described by the Gaussian
weight function (10.23). If we substitute this weight
function into the expansion (10.9) for the first-order
correlation function we find

Ga (e, rt) =4 3 houe, (D (M) made1 . (10.24)
*

When the mode functions u.(r) are the plane waves of
Fal. (2.9), and the volume of the system is sufficiently
large, we may write the correlation function as the
integral

ke
2(2x)
Xexp({—ilk- (r—r)—w(t—1)])dk, (10.25)

(M (n =

f g 8.“)'8.”‘)("x,x)k

in which the index M again labels polarizations. To find
the second-order correlation function defined by
Fr. (10.2) we may write it likewise as an expansion in
terms of made functions. The only new moments of the
weight function which we need to know are those given
by (Jon{*)=2(]|as|?)*=2(n:)>. We then find that the
sccond-order correlation function may be expressed in
rerms of the first-order function as

(uwmand® (0123,2576) = Gupg ™ (21,28) G pgn e (22,%0)
+G)|-|m (xl,xt)Gnu‘” (z!:-fl) - “026)
It is easily shown that all of the higher order correlation

Jimetions as well reduce o sums of praducts of the first-
«rder function. The sth-order correlation function may
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be writ{en as

G,....,,,“"’(.’ﬁ' S Xy Tnprt ‘:l'!u) -'=£ H Guv;m(xfsyi)y
[
(10.27)

where the indicca vy and Lhe coordinates y; for j=1-+-a
are a permulation of the two sels gagy -+ pan and
%ap1 * - Xzn, and the sum is carried out over all of the
n! peemutations. One of the family resemblances which
links all fields represented by the weight function
(10.23) is that their properiies may be fully described
through knowledge of the frst-order correlation
function.

The fields which have tradjtionally been called
coherent ones in oplical terminology are easily de-
scribed in terms of the first-order correfation function
given by Eq. (10.25). Since the light in such fields is
accurately collimated and nearly monochromatic, the
mean occupation number {n, ) vanishes outsjde a small
volume of k-space. The criterion for accurate coherence
is ordinarily that the dimensions of this volume be
extremely small in comparison to the magnitude of k.
Tt is easily verified, if the field is fully polarized, and the
two points (r) and (r,)') are not oo distanlly
separated, that the correlation function (10.25) falls
approximately into the factorized form of Eq. (2.4).
That is to say, fields of the type we have deseribed
approximately fulfill the condition for first-order
coherence.® It is easily seen, however, from the structure
of the higher order correlation functions that these
fields can never have second or higher order coherenca.
In fact, if we evaluate the function G given by
Eq. (10.27) for the particular case in which all of the
coordinates are set equal, =" =2x3,=%, and all of
the indices as well, gy= - - - =y, =p, we find the result

G ™z 22 2) =[G (2, 2) ", (10.28)

The presence of the coefficient n! in this expression is
incompalible with the factorization condition (10.4) for
the correlation functions of order n greater than one,
‘The absence of second or higher order coherence is thus
a general feature of stationary fields described by the
Gaussian weight function (10.23). There exists, in other
words, a fundamental sense in which these fields remain
incoherent no matter how monochromatic or accurately
collimated they arc. We need hardly add that other
types of fiel “such as those generated by radio trans-
mitters or masers may possess arbitrarily high orders
of coherence.

During the completion of the present paper a note by
Sudarshan® has appeared which deals with some of the
problems of photon statistics that have been treated
here.2 Sudarshan has observed the existence of what

=In an accompanying note, L, Mandel and E. Woli [Phys.
Rev, Letters 10, 276 6.963)] warmly defend the classical approach
to photon problems. Some of the ibilities and fundamental
limitations of this approach should be evident from our earlier
work, We may mention that the “implication” they draw from
Ref. 1 and disagree with cannot be validly inferred from any
reading of that paper.
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we have called the P representation of the density
operator and has stated its connection with the repre-
sentation based on the n-quantum slates. To that
extent, his work agrees with ours in Secs. VII and IX.
He has, however, made 2 number of statements which
appear to attach an altogether different interpretation
to the P representation, In particular, he regards its
existence as demonstrating the “complete equivalence”
of the classical and quantum mechanical approaches to
photon statistics, He states further that there is a
“one-to-one correspondence’ between the weight fune-
tions P and the probability distributions for the field
amplitudes of classical theory.

The relation between the P representation and
classical theory has already been discussed at some
length in Secs. VII-TX. We have shown there that the

weight function Pfa) is, in general, an intrinsically
quantum-mechanical structure and not derivable from
classical arguments. In the limit #— 0, which corre-
sponds to large amplitudes of excitation for the modes,
the weight functions Pla) may approach classical
probability functions as asymptlotic forms. Since
infinitely many quantum states of the field may
approach the same asymptotic form, it is clear that
the correspondence between the weight functions Pla)
snd classical probability distributions is not at all
one-to-one.
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Note on Numbering of Equations:

In the lectures which follow, references to equations in the preceding reprir;t
are indicated by a capital R followed by the equation number.

Lecture XII RADIATION BY A PREDETERMINED
CHARGE-CURRENT DISTRIBUTION

Not many problems of quantum electrodynamics are in any sense exactly sol-
uble. But there does exist one simple, completely soluble problem which has
considerable physical meaning. That is the problem of finding the photon field
radiated by an electric current digtribution which is essentially classical in nature.
By "classical” in this case we mean that we may represent the current by a pre-
scribed vector function of space and time, j (rt).

Such a model clearly can not represent the process of radiation by an indivi-
dual atom, since the atomic current is affected by radiation recoil in essentially
unpredictable ways. The model may, however, be an excellent approximation for
dealihg with radiation by aggregates of atoms which are large enough to show sta~
tistically predictable behavior for the total current vector. Note that in saying this
we are not at all ignoring the reaction of the radiation process back upon the cur-
rent. All we require is that whatever the reaction is, it be predictable at least in
principle (as the radiation resistance of an antenna, is, for example). It seems
likely that this model, when allowance is made for statistical uncertainties in the
current distribution, will accurately account for the photon fields generated by
most macroscopic sources.

The interaction Hamiltonian which describes the coupling of the quantized
electromagnetic field to the current distribution takes the form

s () =2 [1(r, 0 - A, 9 ar. (12.1)

The state vector of the field changes with time in the interaction representation,
obeying the Schridinger equation

ih o It > =30 1t> (12.2)
Now let us, as an abbreviation, introduce the operator B(t} which is defined as
B(t) =3 [3(r, B * Alx, 1) dr. (12.3)

The operator B(t) is simply a linear combination of values of the vector potential,
and hence obeys a commutation relation of the same general type as the vector
potential. In general [ B(t), B({')}] will be different from zero, but it is always an
ordinary nmumber,

Now the Schrédinger equation, Eq. (12 2), can be rewritten as

d
T it> = B(t)It>. (12, 4)

Because of the operator character of B(t) the solution of this equation is not
t
exp { [ B(Ydt' } [ t,> (12.5)

as it would be if B(t) were an ordinary number, However because of the simple
commutation relation obeyed by the B's this expression will turn out not to be quite
as wrong as we might perhaps expect.

We know that the state |t > at time t can be expressed by means of a unitary
operator, U(t, t,}, applied to the state |t, >as time t,, i.e.,
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| t> = Ut te) [te> . (12.6)

The equations which determine U(t, to) are evidently

& Ul te) = BV to) (12,7

and the initial condition U(te,ts) = 1 . _ o
In order to solve for the ’operator U let us begin by dividing the time interval

- t) into sub-intervals of length At extending between the times t; = t,+ jAt,
w(r.'tl:eret )j ;2 an integral. We may gt;tn reach the solution of Eq. (12.7) through a
simple limiting process. We assume that the operator B(t) is constant i.nva}ue
during each of the sub-intervals of time and allow its value to ch|a'nge at':the times
t,. A rather fanciful picture of this variation is shown in the ''graph'* of the

operator B versus time given by Fig. 11.

4 B{t)

— ]

Figure 11

to t = At - th

Since the operator B is constant in each of the sub-intervals, we can easily
integrate the differential equation (12.7) for the individual sub-intervais. If B(t)
takes on the value B, in the interval from t; sto t, then we evidently have

Ulty,ty,) = e . ' (12.8)

Hence the transformation operator which corresponds to a succession of sub-inter-
vals must be

Ulta t) = e e PrmtttL o 1% (12.9)

Now we can use the familiar theorem for multiplication of exponentials, Eq. (R
3.20) to evaluate the product. For n=2, for example we have

B_A

Uts, to} = e 2o Pt t exp{ (B, +B2)At+%[132, B:](at)2}. (12. 10}

The repetition of similar multiplications clearly leads to
n

Ultn to) = .axp{j=}]l BjAt+3 Ek (BB (49°} (12.11)

which is an exact solution as long as B(t) has the discontinuous time variation we

have assumed.
We may consider the case in which the operator B{t) varies continuously with

time to be the limit in which At—0, i.e., we assume to = t remains fixed and let
n—e, In that imit Eq. (12.12) becomes the general solution

U(t, to) = exp { f:, B(t')dt' + % Joar f;ht" [B(t), B(t")] } .. (12.12)
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I we compare this solution with the expression (12, 5), which was reached by na-
ively ignoring the operator character of B(t), we may see that the difference lies
only in the addition of the term

3 Jlav flae (B(e), B(En)] (12.13)

to the exponent. The commutator in this integral is an ordinary number and, in
fact, apurelyimaginary one. Hence the solution {12.12) only differs from (12,5)
by a time dependent phase factor. If we let i¢ (t) represent the integral (12.14),
then we may write the transformation operator as

U(t, to)

H

exp{f:B(t') at +1¢(t)}

o (12.14)
exp {% ft. J(r,t) - A(r,t) dt'dr+ip (t) .

It

Although the phase function ¢ (t) is not altogether lacking in physical interest,
(there is information contained in it, for example, on the interaction energy of the
current and field) it does not have any influence on the calculation of density oper-
ators for the field, i.e., if the density operator has the initial value p(t,), then its
value at time t is

p(t) = UL, ta) plte) UT(L,to), (12.15)

and we see immediately tha: the phase factor cancels.
If in particular the initial state is the vacuum state

| to> = | vac >, (12. 186)
then at time t we have

-f(t) 1 t
e ™ 1t> = exp {5s f. j(r.t) - A(r,tY) drdt'} !vac™> . (12,17)
Now if we introduce the expansion of the operator A in normal modes, Eq. (R 2.10),
we see that the unitary operator which is applied to the vacuum state on the right

side of Eq. (12.17) is simply a product of displacement operators which take the
form

Dy(a,) = exp [akaf- at a,] . (12.18)

More precisely, if we define the set of time-dependent amplitudes

i

t 0 ¥ “w t! v
a,(t) :W fhj (r,t) - u} (r,tY) e-d dratt .(12.19)

then Eq. (12.17) may be rewritten as
e 1t 5o I D (oy(t)) [vac > . (12.20)

It is clear from this result that a prescribed current digtribution, radiating
into the vacuum, always brings the field to a coherent state

e > = g ()} > . (12,21)
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More generally, if the field is initially in an arbitrary coherent state ita state re-

mains coherent under the influence of the current distribution,

The solution to the radiation problem we have found takes accurate account of
the quantum mechanical properties of the field. It is related, however, in a sim-
ple way to the solution of the corresponding classical problem. The amplitudes
a,(t) are simply related to the time-dependent mode amplitudes for the classical-
ly radiated field through Eq. (8.22),

The density operator at time t which corresponds to the coherent state (12,21)
is simply

p(t) = [{e, ()}> < {a, )}, (12.22)
which may be written in the P-representation as

o() = [({a, DI &} > <{a} mats,, (12,23
by making use of the P-function

P({B,}) =1 s (By = ay(t)). (12.24)

The calculations we have carried out have dealt with a predetermined current
distribution, i.e., one which behaves in a way which is in principle predictable,
But in practice, of course, we may lack the information necessary to make such
predictions and may have to resort to a statistical description of the behavior of
the current. In that case, since we do not know the current i(r, t) at any given
time, it becomes impossible to make an exact specification of the set of amplitudes
a,(t) through Eq. (12,19). The best we can do is to state that the coefficlents ag
have a certain probability distribution p ( {ak}, t) at time t whose dispersion corre-
sponds to whatever randomness is present. Then it is clear that the density opera-
tor can be written in the form

o= [ot{a} ol{e}> <{aHp da,, (12.25)

which is a fairly general form for the P-representation, but one in which the func-
tion P is obviously always positive.

Density operators having the general form of Eq. (12.25) with p({a, },t) posi-
tive may arise from a variety of sources (e.g., thermal radiators, discharge tubes,
etc.}. Hence it is interesting to note that our arguments indicate that we can
always construct for these cases some sort of random classical current distribution
which will lead to the same field, i.e., the same density operator,

Lecture XIT PHASE-SPACE DISTRIBUTIONS FOR THE FIELD

In classical mechanics we can specify the state of a system by giving the in-
stantaneous values of all coordinates and momenta. The evolution of the system
then follows uniquely from the equations of motion. It can be visualized by con-
sidering the n coordinates and n momenta of the system as the coordinates of a point
in a 2n-dimensional space, the phase space. The point which represents a system
in this space moves along a uniquely determined trajectory. This picture is easily
adapted to the uses of classical statistical mechanics, There, since we are char-
acteristically uncertain of the initial coordinates and momenta of the system, we
can speak only of probability distributions P (pi'-«+p,', q,',* *, q.') for these
variables, Instead of following the motion of a single point through the phase space,
we must follow the motion of a whole ""cloud '* of them representing an ensemble
of similarly prepared systems. The expectation value of any function of thep and
4,' can then be calculated by means of an integral, involving the probability P, as



L36 OPTICAL COHERENCE AND PHOTON STATISTICS

a weight function.

There has been, since the earliest ‘days of quantum mechanics, a prevailing
temptation to use the same sort of phase space picture for the description of quan-
tum mechanical uncertainties. We shall not attempt to discuss these representa-
tions here in much generality since our interests are confined to the electromagnetic
field, From a dynamical standpoint, the oscillations of each mode of the field are
those of a harmonic oscillator. I will be quite sufficient, for the present discus-
sion, to confine our attention to a single mode, In that case, the classical phase
space has only two dimensions, corresponding to the variables p' and ¢'. The
phase point for a mode with energy E moves classically along the ellipse p' +u'q
- 2E. (The mass parameter is get equal to unity.) '

A coherent state of the mode will exist corresponding to any complex eigen-
value we specify for the operator

12

a= (#w) % (wq + ip) - (13.1)
The amplitude a corresponding to the state {a> may be written as

a= (Zﬁw)'% (wg' +1ip" , {13.2)

where o' and p' are real numbers, Now we have shown in Section III of the reprint-
ed paper that the state |a > may be described by a wave packet which has minimum
uncertainty and the mean coordinate ¢' and the mean momentum p',

Furthermore if we use the Schrodinger picture and follow the motion of the
state with time, we know that the state remains coherent at all times, and that its
time-dependent amplitude is simply e -t The motion of the amplitude vector
in the complex a-plane takes place on the circle la| = const, which simply repre-
sents an ellipse of the type noted earlier in the p', q' plane.

It is clear that the complex o-plane is simply a species of two-dimensional
phase space, One therefore inevitably feels a great temptation to think of the
coherent state wave packets in terms of probability "' clouds'' whose centers move
on circular paths. Such an image, however, is an intrinsically clagsical one, In
quantum mechanics the observables p and g are not simultaneously measureable
(with more than limited accuracy), and therefore a certain lack of meaning, or
at best an arbitrariness of meaning characterizes any attempt to speak of a joint
probability distribution for the variables p' and q'. We can, of course, speak of
the distribution of either variable in precisely defined terms, but these are alter-
native descriptions of the oscillator rather than a way of dealing with p* and ¢
simultaneously.

The P-representation of the density operator, which we introduced in the re-
printed paper, can often be regarded as defining something at least comparable to
a phase space distribution. The complex a-plane on which the P-function is de-
fined, is indeed a species of phase space. Furthermore as we have noted in the
paper, the P-function has a number of properties in common with probability dis-
tributions. However, as we have also seen, the function may take on negative

values, and behave in singular ways which are altogether unlike those of a probabil-

ity density. There is nothing inconsistent about such strange behavior because
the function is not accessible to meagurement as a joint probability distribution.

From the standpoint of similarity to classical theory, the function P(a) is
simply one of a class of functions which possess, by definition, some of the prop-
erties ot a phase space distribution and then inevitably lack others. We will dis-
cuss some other examples of such functions, which are perhaps best called quasi-
probability densities, later in the lecture, and show their relation to the P-repre-
gentation. First, however, let us turn to the question of how generally applicable
the P-representation is.
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THE P-REPRESENTATION AND THE MOMENT PROBLEM

Although it is clear, from the examples given in the reprinted paper, that the
P-r_epresentatlon of the density operator is capable of representing a falriy broad
variety of fields, no effort was made there to characterize that class of fields
Sudarshan has stated in a brief note, ' however, that a *'diagonai" representat;ion
of the density operator in terms of the coherent states may be used to represent
an arbitrary field, He has given an explicit construction for the weight function of
such a representation as an infinite sum of arbitrarily high-order derivatives of
a delta function. He has said that, as a consequence of this construction "the
description of statistical states of a quantum mechanical system ... is c’ompletely
equivalent to the description in terms of classical probability distributions."

The way in which Sudarshan's construction for the function P{a) may be
reached is as follows: we consider the matrix elements of the density operator in
the n-quantum state representation as known and note that, according to Eq. (R.T
12), these matrix elements are the complex moments, o

< nlplm> = (n! m!)~% [P(a) (e¥)® a"d*a

of the weight function P(¢). We then consider this sequence of equations for all n
and m to define a species of two-dimensional moment problem, i.e., we seek a
function P(a) which has the correct matrix of moments. The general problem
whe.n stated thus becomes a notoriously difficult one, and one which need not, for
arbitrary matrix elements <nlp/m>, havea reasonable solution of any sort,
Sudarshan's solution corresponds to taking advantage of some remarkable prop-
erties of the delta function and its derivatives which are perhaps most easily il-
lustrated in a one-dimensional context.
Let us suppose that we are given the problem of finding a function i(x) on the

interval -« < x < » which has a specified set of moments My, i.e., we have

Qo

[ f(x) x"dx=M, n=0,1,2 - . (13.3)

- 00

If we write the j-th derivative of the delta function as
3] d!
67 (x) = o) 8(x), (13.4)

then we observe that its moments are givenby -

[ x%8%x) ax= (-1 5! O. (13.5)

- 00

In gther words, each derivative of the delta function has one and only one non-van-
ishing moment, It would seem then that we can construct a ''solution' of the gen-
eral moment problem simply by writing

f(x) = 2, ‘—;}l— Mnd ™ (x). | (15. 8)

n=9o

The test of such a ''solution'* is ultimately whether or not it means anything.

Mathematicians have long noted that the delta function and its derivatives are
not, strictly speaking, functions at all. More recently they have provided us with
the theory of distributions {or generalized functions) as a means of dealing with
these structures in more meaningful and rigorous terms.

Equations (13.4) and (13.5) assume a well-defined meaning in terms of dis-
tribution theory, but the theory shows that there is in general no useful meaning
which can be attached to an infinite sum such as Eq. (13.6).
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The " solution' exhibited by Sudarshan for the two dimensional moment prob-
lem takes the explicit form

Baj

A ! al?-i{n-m nem
Pya) =) 3 BRI <nioim> o e O () san),
n=em=o (13.7)

where we have written a = |ale!?, Recently Holliday and Sage® have shown, by
considering a simple example explicitly, that this expression cannot be construed
as a generalized function of any sort. The example was that of the thermal density
operator, and for it they showed that when the series (13.7) is.multiplied by an
extremeley well behaved test function (which vanishes outside a circle of finite
radius in the a—plane)s and the product is then integrated, the integral diverges.
More recently, Cahill’ has shown that whenever there is no upper bound to the
number of quanta present, the series (13.7) will fail to be interpretable as a dis-
tribution (or a generalized function).

While these results indicate that Sudarshan's proposed representation is not,
in general, meaningful,they leave open the larger question of the generality of the
P-representation. They allow the possibility, in other words, that there might
exist other constructions of the P-representation which are meaningful for all
states of the field, Recently, however, D. Kastler and the lecturer® have demon-
strated that the P-representation lacks the generality necessary to represent all
states, They have shown in particular that there exist quantum states of the fleld
for which it is not possible to find functions P(a) which are distributions. That
means that all general results derived by using the P-representation must be quali-
fied by the assumption that the representation exists.

A POSITIVE-DEFINITE "' PHASE SPACE DENSITY

We will now consider some other examples of quasiprobability functions, with
different types of behavior and different degrees of usefulness. The first of these
is the diagonal element.< a |p la > of the density operator, It is clear that < a pla>
is non-negative and that it is a well-defined function of « for all p. It is therefore
a good deal closer to being a phase space density in its behavior than is P(a).

From the general expression for R(a*, 8) given by Eq. (R 6.1},

R(a*, B =<alp 18> exp{3 (1al® + 181"},

we have .
<alpla>=R(a* ae | (13.8)

Hence, according to Eq. (R 6. 6), the normalization conditionon < alplo > is
2
L [<alpta>da= [R(a, a) e B! da= 1. (13.9)

If the P-representation exists for the density operator p and has a weight function
P{B), we clearly have

<alple>=J P(AI<alpg >I* d*B (13.10)
=fP(B) e-la-ﬁlz dzﬁ.

The function we are considering is simply a Gaussian convolution of the P-function., .

We can use the function < alp}a > to calculate averages of products of opera-
tors which are in antinormal order in much the same way as products in normal
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order are averaged by means of the P-representation, Let us ¢
o onsider -
ample, the average er, for ex

Tr {p J@a) K@)},

where J and K can be any functions of the annihilation and cre
spectively. reation operators, re-

We can write this average as

Tr{k(ahp 5(a)} =1 [ Tr{1e> <eik(al)p 3(a)}ata

1 2
-3 J@a<ak(ahpI@le> =1 [<able > K@) Ha)a  (13,11)

Un{orhmately we are not too often interested in evaluating the expectation values of
antinormally ordered products of field operators. When the full set of modes of
the field is considered such expectation values tend to contain divergent contribu-
tions from the vacuum fluctuations.

The function <a|pja> takes an interesting form for the n-th excited state of
the oscillator, ¥or these states we have

g, = In><nl == (af) 10> < 0jar, (13.12)
and therefore the result

2
<aJpIa>=;1!r | <aln>|? =L:1|!h— e el (13.13)

This is an extremely well-behaved function, especially when we compare it with
the analogous expression in the P-representation, which contains the 2n-th deriva-
tive of a delta function. The function x " e~* has a maximum at x = n and is quite
sharply peaked there for large values of n, If we want to express the result (13.13)
asr a distribution in phase space we can substitute the expression (13.2) for a and
write

<alpla> =+ (p:+e q?)" { M}
ol (Fw)" exp o ©(13.14)
This function evidently has its maximum value én the ellipse(1/2) p?+w’q?) =
nfiw, that is to say on the classical orbit in phase space. It drops to zero on either
side of the classical orbit while remaining positive everywhere.

) Another example for which we can easily Hllustrate this "' phase space density"
is that of the Gaussian density operator. For that case we have

S P(y) explat y + gy - 1y1%}a®y

1 2
sors el - vyt - 1%} dty

R(a*, B

1}

2 1+<n> (13.15)

1
“rcas e n)® TS saty et dly

1 +<n>

L
<—n>——}z , which reduces the inte-

We can now make the substitution £ = y {
gral to the standard form
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R(o*, 8) = —rrznsy J o~ 1517 +[ 5225 ) (av & + p2n)} o

- 7’(1+1<n>) e (15 s a8l (13.16)
Hence we find
<alple > = R(a* ae '’
1 lai®
=71 +<n>) exp{-1 55, (13,17)

H < n > goes to zero this expression becomes the Gaussian function (1/7) exp( - la |?).
In the same case the weight function P(q) would be a delta function at the origin.
If <n > goes to infinity we have

_dal?

<alpla>e e <" xP(a). (13.18)

7 <n>

In this limit < alpla > becomes equal to the P-distribution, That is so because

the limit of large < n > is just the classical limit. There P(a) does indeed become
interpretable as a classical phase space density, and the distinction between normal-
ly and antinormally ordered operators also vanishes, as a consequence of the
correspondence principle,

WIGNER'S "' PHASE SPACE DENSITY'

The Wigner distribution can be considered as the grandfather of all our quasi-
probability functions. It exists and is well-behaved for all quantum states but
seems to take on negative values without hesitation. We shall follow the approach
used by Moyal® to define the Wigner distribution,

We begin by discussing a species of characteristic function which is defined as

X (p,v) = <efrpras, (13.19)

where p and q are operators. By using our theorem for the decompositon of ex-
ponentials, Eq. (R 3.20), we may write this expression as

i 1
X(p, v} =Tr{p eT oo T } (13, 20)

If we restrict consideration to a pure state, use the coordinate representatifm,
and recall the interpretation of exponential functions of the momentum as coordinate
displacement operators, we may rewrite Eq. {13.20) as

X, ) = [yr(a -5 w(a+ 51 ar, (13.21)

where Y(q') is the wave function of the pure state. The Wigner function is then the
Fourier transform of this characteristic function

21")2 S exp{-i(up + v} }X(1, v) du dv

]

w(p', q)

—

= (”"'Tz,"l) fexp{ -i(up+ yq')} f‘V*(Q" _Bzﬂ) e M X

W (a+ By do ap av
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=% fe‘llw' fw*(qn _p'_zﬁ ) 8(q - q") Yq®+ -‘?) dq® du

1 fiy, -
=§n—f¢/*(q' -“T) e P Yg' +—“§) du. (13.22)

If we substitue y = - uliin the latter expression we derive the form of the distribu-
tion originally stated by Wigner,

1 1 By 1
WP, @) =5 Jux(@ +57) e b W(q -5y) dy. (13.23)
27t 2 2
1t is obvious that whenever we have a wave function we can derive a Wigner
distribution from it. Thus the distribution always exists, but it is not necessarily
positive, When we have a mixture of states we must of course take a Suitably

weighted average of (13.23) ove. all the states which oceur.
The normalization condition for W(g', p }is

Jw(a, p) dp aq = [ 6(n) 6(v) X(u, v) dp dv
=X(0, 0)
=1. (13.24)
To compare the Wigner distribution with the others we have discussed, it is

useful to express it in terms of the creation and annihilation operators at and a.
Then if we define a complex Fourier transform variable

1 1
2 Fl
x:-u{%ﬂ-} : +iu{%} . (13. 25)

we may write the operator which occurs in the exponent of the characteristic
function as .

-i(ip+ vq) = rat - axa R (13. 26)

and the characteristic function itself becomes

X (B, v) =< enlra s

1 2

= Tr{pe' e M ¢~ 211!

=Tr{pe ™ en'} e HN N i (13.27)
We can now use the normally ordered form to express the Wigner function in terms
of the P-representation. If we assume that the dengity operator possesses a P

representation, the characteristic function is given by .

1 2
X(u,0) = [R(A< gler e g>em 2 @rg

= [P(8) exp {ag* - a2p - ZIar}ats . (13.28)
In calculating the Fourier transform of X, 1.e., the Wigner function, it is
convenient to use a linear combination of @ and a* in the exponent rather than a
combination of the classical varlables q' and p'. We therefore write

W(pp'+vq) = xa* - A% (13. 29)
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and
dy dv =§ dx . (13. 30)

Then the Fourier transform becomes

1 2
W(d' ) = ryr Trfpe 26T o N}y
h

=575 [ P@ exp{M(* - %) - 3*(5 - o) -3 WEHd @p. (13.31)

We can reduce this integral to a standard form by the substitution ¢ = ‘/4-— which

leads to 2

W(a, P) == P(8) exp{VT £(p* - a*) -VEE*(5 - o) -1517}e%E &p

=n—lﬁ— fr exp { -2I18 -a|?} d°8. (13.32)

It is sometimes convenient to think of the Wigner function more directly as a
function of the complex variable a, and to change its normalization accordingly.
We therefore recall that

1 Wi dp' dq'
d’a= —— {5 }3dp d¢' = =
{2ﬁw}% 2h 2h (13. 33)
and define the function
W(e) = 8W(p', q') (13.34)
so that
fw(a) d*a=1 . (13. 35)
The Wigner function of complex argument is then given by
-2 ) 8-a |?
W(a) =%fP(B) e a*p . (13.36)

When we compare this expression with the one derived in the preceding section,

- - 2
B-al” g, (13.37)

<alpla>= [P(B) e
We see that both of these expressions are simply Gaussian convolutions of the P-
distribution (when the latter exists). The quality which the Wigner distribution
shares with the P-distribution, of becoming negative in places, would seem to be
due to the fact that the averaging process expressed by Eg. (13.36) takes place
over a radius which is (v2) "' times smaller than that expressed by Eq. (13.37).
As an example, let us evaluate the Wigner distribution for a field described
by a Gaussian density operator. For this case we have, according to Eq. (13. 36),

2
W(a) =raes fexp {- 2L - 218 - o’} o’
(13.38)

2
2 -2leal
=22 [em{- 18/ (2 + si5) +2(8* a v a*Blld’p .

R. J. GLAUBER 143

1
We now use the substitution y= {%@ } 8 to reduce the integral to the stand-
ard form
2e "M <n> %
—_—— - a2 s 3
W(a) T (2<n> +1) fexl) {-iv1? + 2{2<n>+1} (v*a +a* y)}d’y
2 | <n> o
el | Sy o 2 3
® n2(2<n>+1) Jexp { v -2 igsarh o] Hrx
4<n> 2
exp{ [ sonseT - 2llal’} . (13.39)

The latter integral leads immediately to the result

2 2 .
W(a) *TE<nS T 1) exp{-2<n>*1 tel®} {13. 40)

Thus, the Wigner distribution also has the Gaussian shape. We consider again the
two limiting cases <n>= 0, for which

2
W(a) -—-%e “2lel (13. 41)
and <n> — «, for which
1al”
W(a) = n—<1§ e %S =Pa) . (13.42)

The latter result is the one we anticipate for the correspondence limit.

The simple Gaussian form given by Eq. (13.40) may be used to derive the
complete set of Wigner distributions for the n-quantum states. This is possible
because the function (13.40) may be regarded as a generating function for the
Wigner distributions. Let us consider, for a moment, the general case of a density
operator which may be written in the form

L]
p=(l-% Y % In><nl, (13, 43)
n=o
where x is an arbitrary parameter. If we let W, (a) be the Wigner function for the
n-th quantum state, then, as a consequence of the linearity of W in p, we must
have
«©
W(a) = (1-%) ). x"W,(a) . (13.44)
n=o0
Now if we make the identification x = < n >»/(1 + <n>), it becomes clear from

Eq.( R 8.10) that p given by Eq. (13.43) is simply the Gaussian density operator.
We can therefore write Eq. (13.40) alternatively in terms of the variable x as

W(a) _2(1-x exp {-2 (1 - X Ylel*}

Tl + x) 1+x
2 - p
= HE} +13 exp{1 ’+{x 4la )} exp {-2]al?}. (13, 45)

This rather complicated exponential is just the generating function for the Laguerre
polynomials L,. In more familiar notation the generating function reads as
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pu
exp{- 1-u } ?w u”
i3 :n;OLn (P o (13. 46)

Hence Eq. (13, 45) yields the expansion

2 % a(-1° —2lal?
W(Ot)=(1"x); an _(n!_]-) Lo(4laP)e2lel (13.47)
The Wigner function for the n-th excited state of the oscillator may thus be identi-
fied as

2 (-1)° - 2 '
Wn(a)=;(—n-!)—L,,(4lar’) ezlel”, (13. 48)
These functions have quite a wiggly behavior in the complex phase plane. Then-~th '
function has nodes on n concentric circles.

For the first two states we have, more explicitly,

2 _ 2 2 12 2 42
Wo(a) = ~e 2lal =;exp{-E——+mt—q} (13. 48)
22 2 -zlal® :
Wila) == (4]lal®> - 1) e . (13. 49)

N

The function W, (@) is sketched in Fig. 12,

lW,(a) '
f
'/2/:\ .
0 vz o
2
Figure 12 .

Its maximum lies at the radius a = v3/2.

Each of the functions we have considered (the P-function, the function,
<alp le>, and the Wigner distribution) has its particular advantages. It should,
however, be clear from the preceding discussions that we can construct numerous
other such functions, each with virtues of its own. An element of arbitrariness
underlies all such discussions of phase space distributions.

Note added in proof: In a recent preprint, Klauder, McKenna, and Currie
confirm the conclusion that no useful weight function P need exist for arbitrary )
density operators. To minimize this difficulty they express matrix elements of
the density operator through a limiting procedure involving an infinite sequence
of operators expressed as P-representations. This procedure, however, does not
preserve the most useful property of the P-representation, the reduction of sta-
tistical averages to simple integrals over the complex g~plane.
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CORRELATION FUNCTIONS AND
QUASIPROBABILITY DISTRIBUTIONS

Lecture XIV

In this lecture and in the ones which follow we shall begin to discuss applica-
tions of our formalism in somewhat more concrete terms. As a first step in that
direction it will be useful to amplify several of the points which are stated rather
briefly in the last section of the reprinted paper.

Let us suppose that the electromagnetic field is in a pure coherent state which
we denote by |{ax} >. Then |{ax} > is an eigenstate of the operator E(+),

EP(rty 1{ex} > = &(rt {a }) 1{an} >. (14.1)

and the corresponding eigenvalue function & , is a linear form in the variables
{ay}, i.e., we have

&(rt {oy}) =1 Z(’;“’n) Fu(rye ™ a,. (14.2)
k

The corresponding field is fully coherent since the correlation functions for all
orders n fall into the factorized form

{n}

n » zn
Gy g (X3.00%g,) = 11 é“j (xj{ak}) )Emé"l(x’{ak})'

j=1 14, 3)
We have already noted that the term '*coherence''is used frequently in the
discussion of quantum mechanical problems of all sorts. Since the term is usually

meant to imply that interference phenomena can take place, many of its uses are
to be found in discussions of pure quantum mechanical states. Pure states, how-
ever, by no means exhaust the possibilities of securing interierence. For most
quantum mechanical systems there exist certain statistica; mixtures of states
which preserve essentially the same interference phenomena as are found for pure
states. It is easy to exhibit these mixtures for the case of the electromagnetic
field and to show that they may correspond to fields which are fully coherent in the
sense of Eq. (14.3).

Instead of considering the field which corresponds to the set of amplitudes
{a,}, let us consider the field corresponding to a set {e,'} which we obtain by
multiplying each of the coefficients ay by a phase factor, e'®, which is the same
for all modes, If we have .

o, =e'®a, (14.4)
then, since the eigenvalue function, §, is linear, we must have
@p(r t{a}) =e™ @u(n{a,}). -{14.5)

Because the phase factors cancel when we construct the correlation functions, it
is clear that the altered state of the field leads to the same set of correlation
functions (14.3) as the original state. This invariance property, which is implicit
in our definition of the correlation functions, means that we secure the same cor-
relation functions not only for pure states corresponding to different values of
the phase ¢, but for arbitrary mixtures of such states as well,

Let us suppose that £ (¢) is a function which satisfies the normalization con-

dition
f:'z(qb) a6 = 1. (14.6)
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Then we may construct a density operator

p= .£ L£(d)Y1{a,e"}> < {aye }1do, (14.7)

which represents mixtures of states with different values of the overall phase ¢,
{Note that £(¢) must also statisfy a positive definiteness condition analogous to
Eq. (R 7.9).) All such mixtures, i.e. all choices of .C (), lead to precisely the
set of correlation functions (14.3); hence all such mixed states correspond to fully
coherent fields, :

It is most important, from a practical standpoint, that our definitions permit
these mixed states to correspond to coherent fields, Our a priori knowledge of
the state of high frequency fields usually contains no information about the overall
phase ¢. An ensemble of experiments performed with such fields must then be
described by using a density operator of the form (14, 7) with the special choice.

£(9) =5, (14.8)

which represents our total ignorance of the phase. The indefinite character of

this phase does not influence any of the interference intensities we have discussed
thus far. It must therefore have no bearing on the coherence properties of a field,
Our definition of coherence would hardly be very useful physically if it did not allow
the appropriate mixed states as well as pure ones to be coherent.

FIRST ORDER CORRELATION FUNCTIONS FOR STATIONARY FIELDS

Virtually all of the famous experiments of optics may be described in terms
of the first order correlation function for stationary light beams. Let us begin
the evaluation of such a correlation function by using the normal mode expansion
for the field operators to write it in the form

(1)

G,uu

L
(rt, ¥t)=3 ¥ Hwwy)® Tripay ap} x

DN =

k, k'

{{w, t-w, , )
uku*(r)uwu(r')e( LA

(14.9)
To evaluate the statistical averages Tr {paTk aw} we first note that these will
always vanish when the modes k and k' are non-degenerate. We may prove that
they vanish in this case by recalling that for stationary fields p commutes with the
field Hamiltonian ;. Thus we have, for example,
1 L
p=e B pe ot (14, 10)

for all values of the parameter t. If we substitute the latter form for the operator
into the expression for the desired trace we find

L i
Tr{paly ap} = Tr{p e ¥ %2, 2, & K}

Tripa,tay Je U (14.11)

n

Since the trace is independent of the parameter t, it must vanish whenever Wy # Wy o

For the case of two different but degenerate modes, kandk’, on the other hand,
the quantity Tr(p akT a2y ) need not vanish, More generally, if there are N de-
generate modes the corresponding averages Tr(p aJ a) can be regarded as
forming the elements of an N X N Hermitian matrix which is not, in general, diag-
onal. It is always possible to diagonalize this matrix, however, by means of a
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linear transformation which amounts simply to a redefinition of the set of degen-

erate mode functions. For any stationary state of the field represented by a den-
sity operator p, in other words, there will exist some particular choice of mode

functions uy (r) suchthat the matrix reduces to diagonalform, i.e. we have

Tr(p ay’ ap) = <ng> 0, (14,12)

where <n, > is the mean occupation number of the k-th mode.

The convenience of working with particular choices of degenerate mode func-
tions is easily illustrated by means of the polarization properties of lig_ht beams,
For any plane wave state of a beam there are two degenerate polarization modes
which are othogonal. If we were to choose a pair of plane polarization states as a
basis, and were to describe a circularly polarized beam, for example, the quanti-
ties Tr(pa,! aw) would form a 2 x 2 matrix with four non-vanishing components.
It is no surprise then that a more convenient choice of mode functions for that case
consists of the two orthogonal circular polarizations. That choice reduces the
matrix to one with only a single non-vanishing component,-

Let us now return to our calculation of the first order correlation function for
stationary fields. We see from Eqgs. (14.12) and (14,9) that with a suitable choice
of basis functions it is always possible to write the correlation function as an ex-
pansion of the form

1 . W, (t-t)
G!ﬁ)) (rt, #t') =5 En:ﬁwk <ng>ul, (Fu,(rf) ek ’ (14.13)

which is determined simply by the set of average occupation numbers < ny >. An
expansion of this type which is often useful is based on the set of plane wave modes
of a large cubical volume of side L, These modes, whose functions uy(r) are
given by Eq. (R 2.9), are 50 densely distributed in the space of the propagation
vector k, when the volume of the system is large, that the sun:l over the states re-
quired in Eq. (14.13) may be replaced by the integral (L/2m* [ dk... . The ex-
pansion of the correlation function is then .

ct, rt')=—2?2°ﬂ)3 T T e Me® <n,, >k x
¢ x=1,2

exp { -ifk-(r - r")-w(t -t)]} dk, (14. 14)

where X is an index which labels the polarizations associated with propagation
vector.

Let us suppose that the field consists of a well collimated light beam which is
nearly monochromatic and is fully polarized. Then the mean occupation number
< ng,> will only take on non-vanishing values within a very small cell of k-space
ard, say, for » = 1. Under these circumstances, if the magnitudes of |r - ' and
¢ |t - '] remain smal] in comparison to the reciprocal dimensions of the yolume
in which < 1 x,» > differs from zero, it becomes possible to approximate the in-
tegral in Eq. (14.14) by neglecting the variation of the exponential in the integrand.
H ko and «y are the mean propagation vector and frequency of the beam we' have

() _ ke (D* 4 (1) g -ilkg (r-F)-wglt-£)] (14.15)
G[J.V (rtl l"t')'v 2(2")8 Ne“ éu e
where
N= [ <ngy>dk. (14,16)
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The light beam we have described is of just the sort most often used in interference
experiments. It is also the kind most often referred to as "*coherent'! in the tra-
ditional terminology of optics, Now it is evident that by defining the field

1 .
6(r,1) T;;():_sgl" PV e tigrug) (14.17)

we may write the expression (14.15) for the correlation function in the factorized
form

G‘i'z (rt, r't") » 6#*(11) 6, (x't). | (14.18)

Hehce the field in question does indeed satisfy the condition for first order coher-
ence. It is worth emphasizing, however, that the factorization in Eq. (14.18) is
an approximate one which tends to be most accurate for points r', ' nearr, t.
The imperfect collimation and monochromaticity of the beam define finite ranges
of the variables r - " and t - !, i.e. coherence distances and a coherence time,
within which the factorization condition is obeyed. These ranges can, in principle,
be made arbitrarily large by improving the quality of the beam.

This example illustrates the sense in which the coherence conditions must
usually be regarded as idealizations. Given the practical sorts of field sources at
our disposal, we cannot expect that the field correlations they generate will obey
the coherence conditions over infinite ranges of the coordinate variables (even
though in the case of laser fields these conditions may be known to hold over tens
of thousands of miles).

CORRELATION FUNCTIONS FOR CHAOTIC FIELDS

A particularly important class of stationary fields, which arises whenever the
source is essentially chaotic in nature, is one in which the weight function in the
P-representation is a product of Gaussian factors, one for each mode. 'The density
operator is then specified by .

Jar

1 -k
P({ax} —Em e <m> , {14,19)
and it follows that all of the statistical properties of the field are determined by
the set of average occupation numbers < ny >, The knowledge of this same set of
numbers, on the other hand, is equivalent, according to Eq. (14,13), to specifying
the first order correlation function for the field. There thus exists a fundamental
sense in which the first order correlation function furnishes all the information we
need for the description of fields specified by Gaussian weight functions. We may
demonstrate this simplifying property more explicitly by showing that all of the
higher order correlation functions for such fields can be expressed as sums of
products of first order correlation functions,

In order to prove this theorem we shall construct a species of generating
functional for the set of all correlation functions of the field. The essential tool
for doing this is the operation of functional differentiation. If F[{(x)] is a func-
tional of {(x), i.e. a function of the set of values of §(x) for all x, then we define
its functional derivative with respect to £{x0) to be

0 = im £ FE (€0 (x - x0)] -F{E(0)]}, (14.20)

where 69 is a four-dimensgional (space-time) delta function, As an 1llustration,
if we apply this definition to an integral operator of the form

-~ '
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F= Jt(0 EP(max (14, 21)

we find
woey =00 x-1) O a'x= £ (x,). (14.22)

Now, let us define the generating functional
— () ad (4
E[¢(x), n(x)] = Tr _{p e RET ek m0ere! (e)ate Lo, (14, 23)

which depends upon two independent functions £(x) and n(x) and is the trace of a
normally ordered product. Then we easily see that the functional derivatives of
this expression, evaluated for £(x) = n{x) = 0, are the correlation functions of
the field; i. e. we have

2
ﬁc(xla 5’1(!(2 E l(=ﬂ=0 =Tr :D E() (xl) E‘) (XZ)I! = G“J (xli x2)r
(14. 24)
and more generally
63-! - _G(n) ( ..
68(x2) * ~+ 8%(x,) Bn(X g1 ) * + - 67 (Xan) — |g=nmo - it Ky Xpgteex ).
(14, 25)

(The tensor indices which have been suppressed in these expressions may be re-
stored by considering each coordinate x to specify a component index as well as a
position and a time, e.g. the function £ x) is actually a set of four functions ¢ REARY
for p=1,---4, etc.)

It is convenient, at this point, to introduce the abbreviation

e(x, k) = i)' h*:h' }'a“k(r) et (14. 26)

" which permits us to write the expansion of the operator E* in terms of the mode

functions as

E” 0= Yex K a,. : (14.27)
X
Then when we use the P-representation for the density operator with the Gaussian
weight function (14.19), the generating functional (14. 23) may be written as

2
- ozl Zf6(x) es(xklag '
= = fe §<nx> e k .
' 2
e f;nm«uvmq@‘x nd o (14,28)
<y >

This multiple integral factors into a product of integrals, one for each mode k. If
we introduce the pair of complex parameters ' .

By = JT(x) e*(x, k) d'x
ve=Ja(x) e(x, k) d*x, (14.29)

the integral factor for the k-th mode takes the familiar form
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fexp %- L‘";:; + By ay* + vy, a"f %-:> =exp {Bxyx<ng>}. (14, 30)
Hence the generating functional is given by the product
E:E‘I exp {Bg ¥y < 0>}
sexp{ [N e*(x, Ke(x, k) <nx>q(x)d*xd'x}. (14.31)
x

Now, according to Egs. (14.13) and (14.26), the first order correlation function
for the field is given by the expansion

G (x %) =] ex(x, k) e(x k) <ny>, (14.32)
£ .
which is just the sum which occurs in the exponential function of Eq. (14.31).
Hence the generating functional for the correlation functions of all orders may be
expressed in terms of the first order correlation function as

E[E(x), n(x)] = exp{ (06 (x, x)n(x) d'xa*x'}. )
(14.33
We may now derive explicit expressions for the higher order correlation
functions by evaluating the appropriate functional derivatives, In particular the
n-th derivative with respect to { may be written as

o — a 1 —
&W‘!"—'m E= {jl;llf(}( )(x;, x')'q(x')d‘x‘} = . (14.3¢)
To evaluate the n-th order correlation function we must next differentiate n times
with respect to the functionz. Since {(x) is finally to be set equal to zero it is
easy to see that all of the terms which come from differentiating the factor = on
the right side of Eq. (14. 34) with respectto 5 will finally vanish. Hence we have
simply
Prs

5§(xn)"°GC(XJGn(xnu)'“Gn(xu) = I! =0

q =0

- 8° 2 e (1) .
~ On(Xoe1) " On(X2n) llsll.fG (xy, ¥)n(x')d"x'

B (D
= g ’1_11 G (Xyy Xppep V3 (14.35)
i.e., the derivative is a sum taken over the n! possible ways of permuting the set
of coordinates x .1, *Xz,. Since the derivative we have evaluated, according to
Eq. (14. 25), is the n-th order correlation function, we have finally

n L) 1
G™ (X3***Xp) Xpu1**"Xgp) = 0, I G P (xy, Xppuy ). (14.36)
1 4

The n-th order correlation function for Gaussian fields is just a symmetrical sum
of products of first order correlation functions.

To illustrate this result for the second order correlation function we may
write

G? (%, xx) =GP (xx) G (3axs)
" " (14.37)
+ G (1%)G 7 (xexs).
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Now if the field in question possesses first order coherence, we may write the g
first order correlation function in the factorized form of Eq. (7.15). The two i
terms of Eq. (14.37) are then equal and we find .e'é_'
G? (x1%s, Xs%4) =26%(x1) 6% (x2) § (%) 6(xs). (14.38) 3%

L

The second order correlation function factorizes, but because of the presence 91

of the factor of 2, it does so in a way which precludes the possibility that the field
has second or higher order coherence. The n-th order correlation function for
such fields in evidently given by

(n) n 2n
G (Xircxg)=n! I 6 *(x) o g (x). (14. 39)
=1 j=ns1

QUASIPROBABILITY DISTRIBUTION FOR THE FIELD AMPLITUDE

Whenever the density operator for the field may be specified by means of the
P-representation the function P({ax}) plays a role analogous to that of a probabil-
ity density for the individual mode amplitudes ax. Of course when we make mea-
surements upon a light beam, we are typically measuring not the individual ampli-
tudes oy, but the average values of various functions of the complex field strength
eigenvalue, § (rt}, which is a particular linear sum of the mode amplitudes,

s(x{a}) = ¥ e(x K a. ( 14. 40)
k

To describe the fullest variety of such measurements which we can make at a
single space-time point x = (r, t), it is convenient to derive from P({a }) a
species of reduced quasiprobability distribution for the complex field amplitude ¢
&(x,{ax}). This distribution function for the field amplitude will be quite useful '
in discussing the origin of the photon correlation effect discovered by Hanbury
Brown, and Twiss.

To illustrate the kinds of averages we frequently want to discuss, let us note
that the average intensity of the field at the point x is

6" (x, 9 = [Pa}) |s(xl{ah)| mete,, (14.41)

and the average coincidence rate for the limiting case in which the two counters
are placed at the same point and are sensitive at the same time is

6" (x x, x % = [P({a}) | &(x{ax}) |‘ I da,. (14. 42)
These are examples of a general class of averages which take the form
JPa}) Fe(xdah)) I da, (14,43)

for suitably determined functions F. It is convenient now to separate the multi-
dimensional integration over the complex amplitude parameters oy into two steps,
the integration over the subspace of the oy -parameters in which the linear combina-
tion

§(x{a,}) = Telx,¥ e,

remaing constant, and then the further integration over the values this sum may
take on, The first of these integrations is accomplished by defining the function

W(e, 2 = [P(ah) 67(6-T e(x, ¥ @) Nty (14.449)
| 3



152 ) ICAL COHERENCE AND PHOTON STATISTICS

We may then write the complete integral (14. 43) in the form
JPCia ) FIE (xfog)) T @, = [SP(04}) 6P (6 - Telx, Koy x
x x
F(g) Nd*a,d® €
x

= [w(g, » F(e)d, (14.45)
where d*°§ = d(Re &) d(Im & ) is a real element of area in the complex field ampli-
tude plane. The function W( &, x) defined by Eq. (14,44) evidently plays a role
analogous to that of a probability distribution for the complex field amplitude at
the space-time point x. Of course, since the function P from which it is derived
is only a quasiprobability distribution, and is subject to all the restrictions
mentioned in the last lecture, the same limitations will apply to the physical in-
terpretation of the function W{ €, x). It too can take on negative values, for ex-
ample, .
The function W furnishes a particularly simple description of fields which con-
sist of many independently excited modes. Since the total field amplitude & is then
the sum of a large number of independently distributed complex amplitudes pro-
portional to the ay, the distribution of the amplitude & will correspond to that of
the endpoint of 2 many-step random walk in the complex plane., This distribution
tends to take on a Gaussian form when the number of contributing modes is large,
no matter how the mode amplitudes may be distributed individually. From a
niuthematical standpoint this argument differs hardly at all from the discussion of
“he central liniil theorem given in Section VIII of the reprinted paper; i. e. , the
sturting point, Eq. (14, 44), becomes similar in structure to Eq, (R 8.1) when
the function P({cy}) is asswmed to factorize into a product IIP, (a,). As aslight
k

generalization of the discussion given there we may let the individual mode ex-
citations be non-stationary in character and have mean amplitudes

I P (ay) o, day = <ay>. (14. 46)
Then by applying the central limit theorem, we find
Wig, x) = : x
0! Zele(x, k) 12{<la, 12> - |<ax> |7}
(14.47)

exp .16 = Zx e(x, k) <au> |* \
P lelx K< Tagi®> - [<ay> 1%} !

If the mean amplitudes < a, > vanish, as they do for example in the case of
stationary fields, we have

w(g, x) = 1 exp {~ 161° }
? 1Zgle(x, k) [2<ng > Zxle(x, k) 12<ng >
1 _ 14612
e oVixx (14, 48)

T 7 G (x, x) .

To illustrate the use of this expression for W(& , x), let us calculate the n-th
order correlation function with all arguments equal. By letting F(£) = [£€|®" in
Eq. (14.45) we f{ind

G™(x+erx) = W, x) 1617 6. (14.49)

-—_ A
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For the Gaussian form of W given by Eq. (14.48), the latter integral is simply

c™ (x---x)= nl{G(n (x, x)}°.

(14, 50)
An important class of fields which obey the separability conditions we have as-
sumed in deriving these results is that specified by the Gaussian density opera-
tors discussed earlier, For these fields, in fact,. Eq. (14.50) follows directly
from Eq. (14.36). But since we have not had to assume that the functions Py(ay)
are individually Gaussian in form to derive Eqs. (14.48) and (14.50), these
results evidently hold true for a considerably broader variety of field excitations.
A sketch of the Gaussian distribution function W( §,x) is given in Fig, 13.
Since this function plays a role akin to that of a probability distribution for the
complex field amplitude 6, it is evident that the absolute magnitude of the field
undergoes a considerable amount of fluctuation. Thus, while the most probable
value of the field amplitude is & = 0, the amplitude will occasionally stray out

w(é,x)

Re & Imé§

Figure 13

into the regions of the complex plane which represent the "tail'’ of the Gaussian
and correspond to arbitrarily strong fields. The relation (14. 50) between values
of the correlation functions may also be stated as the relation

<1E1™ >=n! {1612 >} (14.51)
between average moments < | § | > of the function W. The extremely rapid in-
crease with n of the ratio <|& |* >/{ <|&1* >}", which the Gaussian distri-
bution shows, is due to its "'long-tailed'’ character,

Although the Gaussian form for the function W (&, x) will presumably apply
almost universally to the radiation from natural or essentially chaotic sources,
altogether different distributions may be required to describe the radiation from
certain man-made sources. In fact the avoidance of fields which have the ex-
tremely random or noisy character of the Gaussian form of W( &, x) has been one
of the major goals of radio-irequency technology. One of its earliest accomplish-
ments was the development of oscillators which generate fields of extremely stable
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modulus, e.g. broadcast carrier waves. These oscillators are non-linear de-
vices and the contributions of the various mode amplitudes to the total field are
not at all independently distributed as in the Gaussian case. For a stationary

field generated by such an oscillator we might find the function W(§, x) to assume
a form similar to that shown in Fig, (14); i.e., the modulus of the field, &,

w(s, x)

Re & Imé

Figure 14

has only a very small probability for taking on values either appreciably smaller
or larger than its root-mean-square value, {<[&[|*>}z. :

The shape of the function W{ §, x) furnishes an elementary insight into the
origin of the photon correlation effect which was discovered by Hanbury Brown
and Twiss by means of the experiment described in Lecture VIII. Let us consider
the two-fold coincidence counting rate for photons when the two detectors D, and
D: of Fig. 9 occupy precisely symmetrical positions relative to the half-silver-
ed mirror m, and when the detectors are adjusted so that they register coincidences
with no time delay. Since the arrangement is one in which the counters, in effect,
occupy the same position and are sensitive at the same time, the coincidence rate
is given by a correlation function of the form

6P (xx xx) = <1§(x)1*>. (14.52)

Now, according to Eqs. (14.50) or (14.51), for all chaotic light sources we should
find

<IEMI*>=2<16(N)1*>*
1
= 246" (x, x)}°. (14.53)
The amount by which c!? (x x, x x) exceeds {Gm {z, x)}* is a measure of the
non-random tendency of the photons to be recorded as simultaneously arriving

pairs; i, e., it is a measure of the height of the '*hump’* on the coincidence rate
curve shown in Fig. 10 . Since the coincidence rate for zero time delay is twice

L .

-
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the background or accidental coincidence rate, the correlation effect is not a amﬂlﬁét
one. (The original cbservations of the effect were made difficult by the relatively ;.
long response times of the counting systems compared with the time interval over
which the correlation persists.) o

To see the nature of the photon correlation effect for other types of distzibu~ i,
tions W{&, x), let us note that it is proportional to R

o
Y
3 o

(14.54) ¥

¢ (xx, xx) - {6 (x, D =< 16N> -< |6(x)l’>f;i;%”

= fw(g, x)1{161% -<161* >}* d%.

One of the curious quantum mechanical properties of this expression is that, al- .
though it resembles a statistical variance for the quantity | &€ |*, it may actually :{°
take on negative as well as positive values. That is true since W(§, Xx) as we a
have noted, is not strictly speaking a probability distribution. It is not difficult =
to find states of the field for which W takes on negative values at least locally and
for which the average (14.54) is consequently negative. When the field is in such ..
states photon coincidences will be recorded with less than the random background *
rate by the Hanbury Brown-Twiss detection apparatus, an effect which is the re-
verse of the one observed for natural radiation sources. . :
Whenever the field is generated by an essentially classical source, i.e,, one '
with predetermined behavior, it will be possible, as we have seen Lecture XII, to .
construct a P-representation for the density operator with a non-negative weight
function P({ay}) . Then the function W( &, x) defined by Eq. (14.44) will likewise
take on no negative values. We may thus state that for all classically generatable . :
fields, the Hanbury Brown-Twiss correlation is positive, ¥

(14.55) :

21

6P (xx, xx) - {c" (x, ¥} =0.

If the correlation effect is to vanish for fields of this type we must evidently
have

wig, 0 {lg1*-<l1§1*>} =0 (14.56)
for all& . The function W(&, x) can therefore only take on non-vanishing values
at points lying on the circle [ §|* = <|&1% >, If the function W(§, x}, in other
words, is of a form which allows no amplitude modulation of the field, the correla-
tion effect will vanish and conversely, In fact in that limit we have more generally

™ (xvem) = <161™>=< 612> =" (x, M} (14.57)

and all n-fold coincidence experiments show an absence of any tendency toward
statistical correlations. ,

A number of the published discussions of the Hanbury Brown-Twiss effect ex-
plain it as being caused by the fact that photons are Bose particles and consequent-
ly have a certain tendency to cluster. That such explanations are far {from com-
plete is made evident by the fact that the quantum mechanical form of the effect
may have either sign; it may constitute an anticorrelation or "'replusion, '’ rather
than a positive correlation or '*clumping.'*  Fiurthermore the fact that classical .
fields have only a positive correlation effect is a clear demonstration that the
average quantities one evaluates by means of the correlation functions {even where
the P-representation exists) are not always equivalent in quantum theory and
classical theory. The variety of fields encountered in the quantum theory is sim-
ply much larger than that allowed by classical theory.

It should be evident that the measurement of the photon correlation effect, at
least at zero delay time, simply furnishes a measure of the amount of random
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amplitude modulation present in fields with positive W(&, x). The effect should
be nearly absent from the field generated by a well stabilized oscillator. In
particular since a gas laser operating well above its threshold is presumably quite
a stable oscillator, any Hanbury Brown-Twiss correlation found in its beam should
be quite small in magnitude.

The fact that a photon correlation experiment, or its analogue in the radio-
frequency region, an intensity correlation experiment, can furnish a simple way
of telling whether a radiation field comes from a natrual source or a man-made
one could have some interesting if rather far-fetched astronomical consequences.
If intelligent beings elsewhere in the galaxy want to communicate with us, it seems
reasonable to suppose that they would use amplitude-stabilized oscillators of some
sort as radiators. In that case their signals, as we have seen, would have an unmis-
takable character even when no message was being transmitted. In fact the un-
modulated signal could be easier to distinguish from background noise than the
modulated one,

QUASIPROBABILITY DISTRIBUTION FOR THE FIELD AMPLITUDES AT TWO
SPACE-TIME POINTS

A number of the correlation functions and other expectation values which in-
terest us depend on the fields at two different space-time points x, and x2. These
averages may be expressed, when the P-representation exists, in the general form

SPe}) Fle(xi{a}), & (x2{a}) I d'e, (14.58)

where the function F is suitably defined for each cagse, Two familiar examples of

such averages are the first order correlation function GV {x;, X2), for which we -

would choose
F=§g*x{a]) & (z{a}), {14.59)

and the delayed coincidence counting rate, G(z) (x3X2, X2X;1), for which we would
choose

F=16(xy {P1® 18 (x2 {a}) 1. ( 14. 60)

Now, if we define a species of distribution function W({ & 1x,, €2X3), for the
complex field amplitudes at the two points by means of the relation
2
W(E 1%, €axa) = [PUarh 8 (61 - 6 ({ad) 87 (62 - 6(xe fo, D) I, ,
(14.61)
then an average quantity of the form (14.58) 1s given by the integral
JW(E1x1, €axa) F(61, 6:2) & 6:4° 6. (14.82)
The function W( & 1x1, €2X2), more specifically, is a quasiprobability distribution
which plays the same role in averaging functions of two space-time variables as
the function W( &, x), which we discussed earlier, plays in the calculation of
averages for a single space-time point. We may, in fact obtain W(&, x) from
the two-point function by integrating over either of the field variables,
W(E, x) = [W(Ex, 6 x) d2&"

= fwer », gx) d®6". (14.63)
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When the function P({a,}) factorizes into a product of independent weight -
functions, one for each mode, and when the number of excited modes is large, it is
easy to show, again by techniques similar to those used in section VIII of the re-
printed paper, that W( & 1%, € 2Xz) assumes a Gaussian form in the two complex
amplitude variables € and §2. To carry out the derivation we simply show that
the double Fourier transform of W(& 1x,, § aX2) with respect to the amplitude
variables &, and § » is asymptotically Gaussian in form when the number of excited
modes becomes infinite. Inversion of the transform then yields a result which, for
the case of gtationary fields, can be written as

1
X
ﬂsz (X131)Gm (Xng){l - Ig(n (x1xz) |2}

W(&1X1,6 2%,) =

£ E2*g'P (x1%2) (14.84)

{Gw (x1x) G (xzxa)}%

l6al? 16,1
G(n (xlxl) G(l) (XzX2)

1-1g" (x,x) I

exp -

where g“) 1s the normalized form of the first order correlation function defined
by Eq. (7.5). As a simple check of this resultit is easy to verify that the average
of the function (14.59) is

1
16" (x) 6P (xxa)}7 2P (%) = G (xuxa) . (14.65)
as required, and that the average of the function (14.60) is indeed
G (x, )GV (%2, %2) + 16"V (31, %) 12 =GP (mixe, xaxi).  (14.66)

The function W( & 1X1, & 2Xz) plays a role in the theory which is analogous to
that of a probability density for a compound event, i.e., finding the field &, at x,
= {ry, t,) and €2 at x» = (rz, t2). In probability theory it is often of interest, in
dealing with such compound events, to imagine that the first part of the even‘t has
already taken place and to calculate the probability that the compound _event is then
completed. We may define an analogue of such a conditioned probability function
by means of the relation

W(E 11X, & 2X2) (14 67)
- = W61 XKy, C2X2) .
W(& 1% | E2xz) W(e 1, %)

where W( &1, x1) is the function defined by Eq. (14.44). The function W( & 1%}
£2Xz) is analogous to a probability density for the field amplitude to have values
in the neighborhood of ¢z at x2 = (T2, t2), given that it had the value €, at x; =
(ry, t;). We shall call the function the conditioned quasiprobability density; it is,
strictly speaking, only measurable as a probability density in the classical or

T field limit.
* on\shen we calculate the ratio of the functions given by Eqs. (14.64) and (14.48)

we find the result

1 1
W(E 1X1| 6 2X2) =; G (xzxz){ 1 -[gin (x‘*z)]z} x (14, 88)

E2 £1

T - g (xi%3) ’
{G (xpx,)} 2 {Gm (x1xp)}2

exp (-
1-18" (xixa) |2
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for the conditioned quasiprobability distribution. The field g ; in other words, has
a Gaussian distribution about the mean value

<Ea>= &1 !n_(xlﬁ).. (14. 69)

G (x,x,)

with a dispersion proportional to G'? (x,%:{1 - 1g  (x1%a) 1*}, which vanishes
for x, near x; and tends to approach G'® (x;x,) as x; recedes fromx;. We shall
examine these expressions more closely once we have illustrated the evaluation
of the correlation functions on which they depend.

Lecture XV ELEMENTARY MODELS OF LIGHT BEAMS

Since our results to this point have all been stated in fairly general terms, it
may be of help to discuse an illustrative example or two, Let us consider, as a "~
particularly simple example, a stationary light beam which may be thought of as a
plane wave progressing along the positive y-axis. We shall allow the beam to have
an arbitrary frequency bandwidth, but shall take it to have a specific polarization
é. The first order correlation function for the beam may then be evaluated as a
sum over plane wave mode functions by means of Eq. (14.13). The index which
labels the mode functions in this case may be taken to k,, the y-component of the
propagation vector. (The other components vanish.) Since the values of ky are
densely distributed, when the size L of the quantization volume is large, the sum
over ky i8 equivalent to 2 one-dimensional integration

L
5 J ks

When the mode functions given by Eq. (R 2.9) are substituted in Eq. (14.13) and
the sum is replaced by an integral, we find

o0
GV (rits, yata) = 32 [ T2k exp{ - 1]k (s - 7a) -n (8 - ta)]} dy,

(15, 1)

where G'" is understood to be a correlation function for the field components in the
direction 8, as in Eq. (4.21). Since the beam contains no backward {ravelling
waves, (which would be represented by negative values of ky,) we may write the
integral equally well as one over the frequency variable wy = ck,. Then If we in-
troduce the parameter

=ttt 2 (7, - ya) (15.2)

to express the space-time interval which occurs as an argument, we may write

o0
1
GV(yits, yata) = g J q—"iiﬁﬂ'- e "“U® dwy . (15.3)

The expression <nx> liwe, which occurs in the integrand of Eq. (15. 3), is
the average energy of excitation of the k-th mode. Let us assume, as an example,
that our beam has a spectral profile of the Lorentz form by writing

<nx >fwe _ 2y
cL? (w-wy)?s o

u. (15.4)
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Here wo i8 the central frequency, ¥ is the half-width at half height, and the constant %ﬂ
U is a measure of the intensity of the beam. Since the frequency wo is typically e
much larger than y, only a very small numerical error is made in the integration i
over the spectral porfile if the lower Umit w = 0 in Eq. (15.3) is replaced by W=
-, By making this approximation and letting &' = @ -~ wowe find &

o0 \ ' M '. ,I\'
(n ty) = Ue lwgs _.Q__w : dw', (1‘. 8) : L
G (yits, V2 n‘) {ﬂ— _L L ;“? %
The singularities of the function o
SRS WS JOUS WO W (15.6) -

Wit T2y |&F ~ly o +iyf e

i
)

are a pair of simple poles lying at + 1y in the complex w' -plane, The integral in
Eq. (5)53‘.1 5) can bz written as a contour integral around a closed path in the o' -plane
in either of two simple ways, depending on the sign of the variables. Fors> 0
the contour may be closed by means of an infinite semicircle in the upper half
plane (Im w'> 0); for 8 < 0 it may be closed by a semicircle in the lower half
plane, Since the integrals along both semicircles vanish, we find by applying the
residue theorem

1 -¥8
m—e » B>0
1
ty

© 1§ 1 s o
f ﬁ;]w-i}'-w+iy§ et dw 2“?

P e, s<o.;

(15.7)

The first order correlation function, according to Eq. (15.5), is therefore given
by

G‘"(y;t;,yztz) =% Ue twoa-ylsl . (15.8)

The intensity of the field is found by letting y, = y2 and t; = ta. For these
values of the coordinates, which correspond to 8 = 0, we have

1
G M(yets, yits) =3 U. (15.9)

This is the average of the squared magnitude of the complex field E ™), Itis easy
to see, 1f we recall the formulae of elementary electrodynamics, that the para-
meter U 18 equal to the average total of the electric and magnetic energy densities
for the field.

° The correlation function given by Eq. (15.8) shows that our light beam exhibits
approximate first order coherence when its frequency band width ¥ 18 suﬁlcigntly
small. Thus, when we have

Lo isle -t -3 (5 -y, (18.10)

the factor e*'®! in Eq. (15,8) may be approximated by unity, and the remainder of
the expression for the correlation function may be written in the appropriate factor-
ized form. As an alternative way of discussing first order coherence we note that
the normalized form of the correlation function is

G“)(htn yatz)} \
160 (yat s, yits) 6 yata, yata)}?

g (yity, yata) =

=exp [ lwos ~ ¥l8l]. (15.11)
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This function indeed has absolute magnitude close to unity as long as y|s| is suf-
ficiently small.

A good deal of attention has been directed experimentally to the problem of
developing light sources with narrow line width. In the best of these sources of
the ordinary gas discharge or chaotic variety y is of the order of 10° cycles per
second. In ordinary laboratory sources it is often of order 10" cycles per second
or larger. The corresponding coherence ranges are 30 cm. and .3 cm. respec-
tively. .

Although we have been discussing the way in which monochromaticity may imply
coherence, it may be worth recalling that it is not a necessary condition even for
first order coherence. The coherence condition only becomes linked to a require-
ment of monochromaticity when we restrict our consideration té stationary fields,
as we noted in connection with Eq. (7.24). For the case of stationary laser beams,
the range of first order coherence is determined by the spectral bandwidth just as
for ordinary sources, For the case of gas lasers it is possible to reduce the band
width y to values of the order of 10° cyzles per second without too much difficulty,
and it seems possible to achieve frequency stabilization to within about 10 cycles
per second over brief intervals. The coherence ranges corresponding to these
band widths are 300 km, and 30,000 km, respectively,

Before we can calculate the second and higher order correlation functions for
our light beam, we must specify its statistical nature somewhat further. It is at
this point that the descriptions of beams generated by natural sources and those
generated by coherent sources become qualitatively different. Let us assume that
our source is of the usual chaotic variety. Then the higher order correlation
functions may all be expressed as sums of products of first order correlation
functions, as we have seen in Eq. (14.36). The spectral density function of our
plane wave beam, in other words, completely determines the statistical properties
of the field. In particular the delayed coincidence rate for counting pairs of photons
is given by

G P(yits, Yota, Yate, yits) = G (yats, yits) GO(yats, yota) + 1G My ity yota) P

= G(yits, v1t) GV (yate, yata{1+ g 0Gts, 9ta)] 7}
2
=f% u) {1+e2ll} (15.12)

The presence of the term e %'°! in thig expression shows that the beam can never
possess second order coherence, Furthermore when we plot the coincidence rate
against g as in Fig. 15 we see that that term constitutes the "bump'® on the
Hanbury Brown-Twiss correlation curve, i.e. the deviation of the curve from the
accidental or background coincidence rate. The experimental curve shown earlier
in Fig. 10 corresponds to a curve of the form shown here after the resolution
properties of the counter system have been folded in,

@)y,2
///2&
|
0
S=t—t, — £y, =¥p)

Figure 15
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We have noted in the last lecture that the origin of the correlation effect lies
in the random amplitude modulation of our light beam. Thus the factors of n! by
which the n-fold coincidence rate (at zero time delay) exceeds the random coinci-
dence rate are easily explained in terms of the moments of the Gaussian amplitude
distribution W(§&, x) given by Eq. (14.48). To understand the behavior of the
correlation effect for non-vanishing time delays, and to see, for example, why the
effect disappears for |s| > 1/2Y, we may make use of the quasiprobability distri-
butions defined for pairs of values of the field amplitude in the last lecture. When
we substitute the values given by Eqs. (15.8) and (15.11) for the correlation
functions into the expression (14.65) for the conditioned quasiprobability function

W(g1x11£2%2), we find

1 | 65 - 6 elwosrist o
W( 61y1t1] Eay2etz) = =

1 qU(1 - e @10l 1y (1-e 20 " (15.13)
This function is to be interpreted as the distribution of values of the field amplitude
& at yatz, when the amplitude is known to take on the value 6, at yit.. When the
parameter 8 vanishes, the mean radius of the Gaussian peakmof this expression
vanishes and the distribution reduces to the delta function 59 &, 1:»61)1'. | As |8
increases from zero, the mean value of 6,, which is given by &, e “e*™!%! | de-
scribes an exponential spiral in the complex €, -plane vn_rhlle relaxing to the value
zero. The spiral which corresponds to s < 0 is shown in exaggerated form in

Fig. 16. At the same time the mean squared radius of the Gaussian peak of the

7N
\\ ]
/'\
/7
$>0
Figure 16

ibution increases to the asymptotic value{l/2)U. For values of |s] much
:i'set:ter than 1/y the conditioned distribution (15.13) relaxes to a form centered-on
the origin, which is simply the unconditioned distributionlw( 62, ¥a tz) given byti
Eq. (14.48). The time 1/y is a relaxation time for the field a.n}pht_ude distrit!m ons,
Our knowledge of &, ceases to have much influence on the distribution of §a for
18] > 1/y. It is not surprising then that for intervals for which |s] > 1/y the two-

photon coincidence rate, which is given by
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G (y1t1yata, Vetayits) = [ W(E,y.1ty, 6 a¥ata) 161171 6,1%d% € ,d° 6,

= fW(ﬁ Wit) W(E 1yiti [ 6ayata) 1 64171 6,1%d° 6,426, ,
(15.14)

reduces to the factorized form

Gm(}'ztﬂ:tz, yateyaty) = G(”(Yxtz, ‘Y1f1)Gm(thz, yata).

The tendency toward photon coincidences is wiped out, in other words, when the
interval s =t; - t; - ¢**(y; - y;) becomes large because the field amplitudes
&(yit:) and € (y2t2) cease to be statistically correlated. .

To see how the full time dependence of the coincidence rate emerges from the
integral (15.14), we note that when the conditioned distribution function is given by
Eq. (15.13), the average value of [6,]|? when&, is fixed is

fw( Eryatil Eayate) 1621207 6, = | €y)2e Mol +%U(1 - e-Zrisly, (15.18)

When this expression is multiplied by | §,|* and averaged, as in Eq. (15. 14), over
the Gaussian form for W( € ,y;t,), we find

3
G(z)(yltz, yatz, yats, Y.\tl) =(%U) {29-27l!| +1- e-27rs| }

=(-21,-U)2 {1 +e-27|al}, (15.17)

which verifies the value of the coincidence rate found earlier in Eq. (15.12),

The values we have derived for the correlation functions have all been based
on the assumption that the energy spectrum of our light beam has the Lorentz
shape. The corresponding results are easily derived for other spectra for which
the Fourier transform of the energy distribution is known. Other simple, smooth
representations of the profile of a spectrum line, for example, lead to results
which are qualitatively similar to those for the Lorentz line,

Since the photon correlation effect extends over delay times of the order of the
inverse band width, y, it might appear that this time can be stretched out by a
factor of a million or more by using the extremely monochromatic light of the laser
rather than light from natural sources. The error in such reasoning lies in the fact
that the statistical properties of the laser beam are quite different from those of
the chaotically generated beams we have been discussing. Lasers, when they are
operating most monochromatically, generate beams with very little amplitude
modulation, and for these, as we have seen in the last lecture, there would be
virtually no photon correlation effect at all.

MODEL FOR IDEAL LASER FIELDS

For fields generated by chaotic sources, knowledge simply of the average
occupation numbers < ny > is sufficient to determine the density operator p, and
from it all of the statistical properties of the fleld, However if our source is not
chaotic in nature, 3 cannot expect that there will exist any self-evident way of
finding the density operator for the field it generates without analyzing the mech-
anism by which it radiates in some detail, The only reliable method we have of
constructing density operators, in general, is to devise theoretical models of the
system under study and to integrate corresponding Schrédinger equation, or equiv-
alently to solve the equation of motion for the density operator. These assignments
are formidable ones for the case of the laser oscillator and have not been carried
out to date in quantum mechanical terms. The greatest part of the difficulty lies
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ical complications assoclated with the nonlinearity of the device, ¥ 7y,
gh?ﬁo?ﬁit‘:rn;ty plays a: essential role in stabilizing the field generated by the - 3‘A g
laser. It seems unlikely, therefore, that we shall have a quantum mechan:ci:;l'yd 1
consistent picture of the frequent%y ba;xddwld’ihh ge::aepia;)elz ;:; of the fluctua!
r progress is made w .
s O;thg:: :Ir!faﬂwfiuu!;:ge toposglook the noise and band width problems for the m&:::x:tt,
and to confine our discussion to the case of an ideally monochromatic bl:ser,“ !
is not difficult to find a representation for the density operator of the dimi ‘Ton
erates. The radiation field is coupled within the laser to the eleo:'.u'ilcz ! 1po e zie:h
of all of the atoms of the active medium. These atoms have a polar anon wvlew
oscillates with the field and at the sa.mfhg‘n;te :::i:;e;:E:gng m;gliat;iz att‘;: oty
the active medium as a whole, we see 5 zatlon dens
roscopic proportions, i.e., all neighboring atoms contribute s arly i
o o iy, v emantar o e e o4
effect, a current distrbution,
g:&?&iﬂﬁ% 1!?3’( tilxxle osciilating current distribution, When the lastex; :usuc:)x:ler;tgg
well above its threshold there is nothFinugt :ea.k a::utﬁtl:ihse cgiin}tmclism:; o :rtab .
sical magnitude. ermore,
f;sifiﬁz fs?.:ar:ed, the E:gl.::'lrent simply oscillates steadily in a per:ectl{" pre;me
dictable way. We may, in other words, to an excellent approxima.: on, desc
the bound current in the active medium as a c-number current density. crent
The general problem of finding ttge ﬁ;ilds fra}cllla;egs ltJy uﬁ;ﬁmﬁi ::erty b the
i lved in Lecture . e
:ﬁtﬁﬁtﬁn&a‘.‘tﬁaﬁ:&x l:y a known current distribution always b.rings the Itfi:.llﬂa to
a coherent state (assuming that no other radiation was present 1mtt1ha.lly) . e
current oscillates with a single frequency, only the field modes wi pr:ctry °¥ tha
frequency will be excited, If we agssume, for simplicity, that t;hti1 gzc::s o oporator
system favors the excitation of only one mode of the field, then the
for the fleld may be written in the form

p=la><al, (15.18)

where Ja> is a coherent state for the excited mode, and the amplitud;:“:zt iisngiven
by an integral of the form (12, 20} taken over the bound current ditst:h % a:x p.utude
Let us write the complex field eigenvalue which corresponds to

aas .
&) =1(%)* u(m) era . (15.19)

Then, since the density operator (15.18) corresponds to a pure cohe;exg; sita:e, ttil::
corr:elation functions of all orders will factorize to the form of Eq. (8. d' . in.c'.'tdence
beam will possess full coherence. It follows then that the n-fold delayed co

rates will factorize to the form

S 3 . 20
G”)(xl... KXoy Xnaee X1) =jl;-11 G (x4, xl)) (15 )

and no photon coincidence correlations of any order will be detectable in the ideal
T beam. .

fase The argument which led to the density operator (15,18} for the laserubl:tm:e

assumed that the oscfllating current distributio;li isdhlovivnn prectiiscilz) :,r el;;owledge

its phase of oscillation as well as its amp! tude, prac
:m't qualzltiues which oscillate at extremely mgh frequencies tan;lg i:;;l:((l;saany
information about their absolute phase, (T}:lis is dil:eismt(;r:.nt; ;};fiic ufty o rinciple
itable clock to use as a reference standard than ]
f:;?:f)i:hfg or measuring the phase of essentially classical quantities such as
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bound current in the laser,) When we lack any knowledge of the phase of oscilla-
tion of the current, the density operator should be written in an appropriately
specialized form of Eq. (12,30). It is clear that this form is simply the expression

(15.8) for the density operator averaged over the phase of the complex amplitude
a, i.e.,

2y do
= in ie
p fo | lale®><|ale !—-27r

=f2rrlla| (I8l - lal) 18><p1d’s. (15,21)

These forms of the density operator depend on a only through its absolute
value, and hence represent stationary fields. They represent mixed rather than
pure states of the field, but as we have noted in the last lecture, mixtures corre~
sponding to averaging an overall phase variable do not alter the coherence pro-
perties of the field. It is easy to verify that the correlation functions which are
derived from the density operator (15.21) are identical to those which follow from
(15,18).

The explicit construction of the density operator for an ideal laser beam
shows that no photon correlations are to be detected in such a beam. The reason
for the absence of such correlations is evident from the analysis of the last lecture.
The quasiprobability function W(g,x) which corresponds to the stationary density
operator (15.21) is immediately seen from Eqs. (14.44) and (15.19) to be

1 hw H
Wig,x) = ——T——— 6(1€] -(3=) “lu(r)al). (15.22)
211(112‘—0)2|u(r)a] (2 )

This function vanishes everywhere in the complex §-plane except on a circle where
the delta function is singular. It describes a field which undergoes no amplitude
modulation at all, and that is the basic reason for the absence of photon correla-
tions in an ideal lager beam. :

It is also possible, by making use of the correspondence principle, to see the
origin of this property of coherently radiated beams more directly, We shall sim-
plify our picture of the laser by regarding it simply as an oscillating charge dis-
tribution which radiates much as an antenna does. The charge, we assume, has
only a single mode of vibration whose amplitude is, in effect, that of 2 harmonic
oscillator. Since the electric polarization of this oscillator agsumes macroscopic
proportions we must regard the oscillator coordinate as an essentially classical
quantity; i.e., the oscillator is typically in highly excited quantum states which
have enormous quantum numbers.

When the oscillator is decoupled from whatever mechanism has excited it and
allowed to radiate spontaneously, its amplitude of vibration will decreage quite
slowly in relation to the oscillation period. Since the behavior of the ogcillator ig
essentially classical, the current due to its meving charge distribution is quite pre-
dictable. As we have noted earlier, the radiation by such a current brings the
field to a coherent state. If, on the other hand, we look at the oscillator from a
quantum mechanical standpoint, we may think of it as making transitions downward
in energy, step by step, passing through states with quantum numbers n, n-1
n-2-+-wheren > 1, The length of time the oscillator spends in each of these
states is distributed exponentially and, sincen is so large, the average lifetimes of
the states do not vary significantly from one state to the next. Each transition is
accompanied by the emission of a photon. We are therefore not surprised to find
that when the photons are detected by a counter, the intervals between their suc-
cessiyve arrival times are exponentially distributed, This exponential distribution
of time intervals indicates the absence of any tendency toward pair or higher order
correlations. It is the characteristic distribution for the intervals between totally

R. J. GLAUBEK

te. Itis clear that where two -
ted events which happen at a fixed average ra : B
glztc:r)xlc.:x.'?::ounters are used there will be no time-dependent correlations of their

outputs.

MODEL OF A LASER FIELD WITH FINITE BANDWIDTH

An acutal laser beam, in contrast to the ideal varlei:y bwoenl:ia:e j\:;; c::;\:s::d. o
ic. Its frequency U ov .
will never be precisely monochromatic _ Ay
to disturbances which have their o ,
less randomly over a narrow range due s
hall construct a simple mode
th inside and outside the laser itself. We s
:olaser field with finite frequency bandwidth by assuming that the mechanicsm

i ture.
isturbs the laser is essentlally stochastic is na
WMCgéitl ?.1: assume, for simplicity, that the laser excites only a single mode of

the electromagnetic field which has irequency wo. Then the field Hamiltonian for
that mode is .

Ho =hiwea'a

i the time-dependent operators
absence of any perturbing inﬂuencgs,
21(1?)' aizdﬂ;.?f(t) are given in terms of the time-independent ones, a and al, by

a(t) =a e (15.23)
al(t) = al e ot _

The completely harmonic behavior of the oscillating field v:lxilu b:sgigzr&z: Ke
various interactions of the ﬁeldbwith othern?;tg;nf};e :sz i:ion e R e tield
interactions can be represe :
?faf.:ffltfmt:;s\:hich depends on one or more random functions oft ua“;ei,iefl(dt)li It vtv:n-
write this stochastic addition to the Hamiltonian as Hy (t), the tot amil

ian becomes

15.24
H = Ho + He (1), ( )

To see the influence of the stochastic term most clearly we shali so:;v: mt:lletom
Schrédinger equation in the interaction representation. The interaction

ian is then 1
0 "t 15.25

He() =e” CHe(e " . (15.25)

We define the unitary operator U (t, £) as the solution of the Schridinger equation

if % Us (t, 1) = He' () Ug(t, #) (15.26)

which obeys the initial condition

U (', ) = L. (15.27)

Then, if we write the state vector of the field at time t as |t >, we see that it
evolves according to the transformation

[t> = Uelt, t') It >,

The equation of motion for the density operator in the interaction representation,
which we shall write as pi(t), is

iR pa(t) = [HA (), pa(D)]. (15.28) -
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The solution for the time development of the density operator may be written in
terms of the unitary operator U, as

Pelt) =Ur(t, t')ps(¥) U ™M (1, 1), (15. 29)

The expressions for the field correlation functions which we have discussed
earlier in these lectures have all been constructed according to Heisenberg picture
of quantum mechanics in which the state vectors and the density operator are in-
dependent of time. When these vary with time, as in the interaction representation,
the expectation values we require must be constructed somewhat differently, The
required expressions can be found by starting with the form the expectation values
take in the Heisenberg representation and carrying out the unitary transformation
to the interaction representation, '

Let us consider two arbitrary operators which take the time-dependent forms
L(t) and M(t) in the Heisenberg representation. An example of the kind of
statistical average whichisusedin the construction of the correlation functions is
the averaged product which may be written as < L{M(¥) > . The subscript
on the average means that it is computed for a particular behavior of the random
function f(t) on which the stochastic Hamiltonian dependens. The average, when
evaluated in the Heisenberg representation, is clearly

<L{HM(t)> = Tr{L(t)M(t')p} (15.30)
where p is the time-independent Heisenberg density operator.,

One of the ways of defining the Heisenberg representation (which is unitarily
equivalent to all other ways) is to let the fixed Heisenberg state vector for the
system be identical to the state vector in the interaction representation at a
particular time t,. Then the relation

1t>= Uglt, to) 1> (15.31)
expresses the unitary transformation from Heisenberg states |ts> to states [t > 1n
the interaction representation, The corresponding transformations of the operators
L, M and p are

Li® = U(t, to) L{t) U (Y, to)

M (t) = Uelt, to) M(t) U (Y, to) (15,32)

Pi(t) = Udt, to) p U™, to),
where the subscripts i denote the forms of the operators in the interaction repre-
sentation. When the inverted forms of these relations are used to express the
operators in Eq, ( 15,30) we find

<SLOt) M(E') >¢ = Tr{UL (L, to) Ly (1) Us(t, to) U (1, to) M, (1) x
Pp1(t) U (¥, to)} . (15,33
Since the time displacement operator U, obeys the multiplication law

Ug (t, ') Ue (¥, to) = Us(t, to), (15.34)
the expreasion for the average may be reduced to the form

SLOM() >¢ = Tr{L () Ue(t, €)M ()02 (t)U (L, )} . (15.35)
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The occurrences of the operator U, in this expression evidently take into accmu:t: s
the effect of the disturbance of the field during the interval from # to t. The dh-%
turbance, we are assuming, is a random one and the average (15.35) hag been #f)
evaluated for some particular way in which it may behave, i.e,, it i3 evaluated for.i "
a particular random function £(t). Before the average can be compared with ex- w :
periments it must again be averaged over a suitable ensemble of random functions’:
i(t). The latter averaging process is simplified by our use of the interaction ~
representation, ‘
Since the products LM which interest us are in normally ordered form it will
be extremely convenient to make use of the P-representation for the density opera~
tor. We shall therefore only consider the class of stochastic Hamiltonians which .-
preserve the possibility of expressing the density operator by means of the P-rep-n';.-,-'
resentation. We assume, tn other words, that p;(t) may be written in the form 1}

(15305

n

o

pi(t) = [P(a, t) 12> <alda

at all times t,

If the density operator at time t* corresponds to the pure coherent state {a>,
i.e,

pA(t) = la><al, (15.37)‘
then, according to Eq. (15.29), at time t it will be
Pi(t) = Uelt, ¥) py(#) U (1, t)
= Ue(t, ) la> <alUsi(t, ¢). (15.38)

Now, according to Eq. (15. 36), this operator too will have a P-representation for
which we may introduce the special notation

pi(t) = [P(at' Igt) 18> <pgidip . (15.39)

The function P(at' | gt) is evidently a conditioned quasiprobability function, It
corresponds in the classical limit to a probability distribution for the complex amp-
litude B at time t, when we are given the knowledge that it had (or will have) the
value o at time t',

To illustrate the use of these relations in evaluating statistical averages, let
us consider the average of the product aT(t) a(t') which occurs in the first order
correlation function. If we substitute L(t) = af(t) and M(t) = a(t) into Eq. (15.,35)
we find, by using Eq. (15.23)

<al(ta(r) >¢= Tr{ale o' y, (¢, tae ™ ()UM (L, )}, (15.40)

Next we make use of Eq. (15.36) for the density operator, and the fact that ¢ >
is an eigenstate of a to write

<al(tya(e) >, = Tr{Ue(t, t) [P(et') a la>< o d®aUs (¢, t)al}e “olt-t), ,
) (15. 41)

The unitary transformation inside the brackets may now be carried out by using Eq.

(15. 39) to represent the density operator indicated in Eq. (15.38). We then have

<aW(t)a(t) > = Tr{ P(at') aP(at 1 0t) 18 ><p18%d* ad® p}e ot X

(15.42)
= [P(at)) P(at' I Bt)a g da d? g e @0t .
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The latter expression for the average bears a close resemblance to forms which
occur in the classical theory of continwous Markoff processes. We must now re-
member that the average we have constructed corresponds to some particular
behavior of the random Hamiltonian. The quantity to be compared with experiment
is not any one such value, buttheaverageof all such values taken over a suitable
ensemble of random functions f(t). We may write this average as :

* "
<af(ha(t) >= [< P(at) Pt I8t) > 4. of dPad’pe O . (15.43)
over { .
The foregoing equations furnish us with a fairly general framework for dis-
cussing the influence of random disturbances on the oscillations of the field. We
shall now use this formalism in constructing a simple model of a laser beam of

finite bandwidth.
Surely the simplest way to give the oscillating mode of the field a finite fre-

quency bandwidth is to assume that its frequency is a random function of time. We
may do this by writing the total field Hamiltonian of Eq. (15.24) as

H=h[wo + £(t)] afa, (15. 44)

where f(t) is a random function of some sort whose ensemble average, <f(t)>,

vanishes.
Since the random Hamiltonian is evidently

He(t) =tif(t)ata, (15. 45)
and it commutes with Hos = ﬁwa*a, the interaction Hamiltonian according to Eq.

{15. 25) is simply H, itself.
The Schrédinger equation (15, 26) then takes the form

i—:—tU,(t, t) = f(tyafau (t, ¢). (15. 46)
Its solution is simply an exponential function which may be written in the form

Ug(t, t) = e-laet) (15. 47)

where ¢ is defined by
t
p(ter) = [, f(rnat. (15. 48)

To see the effect of the transformation U, on the states of the field, let us
suppose that the field is in the coberent state |a >at time t'. Then at time t the

state will be
It> = Ue(t, t)la>
= e-also(tt) |a >

t . 1
=e~%|asze-la ad(tl') f {a'/’(n!)z}ln> (15.49)

1=0
11412 "
= @-tlal E‘ (an_l)' e-no(it) [n >
= jae P >,

The particular random Hamiltonian we have assumed just transforms one cohergnt'
state into another for which the amplitude parameter differs irom the original one

-
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by a phase factor. There is evidentl R
. y no amplitude modulation in th N

When we use Eq. (15. 46) to construct the density operator re i’;:‘ Og:; i i
Eqgs. (15.38) and (15.39) we find prosented by

-i(1e) (i .
lae ><ae ) = [p(attigt) 18> < gld%s, (15.50)

from which we see that we may take the
- c .
Sy hich we see that » y onditioned quasiprobability density to be -4

P(at'1gt) = 6/7(p - ge-ion (15.51)
If we introduce the phases of the amplitudes ¢ and g via the definitions
a=lale ™ (15.52) K
=181 &, '

t-heﬂ the two—dimensi na-ld lta fu.nctlon 5
(0) € 1 .h1 can be wr itte“ hl te!‘ oI a

&

P(at'Igt) =~,%l 6(18) - lal) 6(6 - 6o+ P(tt')). (15.53)

:tl:‘.s function Qesc r'ibes the evolution of the state of the field from the coherent
finde th|(74>t ::t time t', whep we are given any particular random function f(t}). To
¢ state at time t which is typical of the set of possible random functions, we
£}

must average Eq. (15.53
average ae ge Eq. ( ) over the ensemble of functions £(t). We may write this

. 1
Pav (o' 18) = o= 8(181 - la ) <8(6 - o + P(tt1)>

avoverf,

(15. 54)
Now, if we recall that the function 8(6) has the Fourier series expanaion

1S
%0 =5 L ooeme, (15.55)

m= -a0

we see that the averaged delta function in Eq. (15. 54) may be written as

6(6) = %. Z_ we Im(0-ngt @ Lm_{"r(z-)dt«

avover( .
We must clearly specify some of the ooty
properties of the random functions f(t
the eTxp’;on;ixgial ﬁ:ncl:ions in Eq. (15.56) can be averaged over them (€) before
e erent physical processes which may perturb the fr uel;c
. : of our fi
;:(s;(cﬂlator require in general that we discuss various kinds of r?xlldomyfunctions el
! ). For the p?esent, however, we shall only consider one of the simpler types
of random functions. We shall assume that f(t) is a stationary Gaussian stochastic
dp;‘st;r;t;snsl;i ;. e. ,T;hat ia:t any time t the ensemble of values of {(t) has a fixed Gaussian
n. en it is not difficult to show thas
(15, 56) ave ghven by w that the averaged exponentials in Eq.

t
< exp{ im f" f(t")dt*} > . =exp i-lmz f.f‘
aver [ 2 v

(15.57)
<A (1) > dirder ),

where the ensemble average < f(t"") £ (') > is simply the auto-correlation function

of the random process f(t).
Let us assume, simply as an illustration, that the function f(t) fluctuatés so
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rapidly that its autocorrelation function can be taken to have the form

E(EE(ETY> = 288 (1 - t) (15. 58)

where ¢ is a positive constant. Then the averaged exponential in Eq.(15.57) re-
duces to

: 2 ! (15.59)
i av = - t - t
<exp{1mfﬁf(tn)dt..} >°v" . exp{ m?t| 1}, |
and the averaged delta function in Eq. (15.56) becomes
R 1 o fm(a-ng) -m2frv| 15. 60
<8(6 - B0+ O(H))3 2 =g ) e _ (15.60)

It is interesting to note that this function is simply the Gregn's func_tion gf the "
partial differential equation for the diffusion of heat on a circular ring, i.e.,

satisfies the equation
3 3* _
—_— — - Bg + > =0
( at 892) < 6(8 14 ¢) av

for t > t' and reduces to 6{(8 - 0o) for t = t'. It is clear then that the conditioned
quasiprobability function (15, 54), which we may write as
im(nl--lo} -mztll-l'l ( 15. 61)

Pav (a 1) = 5= 60181 - 1al )T e

describes a kind of random phase modulation in which the phase variable 6 = arg 8
"diffuges™ away from its initial value, fo . ) )

The reciprocal of the diffusion constant { defines a relaxation time for t.he
phase variable. For time intervalst - t' which greatly exceed 1/¢ the distribution
(15,61) reduces to a constant, circularly symmetric form; the phase 9 becomes
completely random. . ]

I;..et uss( now return to the question of evaluating the first order correlatn:;n
function for the field. According to Eq. (15.43) we may construct the function as
soon as we have evaluated the average

.62
<P(a, ) Plat!| pt) > av (15.62)

er {

We shall assume that we have no knowledge of the i.nitial-pha§e of oscilla}.ltlonhof the
field. Since the random perturbation of the field only shiits its phase, t g ptag;
remains uniformly distributed at all times; 1. e., we pever know more fai ;): .
phase than we did initially. The density operator which represents the enl
therefore stationary. The function P(a, t) in Eq. (15. 36) depends on ? & ?m stion
through its absolute value and is independent of t, and of the be}aavior o 0 ema .
f(t) as well. In this most frequently occurring case, the function P(aq, iony
written as P(lal) and removed from the averaging brackets in the express

(15.62). That expression then reduces to the form

P(lal) Pulat'18t) | (15.63)
where the second factor is given by Eq. (15.61).
Now it is evident from Eq. (15.61) that
[~} 217
1 _ 2 et
J Pu (ot 1) B p= g 80181 - 1al) g1
Ee im(0-ng) ~m2geatr| de
= gle ottt = ate M {15.64)
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On substituting the expression (15.63) into the correlation function (15.43) and .-
making use of the integral just evaluated we find »
“a

<af(ha(t)> = [P(1al) lal?d?a e Wolt-t)-tite 3
=<l o %> e lwolt-t) LIt (15.85)

-

where the symbol <|a| > has been used for the mean squared amplitude of excita- IS
tion, or equivalently the average number of photons in the mode. =4

If we assume thf the mode function u(r) for the field does not change as a
result of the perturbation, then the full space-time dependence of the first order
correlation function may be found by multiplying the expression (15. 65) by a prod-
uct of the form u*(r) u(r'). According to Eq. (R 10. 17), which is a quantum -
mechanical form of the Wiener-Khintchine theorem, the energy spectrum of the
field will be porportional to the Fourier transform of the correlation function
(15.65). When we calculate the transform we find

ot °0
J <aT(0)a(t')> eltat = <ja|2> [ e Mw-wt TN 4

- 00 lw

- z 2L
=<llI™> Groyrv e .

Our phase diffusion model thus has an energy spectrum of Lorentzian shape, and
the diffusion constant ¢ is its half-width,

From a spectroscopic standpoint, the field we are describing could not be
distinguished from the chaoctically generated field of Lorentzian line shape which we
discussed earlier, if we happened to have { = y. The fundamentally different nature
of these two fields is best expressed by means of their higher order correlation
functions, These functions may be evaluated for the phase diffusion model through
simple extensions of the methods we have developed, but we shall not do so here.
One fairly obvicus result, however, is worth mentioning. Since the random phase
modulation we have described carries no ampiitude modulation with it, it will not
introduce any photon coincidence correlations.

There are a number of ways in which the simple phase diffusion model which we
have presented as an illustration can be generalized and made more realistic. We
may easily remove, for example, the assumption that the stochastic process f(t)
has a vanishingly ¢mall relaxation time. Furthermore we may consider other types
of stochastic processes than Gaussian ones. Finally, we may consider other forms
of the random Hamiltonian than ( 15. 45) and attempt in that way to account for some
of the effects of random amplitude modulation as well as phase modulation.

(13. 66)

Lecture XVI INTERFERENCE
OF.INDEPENDENT LIGHT BEAMS

One of the questions having to do with coherence which has given rise to much
discussion and a certain amount of confusion recently is that of interference between
independent light beams, That such interference phenomena can exist should come
as no great surprise; they have been observed long ago with radio waves of fixed
frequency. I we have had to wait until recently * to see such phenomena at opti-~
cal frequencies, the delay has been wholly due to instrumental difficulties.

The problems which have arisen in the discussion of these interference phe-
nomena concern the precise way in which they should be understood and described.

It would be quite difficult to say how much of the misunderstanding we have men- )
tioned is simply semantic in nature and how much is more deeply conceptual. There
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is, for example, nothing intrinsically quantum mech?.nical about the interference
of independent beams. Yet the fact thaf altogether different sets of quanta must
somehow interfere with one another seems to have contributed greatly to the con-
fusion. We shall not recount the history of this subject here but shall only discuss
a few of the simplest possible examples of the interference phenO{nenon.

The simplest sort of experimental arrangement we can have is gssentially
that illustrated in Fig. 17. Two independent laser sources (or po.?mbly other
types of sources), L, and L, project their beams in dixjechons szhlch are nearly
parallel, but slightly convergent. The beams fall upon overlapping areas_of a
screen ©. I the light intensities are high enough, or we have sufficient time
available to record over a long period, we may let our detector be a photographic
film in the plane T, If the conditions do not favor photograph){, on the other hand,
we might use a mosaic of photon counters in the plane Z. In either case we will
look for interference fringes in the area of overlap of the beams.

p

Figure 17

Let us assume that the way in which each light source excites the field can be
described in the P-representation by means of functions P, ( {_au 1) and P {{ax}).
The single P-function which describes the superposed flelds is then given, accord-
ing to Eq. (R7.18) or (RY.15), by

P{{al) = fo({au NP2 ({oa }) 1;1 6(2)(0'I:" an - oz & o 4 ek
(16.1)

The average intensity of the superposed fields at any space-time point x is given
by the first order correlation function

6% 2 = [R({ah)|6(x, tad)]” 0 (16.2
= [Pi(land) Pa(lan}) |6(x, lan+an))]” D& and®aan. ‘

i i f Eq. (16.1) and
In reaching the second of these expressions we have made use o _
have carried out the integrations over the variables {ax}. Now let us note that the ;
eigenvalue field & (x, {ax}) depends linearly upon the amplitudes ax 8o that we \

e E(x, {lanx+omd) = 6(x, {an})+ 8(x, {axl}), (16.3)

i inciple. If we
a statement which corresponds to the clagsical superposition princip! \
substitute this relation in Eq. (16.2), and let the symbols {G!"(x, x) }, with
i =1, 2, be the intensities which would be produced by either source in the absence
of the other, then we may write the total intensity as

5
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e
G!M(x, x) = {GNx, %)}, + {GV(x, %)}, (m“)_#:;

+ ZRe{fPJ{an})é*(X{au})Edzausz({azk}) &(xlawd) Nd'am} . 5.
LI

The third term of this sum is evidently an interference term, We must next ask -
when it contributes to the observed intensities and when it does not. .

We have noted in Section VII of the reprinted paper that any light beam described
in the P-representation can be regarded as the superposition of two fields, one of
which corresponds to a pure coherent state and the other of which is of the unphased
form, i.e., it has vanighing expectation value for the complex field strength, When
each of the fields generated by the two sources is analyzed in this way, it becomes ~ -
clear that the unphased components of the fields will not contribute to the inter-
ference term in Eq. (16.4). The interference term will, in fact, vanish completely
unless the field generated by each of the two sources has a non-zero coherent :
component,

The most elementary kind of example in which the interference term is different
from zero is one in which the two sources acting separately bring the field to
coherent states represented by

Pi{{aw}) = EG‘Z’(au— Bu)

P2 ({g2x })= 06 ™z ) . (16.5)

g .
2Re{ 8" (x, (pu }) &(x, {Bu]) ). (16.6)

Then the interference term of Eq. (16.4) reduces to

The analysis of this term may be simplified by assuming that the two sources

are ideal lasers which are similar in construction and that each excites only a
single plane wave mode. The two plane wave modes are then not identical since
their propagation vectors are not quite parallel, but they have the same frequency.
Under these conditions it is easy to see that the interference term (16.6) describes
stationary intensity fringes which are seen on the screen in the area in which the
two beams overlap, The fringes are perpendicular to the plane which contains the
two propagation vectors and may be made narrow or broad by making the angle
between the beams large or small, '

Let us.suppose that the single mode excited by source 1 has amplitude 8, and
that excited by source 2 has amplitude 3, . Then, since the plane wave mode func~
tions are intrinsically complex, it is clear that the position of the fringe system on
the screen T (i.e,, its displacement in the direction perpendicular to the fringes)
will depend on the phase difference of the comp'ex amplitudes 8, and 8;. If the
geometry of the experiment is sufficiently well determined, then by observing the
fringe system we may measure the phase difference.

No difficulty of principle stands in the way of our actually carrying out ex-
periments of the type we have just described with two laser beams. But in practice
we never have the complete knowledge of the excitation amplitudes which we assum~
ed, for example, in constructing Eqs. (16.5) and (16.6). As we have remarked
many times earlier, we are almost always lacking knowledge of overall phase .
parameters. As long as this is 80 we do not know the phases of oscillation of our
lasers, and the only way we can honestly represent the density operators for the
modes they excite is by means of the functions

Py(ay) = o 81yl -16y1) (16.7)

for j = 1, 2, These functions represent the statlonary density operators which are
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obtained, as in Eq. (15.21), by averaging the coherent states over phase. But the
P-functions (16.7) are of the unphased variety; they correspond to vanishing aver-
aged complex fields. When the descriptions of our two sources are stationary, in
other words, the interference term in Eq. (16.4) vanishes identically.

If this result is taken to mean that there are no fringes to be seen on the
screen, then our ignorance of the phase parameters has somehow wiped out a
large scale physical phenomenon. To bring the paradox of such a conclusion into
sharper focus it is possible to argue that each of our laser sources is essentially
classical in nature and really has a well defined phase of oscillation. Consequently
the fringes should be visible on the screen both to people who do and who don't
know the phases alike.

To see that we have not really encountered any fundamental dilemma we must
recall that density operators are constructed for the purpose of describing en-
sembles of quantum mechanicai experiments. The need to repeat experiments
upon many similarly prepared systems arises for reasons which are quite basic
to quantum mechanics. The quantities measured in general fluctuate unpredictably
from one system to another, even when all the systems are prepared in precisely
the same quantum state, When the quantum state itself is random there is still a
further reason for carrying out experiments on a large number of systems and
averaging their results,

The two P-functions given by Eq. (16.5) represent, for example, pure states
of the field. In any single experiment carried out with two sources for which all
the excitation amplitudes and phases are known, we would probably detect a rhore-
or-less noisy form of the interference pattern we have been discussing, The inter-
ference pattern would assume the smooth form given by Eq. (16.6) only after we
had averaged over many experiments performed with identically prepared sources.

No'v when we have no knowledge of the phases of oscillation of our two laser
sources, our formalism describes an ensemble of experiments in which the phases
are allowed to be completely random. It is true that the contribution of the inter-
ference effect to the average intensity for this ensemble vanishes. But one can
not conclude from the vanishing of the ensemble average that the fringes do not
show up in the individual experiments. This experiment is one in which the mem-
bers of the ensemble are individually quite unlike their ensemble average, Each of
the experiments will exhibit a stationary fringe pattern on the screen, just as when
the oscillation phases are known. But since the phases are random, the displace~
ment of the pattern will vary randomly from one experiment to the next. It is the
averaging over the random displacement which wipes away the fringes in the en-
semble average.

A question we might now ask is how we can use the density operator formal-
ism at all to make statistical statements about the fringe pattern, When the
sources are stationary it has appeared to tell us nothing but that the engemble
average of the interference intensity vanishes at every point on the screen. Let us
imagine that we are performing the experiment with a pair of lasers chosen from
our random phase ensemble. To determine that there is indeed an interference
pattern on the screen we must measure the intensity at a considerable number of
points on the screen. We do not prepare the system anew for each of these mea-
surements; they are carried out for a single preparation of the lasers. Now Just
the first of the intensity measurements at a known point on the screen goes a long
way toward determining the phase difference of the two lasers., It determines a
linear combination of the sine and cosine of the phase difference of the amplitudes
B, and B which restricts the phase difference to either of two discrete values,
Measurment of the intensity at another point then determines the phase difference,

Once we have used intensity measurements at a couple of points to determine
the phase difference we can predict the appearance of the rest of the interference
pattern in an ensemble average sense. Of course the ensemble in this case is no
longer the one we began with, though it still remains a stationary one. Our initial

v
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intensity measurements furnish us with information which requires that we reduce -
the size of our initial ensemble by retaining only those experiments in which the )
phase difference is found to be nearly the same. This reduced ensemble will be
described by a stationary density operator since a phase factor common to tl'\p
amplitudes g; and 8; of a pair of degenerate modes remalins completely random al
Let us suppose that we find the phase difference of the two beams to be ) .

arg 81 - arg B = 4. (16.8) -

Then the selection process by which we reduce the ensemble to one appropriat
et
experiments for fixed § can be represented by inserting a factor pprop °

1
E;G(arga;—argaz "9) (16.0)

into the integrand of the P-function (16,1). Once we have located the fringe pat-
1_:ern by experimentally determing its unpredictable position, we have no difficulty
in constructing a stationary density operator which predicts the average intensities
in the pattern.

The idea of reducing the size of our ensemble to reflect the acquisition of
knowledge about a system should not be too unfamiltar. In any multi-step game of
chance, for example, the odds for winning, which one hopes are even initially
change as one completes each move, The initial odds are calculated by using’the
complete ensemble of possible games, but the odds calculated at the later states
use only the reduced ensembles appropriate to the information which was revealed
by the earlier moves,

Another sense, though a rather different one, in which the use of the stationary
density operator furnishes information about the randomly placed interference
pattern may be seen by discussing the second order correlation function, It is easy
to show that the two-fold coincidence counting rate

GP(rtrt, rtrt) = [P({au D)l 6 (rt{a }) 1?1 6(rt{an }) 170 d¥
k
(18.10)

contains a term which oscillates as a function of the positions r and r* on the screen,
This type of interference term may be derived by means of essentially the same
argument as we used in discussing the intensity interference experiments in
Lecture II. The oscillation of the intensity correlation function must evidently re-
flect oscillation of the intensity itself. Furthermore since the unknown phase
angles of 8, and 3, cancel out of the second order correlation function nothing

need be known about them to calculate it.

However a simple measurement of the intensity of a random fringe pattern
(e.g., by examining a photograph) is not the same as a measurement of G‘”, and
there is no simple way of concluding in general from a knowledge of G'? what the
intensity pattern of the random fringe system should be. Thus, while G'¥ and the
other even order correlation functions are useful in their own right, they offer no
alternative way of discussing the fringe intensities. If we want the intensities we
must derive them from the density operators for appropriately reduced ensembles.

We have assumed to this point that our light sources are ideal noise-free lasers.
We now ask what happens when the random modulation of the devices is taken into
account. Since the most important of the parameters in determing the two-beam
interference pattern is the phase of oscillation of the laser, we can secure a good
idea of what goes on by using the phase diffusion model to represent the laser
beams. According to that model, the phase of a laser beam wanders appreciably
over time-intervals long compared to a relaxation time 1/{, and remains relative-
ly fixed over time intervals which are much shorter in length, '

When the two laser beams are represented by such models, the light intensities
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we record on the screen will depend on the length of time we require to make our
measurements, If the intensities are sufficiently great that we can record them in
a time short compared to 1/¢, then the two beams will retain nearly the initial
values of their phases while the measurements are being made. A randomly situ-
ated fringe pattern of the sort we have already discussed should then show up. But
a similar measurement made, say, half a relaxation time later would reveal a
differently placed set of fringes, corresponding to the fluctuation that had taken
place in the phase difference of the two beams. )

If we could follow the fringe intensity as a function of time, we should see the
parallel fringe system execute a sort of random wandering back and forth on the
screen. If we were to try recording the intensities on the screefi by integrating
these over a period much longer than the relaxation time we would {ind that the
fringe structure is washed out and only a uniform intensity remains,

Laser sources are convenient ocnes for such two-beam experiments, because

they are intense, and monochromatic enough to have relatively long relaxation times,

It is also quite possible, in principle, to carry out such experiments with beams
from ordinary chaotic sources. The random amplitude modulation of these beams
will mean that the fringes fluctuate greatly in contrast as well as in position. The
relaxation time for these variations will be the inverse frequency bandwidth of the
sources. If such fringes have not been photographed to date, it is because ex-
posure times shorter than 10™'° sec. would be necessary.
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Lecture XVl PHOTON COUNTING EXPERIMENTS

The number of photons which a counter records in any interval of time fluctu-
ates randomly. In a simple type of counting experiment we might imagine that the
counter is exposed to the field for a fixed interval of time t. Then, by repeating
the experiment many times, we should find a distribution function for the number
of counts received in that interval. Although the average number of counts is fre-
quently all that we require, the way in which the number fluctuates about its aver-
age value can be fully understood only when we know the distribution function and
its moments., In this lecture we shall discuss ways of predicting the distribution
function and the relation between the form of the distribution and the coherence of
the field,

Let us first recall some of the results we established in Lecture V. We cal-
culated there the probability that in an interval of time from toto t all n atoms of
a hypothetical n-atom photodetector undergo photoabsorption transitions which are
registered as photen counts, When we eliminate the tensor indices by assuming
the field to be fully polarized, this probability is given by Eq. (5.8), i.e., we
have

¢ t »n
(1) =j°...j‘; 5-.—1.11 Sty - ) Gr")(r;h'“'rn tof, Tatd'oeraty") X

I dty )", (11.1)
=1

where the sensitivity function S is defined by Eqs. (4.12) and {4.10), and we have
get to= 0. If our detector happens to be of the broadband variety, we may use Eq.
(4. 14) to reduce the number of time integrations in this integral from 2n to n, but

.
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this reduction is not a necessary one for the arguments to follow. b

We must now consider a more realistic model of a counter which contains an ..
enormous number of atoms, say N~ 10°°, which are capable of detecting photons
by undergoing photoabsorption processes. Needless to say, it will virtually never .
happen that all N of these atoms do undergo absorption processes in any finite
interval of time. The total number of photoabsorptions is much smaller as a rule
and we shall try to use Eq. (17.1) to find its distribution law, ’

The total number of photocounts recorded in any interval of time may be re- v,
garded as a sum of random variables, one for each atom of the detector. Todo -
thils, let us introduce the random variable z, for the j-th atom, which takes on the .
values

N
-

_{0 if no photoabsorption process is récorded for the j-th atom

Zi = .
; )1 if a photoabsorption process is recorded for the j-th atom, (17.2)

Then the random variable which represents the total number of counts will be
n

C= 9. zy. (17.3)
i=1
Associated with each final state of the system i.e., any set of values LARRES TR
there is a probability function #(z,*+zx, t). The statistical average of any funce '
tion of the z;'s is then found by averaging the function over the probability distri-
bution. For example, the average number of counts is given by

N

N
<C> = ? ? Zy P2y zy, t), (17.4)

0 =
{zy=7} 151

where the final summation is over the values 0 and 1 for the entire set of variables
zy. We shall write such sums in the future as sums over {z;}. We next introduce
the reduced probability function for the j-th atom which we define as

Pi(z,t) = L Plzi-ze,t). T(17.5)

{zx,k 23

The average number of counts may be written in terms of the reduced proba-
bilities p; as

N
<C>= 3 Y zpilz,t)
1 1=1
(17.6)

N
=L, m(L 0

The probability py (1, t) which occurs in the latter expression is clearly equal to
the one-atom transition probability p!"(t) evaluated for the j-th atom, That proba-
bility is given by Eq. (17.1) for n= 1, with r, = r;, and we shall write it as
p‘Y(t). The average number of counts is thus

N
<C>= ’Z_l pY, (1) (17.7)
We shall now introduce a generating function which will enable us to solve

simultaneously for the unknown distribution of photocounts and for its moments,
We could, of course, find the moments directly by generalizing the way in which
<C > was obtained, but the present method has the advantage of enabling us to ob-
tain all the quantities of interest from a single function. The generating function
we choose is

QA ) =<(1-2) C, (17.8)
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where C is the random integer given by Eq. (17.3), the brackets indicate an en-
semble average, and the variable A is intended simply to be a useful parameter.

If we write Q as a sum over the integer values which C may take on we have
an expansion of the form

N
Qb = 2 (1-%"p(m, 1), (17.9)

where p(m, t) is the probability that the counter has recorded m photocounts at
the time t. It ig clear that if Q(}, t) is known p(m, t) ‘can be obtained by differ-
entiation,

p(m, ) = (—mlyt [g{iQ(x, t)} , (17.10)

: A =l
since Eq.{17.9) may be regarded as a Taylor expansion for Q about A =1,
If, on the other hand, we expand Q(, t) in a power series about A = 0 we have

N .n n
Qo 9 = 3 3y [Gw Q0 t)] (17.11)

A=

The derivatives which occur in this expansion are given by

of & c!
Colgrao] | - G
<C(C-Deea(C-n+1) >

(17.12)

The averages on the right of this equation are known as factorial moments, They
are simple linear combinations of the ordinary moments < C" > of the distribution
of photocounts, It is clear from these relations that a knowledge of the generating
function enables us to find both the probability distribution and its moments, We
must next show how it is possible to evaluate the generating function in terms of
the photoabsorption probabilities p(™(t).

First let us note that Q(, t) can be written as

QM B = T Plzi...zet) (1-2)F17

{s4}
(17.13)
= T P(za-erzat) T (1-2* .
(%) =1
The latter form, however, may be simplified by uaing the identity
(1-2)% =1-2z0 , (17.14)

which holds because z; takes on only the values zero and one. ~ With this simpli-
fication, Eq. (17.13) becomes

N
QM ) = ), P(zie..2n,t) ,rgl(l - Az). (17.15)
{x} -
When the N-fold product in this expression is expanded in powers of A, we have
N
Qxy 9 =2 (ML L 2y 2y P(Z1.. 20,1, (17.16)
a=0 {,1} n-fold

combinationa
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where the first sum is taken over zll the ways of choosing n atoms from the set of
N.

If we now define the n-fold joint probability that atoms j;. .. j» all undergo
photoabsorption processes as

P(n)’l”.,n (t) = Z Zy oo 2y, P(Z100 0 20t), (17.17)
(%)

then we may write the generating function in the form

N
A, t) = 23" (n)

Q( ! ) n-_z—,"o( A) n-f;o]d combinations P jl. *thn (t) ) (17. 13)
Now the number p(n)y, ... (t) has been defined as the probability that each of a
particular set of n atoms absorbs a photon, regardless of what all the other atoms
do. This probability is simply the expression p™(t) given by Eq. (17.1) and evalu-
ated for the particular atoms j;... j» . Hence we know all the terms of Eq. {17.18
and the problem is simply to sum them. What we shall do, in fact, is to turn the
sums over atoms into volume integrations.

Since the probabilities p™(t) are only large for values of n which are extreme-
ly small in comparison with N, we may approximate the sums over n-fold combina-
tions by writing
N N N

~ 1
n-fold combinations ~al h=1 12—'—'1 o =1 (17.19)
Then the sums over the individual atoms may be carried out as spatial integrations

by letting the number of atoms per unit volume be ¢(r) and writing

S oo Sanotr... (17. 20)

=1

We are, in effect, dealing with the limit N— ¢, When the probabilities given by
Eq. (17.1) are substituted in the expression (17.18) for the generating function
and the sum over combinations of atoms is transformed as we have indicated, we
find

Q, t)=21£%r_fe.,°"fto f v f

s i Vol. of Detector Vol. of Detector

G(n)(rl' teo ru' tu', ru' tn" eon I 0 ) X (17.21)
’fllc(r,') S(tf - ty) dryt dty* aty’,

To abbreviate this expression a bit, let us define the function
V(x', x'") =a(r)s(r - x'") S(t" - t1), (17.22)

where x indicates both the position r and the time t, Then the expression for the
generating function reduces to :

v (-0"

Q(x, t) = Z—h—n-r— fG(“}(x;'...x,:,x;“...xl") X
n
5I=1l V (xy xy1) d'xp dixp, (17, 23)

Since this is a power series expansion about A = 0, the factorial moments must be
given, according to Eqs. (7,11) and (7. 12), by
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!
<C?n _.f_” J‘Ghﬂ(xl' che X!, X ...xlu) x

n v (X" x,“) d'x,'dqx,",
t=1

(17.24)

where the integrations are carried out over the sensitive volume of the counter and
the time interval from 0 to t.

As an illustration of the usefulness of these results, let us consider the case of
a fully coherent field. For such a field we have the fac‘torization
G (x'e.. X', X''eooxy") = 111 Gm(x,', XY, (17.25)
so that the series for Q(), t) may be summed to the form
QM 1) = e lfaV i vy atedte | (17.26)
But from Eq. (17.24) we see that the average number of counts is just
<c>= e, x) V(xx) dx d'x; (17.27)
so that the generating function may be written as
QR t} = e, (17.28)

Now by using Eq. (17.12) we derive the factorial moments

c! _ .
<TC-—n)! - <c>, (17,29)

and by using Eq. (17.10) we find that the probability distribution is
p(m, 1) = S5 e, (17.30)

i.e., when the field is fully coherent we always have a Poisson distribution for the
number of counts.

., When the field does not possess full coherence we can nevertheless use the
coherent states as a bagis for describing it. To illustrate the form the statistical
calculations take, we shall use the P-representation for the density operator of
the field. The R-representation, which applies more generally, can also be used
similarly, In the P-representation G'" is given by the integral

n
G0 xa) = [Pen)) T (xstand))  x

2n
06 (x{a}) O d%an. (17.31)
j=n+l k

When this expression is substituted into the series (17.23) we find that the series
may be summed to the closed form

QA 1) = S P(tagt) e txD 1 o, (17.32)
where
o{a}) = [6 (= {a]) & (X {a}) V(x, x)d'xdix". (17.33)

Furthefmore we see from Eq. (17.12) that the factorial moments are

r

.

—rs

-
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c! .
<("'_'Tc - )> = [P(tad )" (fax}) Nd'a, (17.34)
and from Eq. (17.10) that the probability distribution is given by
()
p(m, 9 = fotay TLED enlangta (17.35)

The probability of counting m photons is evidently a species of average over the
corresponding probabilities for an ensemble of Poisson distributions. We hardly
need emphasize that the averaging process is not a classical one and that the
quasiprobability function P may assume negative values,

As a further illustration of the methods we are discussing let us consider the
general case of a chaotically generated field. The density operators of such fields
may be represented by means of the Gaussian function

Pl 1 R Itkll
() = M e G . (17.36)

Then, since the function © is a quadratic form in the variables
ax, it will be pos-
sible to evaluate the integral (17,32) for the generating ﬁmctionh;mllgeneraflot;.
B:.-;orf'lem wt: j.da thi?, howiver, let us introduce some useful notation, We may ex-
pressthe function §(x{ax}) as alinear form in the variables normal
mode expansion ’ o by using the
& (xm}) = ), e(x, K, (17.37

k

where the functions e are given by Eq. (14.26). If we then define the matrix
Byixn = [ e*(XK') V(x'x") e(x"k") d'x d'x", (17.38)
we may write the quadratic form  as

Qlend) = ) aur Brtat axn. (17.39)

k' k"

When this expression for @ and the Gaussian form for P are substituted in Eq.
(17.32) we find that the generating function is given by

_f-.. I_ M _ ’ * dzak
Qr, 1) = fexP} Z:<m> A HZ“ @t Btxn m"}{hr(m) ¢

*

If we then introduce the variables

1
2

Bx = an/ (<m >} (17, 40)
and define the matrix

Myt am={ <nyo>} %Bk' <yt >} %, (17,41)
the integral for the generating function may be simplified to the form

Q0= Soo fexp {- D18l -a T Buf Munen 3..}13__&_“;* (17.43)

Now we can consider the set of numbers g 28 forming the components of a
complex vector 8. Then if we let M represent the matrix whose components are

given by Eq. (17.41), we may write the exponent in the integrand of Eq. (17. 42)
as the product

—BT(1+ AM) 8.
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Since the Matrix M is Hermitian it may be diagonalized by carrying out a unitary
transformation upon the vector 8. Then if we let the eigenvalues of M be ¥;, and
let the transformed complex coordinates be y;, the integral for the generating
function reduces to the elementary form

2
Qa0 = S fexp [ T (1420m) 1017n S8

- 1 1
= TR . (17. 43a)
! ~
1 ’ {17, 43b)

T det (I +aM) °

It is worth noting that the matrix M must be positive definite, since the quad-
ratic form § defined by Eqs. (17.33) or (17.39) is the average number of photons
counted in a particular coherent field. Hence the eigenvalues M, are positive,
and the singularities of the generating function lie on the negative real axis of the
variable A, Since Q is analytic in the half-plane ReX = 0, we see that if we are
given Q as a power series expansion about either of the points A = 0 or A = 1, the
series expansion about the other of the points may be evaluated, in principle by
analytic continuation. This argument shows that the procedure we have been using,
of evaluating the generating function by means of its expansion about A = 0, actually
leads to a unique answer for the probability distribution.

Since the matrix M is in general of infinite rank, neither of the expressions
(17.43) is easy to evaluate directly. Let us note, however, that det {1 + AM) may
be written as

H(L+200) = exp %ijmg (- mm‘

Now for | A[ <(Mmaz)"’, where M ez is the largest of the eigenvalues M ;, we may ex-
pand the logarithm in the exponent in a convergent power series. In this way we
see that

det (1 + A M) =exp{2(m'm’ -%1207]131....)}
1 d
= exp {Tr (M —%A2M2+--')

= exp{Trlog (1 +A M)} (17.49)

where Tr, as always, stands for the trace. By making use of this identity we can
express the generating function as

Q(A, t) = e Trior(leam (17, 45)

1f we expand the logarithm in powers of A, we may write this function in the form

bod r
Q(x, t) = exp % b -(%2- Ly (17. 46)
r=1l
where I is defined by
1. = Tr{M"}. (17.47)

If we recall the definition of the matrix M given by Egs. (17.41) and (17. 38},
then we see that for r = 1 we have
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L= Jf 7 e*xk) e(x" k) <me> V(x' x") d'x d'x,
k

The sum over k in the integrand, according to Eq. (14.32), is simply the firat
order correlation function. The integral thus reduces to :

L=ffG (x 2" V(x x") d*x d*x". (17.48)

If we compare Eq. (17.46) with Eqs. (14.27) and {14.28) we see that this r = 1
term is of the same form as the exponent of the generating function for the case
of a pure coherent field. The lack of coherence for the Gaussian case is reflected
by the presence in the exponent of the additional terms with r = 2, By making
further use of the matrix M we can show that the general expression for I, is the
cyclic integral ’

I = f,’il G (xy, xa") Vixy' x4M) dix," d'x,", (17. 49)
in which the coordinate x." is to be interpreted as x,". For the case of broad-
band detectors the definitions (17.22) and (4.14) allow us to simplify this integral
to the form

t t

Lo=s f oo f Ity [ --f[llG“’(rf ty, Tyt tyud) o (1) dry. (17.50)

To discuss the evaluation of these integrals let us suppose that our counting
experiment has particularly simple geometry. We shall assume that our field |
consists of plane waves travelling in the positive y-direction, so that the first order
correlation function is given by Eq. (15.1). This function naturally depends only
on the y-coordinates of its spatial arguments. We next assume that the sensitive
region of the counter, i.e., its photocathode, is a very thin layer of atoms lying
in a plane perpendicular to the y-axis. The function o(r), in other words,is
essentially a delta function of the y-coordinate, With thege assumptions, which ex-
periments often approximate quite closely in practice, the spatial integrations in
Eq. (17.50) become trivial. The functions G/’ are independent of their position
variables for all of the points for which o(r) differs from zero.

The time integrals in Eq. (17.50) are considerably less trivial, but we may
discuss the forms they take for short tinies and for Jong times. If the time t is
much smaller than the inverse frequency bandwidth of the radiation present, the
functions G will hardly vary at all in the interval from 0 tot. For such times
the integral I. must simply be proportional to t* . If we write I, as wt, where w is
a proportionality constant, then the elementary character of the spatial integrations
shows that the general result must be

Te= (wt)". (17.51)

When this result is substituted in Eq. (17.46), we find that the generating function
for small values of t is
exp {-log (1+ awt)}

1 .
= m"‘ﬁ— . . (17. 52)

The probability distribution for the number of counts is then given, according to Eq.
(17.10), by

Q(, t)

_(wt)"
p(m, 8 = T ay™T . (17.53)
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The distribution for short times is thus given by a power law not unlike the Planck
distribution. The mean number of counts is wt, so that w is simply the average
counting rate,

For times t which considerably exceed the inverse bandwith of the radiation
field, it is also possible to simplify the integrals I.. In this case, however, their
values depend sensitively on the spectral distribution of the energy present in the
field. Let us therefore assume, as.an example, that the frequency spectrum has
the Lorentz form

constant

<ng > hwy =m.

(17.54)
The time dependence of the first order correlation function i& then given by Eq.
{15.8). When this function is substituted into the integral (17.50), we see that,
because of the cyclical structure of the integrand, all of the Ir will increase linearly
with time for t >>57!, We may again define the average counting rate, w, by writ-
ing the integral I as wt. Then it is not difficult to show that the full set of integrals
Ir may be written in the form

_t2yw)t 1 4, "'t
I'"7MM— I VI a0 B
for t 7%,

With these values for the I it is possible to sum the series in the exponent of
Eq. (17.46) in closed form. When this is done we find that the generating function
is

(17.55)

QU 1) = expl [ (¥ + ZywA)E -y

When the counting rate w is small compared to the frequency bandwidth i.e.,
w <y, then the expression in the exponent may be expanded, and we find that in the
lowest approximation the generating function reduces to

(17.58)

Q(A, t) = e, (17.57)
This function, as we have seen, leads to a Poisson distribution. It is the distribution
we would find if there were no tendency for the photons to arrive in correlated
bunches, or for the field amplitude to fluctuate randomly.

To discuss the distribution and moments which follow from the generating
function (17.5 ), it is useful to introduct the set of inverse polynomials

Bo(£) =si(£) =1

s () =143
(17.58)
3
o (0) =1+ 345
6 15 15

SQ(E) =1+E+E§~+£?

The further members of the sequence are given by the recursion formula

Sae1(£) = - 8a"(£) +( 1 +§) 8 (£). (17. 59)

These polynomials are quite familiar in the theory of Bessel functions. They may
also be calculated from the expression

s (0 = 2) % o), (17. 60

AN
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where K.-1/2 i8 2 modified Hankel function of half-integral order,

If we now expand the generating function (17. 56) in a power serles about ) = 1
and examine its coefficients we find that the probability of receiving m counts in
time t is

p(m, t) =;1!- _(3%) 8a (T't) eI (17.61)
where we have written
T= (¥ +2w)%, (17.82)

The distribution (17.61) has the same mean value, wt, as the Poisson distribution
which follows from the generating function (17, 57). Its variance, however, is
always larger than that of the Poisson distribution because of the photon clumping
effect,

The power series expansion of the generating function (17,56) about A= 01is

Q) = X L'—",;“{t)—l 8 (1), (17.63)
n=0

We conclude from this expansion that the factorial moments of the distribution
(17.61) are given by

C!
G |
<LC(C- " (C-n+1)>, {117.64)

For a Poisson distribution these moments would be simply (wt}" . The first two
of the moments (17.64) are

[}

(wt)” 8a (¥1)

<C> =wt (17.65)
<O(C -1)> = (wt)? (1 t,it ). (17. 66)
The variance of the number of counts is thus
<C*>-<cF = <e> i +<ﬁ>} (17, 67)

The term <C>*/yt is the addition to the variance which is due to the fact that the
photon arrival times are not statistically independent of one another,



