
Physics 566: Quantum Optics I 
Problem Set 3 

Due: Thursday Sept. 13 2023 
 
Problem 1:  Magnetic Resonance:  Rabi vs. Ramsey  (25 Points) 
     The technique of measuring transition frequencies with magnetic resonance was pioneered by I. 
I. Rabi in the late 30's.  It was modified by Ramsey (his student) about 10 years later, and now serves 
as the basis for atomic clocks and the SI definition of the second.  All precision atomic 
measurements, including modern atom-interferometers and quantum logic gates in atomic systems, 
have at their heart a Rabi/Ramsey-type geometry. 
 
(i)  Rabi resonance geometry.  Consider a beam of two-level “spins” with energy splitting  

passing through an "interaction zone" of length L, in which they interact with a monochromatic 
field oscillating at frequency w that drives transitions between  and . 

 

 
 
(a) Suppose all the spins start in the state , and have a well-defined velocity v, chosen such that 

, where   is the bare Rabi frequency.  Plot the probability to be in the excited state , 

 as a function of driving frequency .  What is the characteristic “linewidth” of the curve , i.e., 
some characteristic frequency at which  falls off substantially? Explain your estimate in terms of 

the “time energy uncertainty.” 
 (b) Now suppose the spins have a distribution of velocities characteristic of thermal beams: 

, where .  Plot  vs. L  for D=0, 

(you may need to do this numerically).  At what L is it maximized - explain?  Also plot as in (a), 
 as a function of w with  .  What is the linewidth?  Explain in terms of the Bloch-

sphere. 
 
(ii)  Ramsey separated zone method 
As you have seen in parts (a)-(b), assuming one can make the velocity spread sufficiently small, the 
resonance linewidth is limited by the interaction time L/v.  This is known as "transit-time 
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broadening" and is a statement of the time-energy uncertainty principle.  Unfortunately, if we make 
L larger and larger other inhomogeneities, such as the amplitude of the driving field come into play.  
Ramsey's insight was that one can in fact "break up" the p-pulse given to the atoms into two p/2-
pulses in a time t=l/v (i.e. ), separated by no interaction for a time T=L/v.  The free 

interaction time can then made much longer. 
 

 
 

(c) Given a mono-energetic spins with velocity v,  internal state ,  and field at a 

detuning  so that   find: 

 
 ,  ,  
 
and show that mapping of the state on the Bloch-sphere. 
 
(d) Plot  as a function of w.  Plot also for the case of finite spread in velocity as in 

part (b).  What is the linewidth? 
 
 
Problem 2:  SU(2) Interferometers (25 points) 
There is a formal equivalence between a Mach-Zender-type optical interferometer and a so-called 
Ramsey interferometer for any two-level quantum system, which gets its name from the Ramsey 
separated zone method of Problem 1.  We also call this an SU(2) interferometer. 
 
(a) Consider the following optical transformation:  A symmetric beam splitter with transmission 
amplitude t and reflection amplitude r.  
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We can encode a qubit in the two orthogonal paths, “a” and “b”, of a photon.  We then define the 
standard basis 
 

 
 
i.e.,  is with one photon in path-a an no photons in path-b, and vice versa for .  The 
transformation on the basis states is 
 

 
 

Show that the conditions for this map to be unitary are: ,   . 

Write this map as an equivalent (up to a negligible phase) SU(2) rotation on the Bloch sphere.   
 
(b) Show that the transformation in which mode-a gets a phase shift relative to mode-b is an 
SU(2) rotation.  What is the axis and angle of the rotation? 
 

 
(c) Show how to construct an arbitrary SU(2) rotation with phase shifters and a beam splitter. 
 
Now consider a Mach-Zender interferometer 
 
 
 
 
 
 
 
 
 
 
 
The 50-50 beam splitters are thin black lines and the mirrors are thick blue lines.  We assume here 
that the optical path lengths of the two arms of the interferometer are equal.  A phase shifter f is 
placed in the upper arm.   
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 (d) Show that up to a negligible overall phase, the sequence  
 

beam-splitter à mirrors à phase shift àbeam-splitter 
 
is equivalent to the sequence of SU(2) transformations 
 

-x-rotation à -x-rotation  à -z-rotation à -x-rotation 
 
(e) Given the initial state , sketch the evolution on the Bloch sphere corresponding to this 
sequence. 
 
(f) Show that up to an overall phase (which is negligible), the transformation from the input is 

equivalent to the rotation .   Using this, calculate the probability to find the state  at 
the output port given that the state was in  at the input port. 

 
 
Problem 3:  Adiabatic rapid passage (10 Points) 
 
(a) Qualitatively suppose we apply a radiation field with a frequency well below 
resonance  (D <<W) and sweep the field slowly up through resonance, ending well above 
resonance (D>> W), on a time scale much slower that the Rabi frequency T>>W-1, but fast 
compared to spontaneous emission T<<G-1.  Use the Bloch-sphere magnetic resonance 
picture to show that population in the ground state will "adiabatically" be transferred to 
the excited state. 
 
(b) Sketch the eigenvalues of the two-level atom in the RWA as a function of the frequency 
of the laser.  Use the adiabatic theorem of quantum mechanics to explain the transfer of 
population from the ground to excited state, and the constraints on the time scales.   
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