
Physics 566: Quantum Optics I 
Problem Set 5 

Due: September 30, 2025 

Problem 1:  Light forces on atoms (20 Points) 
   Electromagnetic fields can exert forces on atoms.  This is force can be dissipative (the 
basis of laser cooling) or conservative (the basis for optical trapping, such as optical 
lattices).  Suppose we are given a monochromatic, uniformly polarized laser field of the 
form .  The interaction of this field with a two-level atom 

is described by the Hamiltonian in the rotating frame, 

, 

where R is the center of mass position of the atom, and .  

Assuming the internal state of the atom relaxes to its steady state much faster than the 
atom moves, we can neglect the quantum mechanics of the atom's center of mass, and 
treat its motion  as a classical point particle (this is know as the "semiclassical model"). 
The force on the atom is the defined by the expectation value  

, 

where   is the “internal state” of the atoms according to the optical Bloch equations. 

(a) Under these condition show that the mean force on the atom is, , where 

is the "dissipative force" and 

 is the "reactive force", 

with u and v the components of the Bloch vector in the rotating frame relative to the 
incident phase . 

(b) Show that in steady state, the rate at which that laser does work on the atom, averaged
over an optical period is:
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, where  is the photon scattering rate.  

Interpret this result. 

(c) For the case of a plane wave  , show that in steady-state: 

.  This is known as "radiation pressure" or the “scattering force” - interpret. 

(d) For the "reactive force" consider the case of weak saturation, s<<1. Show that

, 

where the optical “dipole force” is    -- interpreted 

the physical meaning of .  

Problem 2:  L-Transitions and the master equation (25 Points) 

     Consider a three-level atom in the so-called "lambda" configuration (because it looks 
like the Greek letter L): 

Levels and  are connected to level  on two dipole-allowed transitions driven by 
lasers at frequencies wL1 and wL2 respectively.  Laser-1 is detuned from resonance by D.  
Difference between the detunings of lasers 1 and 2 is . 

(a) The Hamiltonian for this system (in the RWA) is , where 

, 

where W1,2 are the two Rabi frequencies.  Because there are two laser frequencies, the 
usual unitary transformation to the frame rotating at wL does not apply.  However, one 
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can perform a unitary transformation that makes H time independent.   Define a “rotating 

frame”:  , ,  where . 

 
Show that for appropriate choice of lj we can transform H to, 
 

. 

 
(b) Suppose that level-3 decays to level-1 at a rate G31 and level-2 with rate G32, and the 
total decay rate from level-3 is .  The effective non-Hermitian Hamiltonian 

is .  The (trace preserving) dynamics of the density operator for the 

system is described by the master equation, 
 

,   where   

  
 . 

 
Show that the matrix elements evolve according to: 

 , 

 , 

 , 

 , 

 , 

  

 
These equations describe the full dynamics, including optical pumping (refeeding) and 
saturation.  They’re pretty complicated to solve.  Often, we can obtain good 
approximation and physical insight by using solely non-Hermitian Schrödinger evolution, 

, as we studied in class.   When possible, one should do this. 
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