
Physics 566: Quantum Optics I 
Problem Set #7 

Due: Wednesday Oct. 8, 2025

Problem 1: Dark states (25 points) 
Let us consider again a three level “lambda system” 

The two ground states are resonantly coupled to the excited state, each with a different 
Rabi frequency. Taking the two ground states as the zero of energy, then in the RWA 
(and in the rotating  frame) the Hamiltonian is 

(a) Find the “dressed states” of this system (i.e. the eigenstates and eigenvalues of the total
atom laser system).  You should find that one of these states has a zero eigenvalue,

This particular superposition is called a “dark state” or uncoupled state because the laser 
field does not couple it to the excited state.  

(b) Adiabatic transfer through the “nonintuitive” pulse sequence.  Suppose we want to
transfer population from  to . A robust method is to use adiabatic passage, always 
staying in the local dark state. This can then be on resonance.  If we apply a slowly varying 
pulse  overlapped, but followed by  shown below, we accomplish this transfer 

Sketch the dressed state eigenvalues a function of time. Explain the conditions necessary 
to achieve the adiabatic transfer. 
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(c) As discussed in lecture, when including spontaneous emission of the excited state, the 
atom will “relax” to the dark state.  This is known as coherent population trapping (CPT).  
In class we solved this under the conditions of adiabatic elimination.  Let’s return to this 
here, under the condition of strong coupling.  Consider, for simplicity, the case that 

, and the atom decays with equal rates to the two ground sublevels:  

 

Write the master equation in the basis , where 

 is the dark-state and  is the bright-state.  Show that 
 

  

 
Comment on this representation. 

 
(d) Show that the equations of motion for the density matrix in this basis are  
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, ,  

,    

and the steady state solution is , i.e., the system relaxes to the dark-state.   
Epilogue:  The relaxation to the dark state is somewhat mysterious from the equations of 
motion since a spontaneous decay of along one of the two paths sketched above CANNOT 
land us in the dark state – we land in  or .  Actually, we relax to the dark state when 
we DO NOT see a spontaneous decay.  Not seeing spontaneous emission is information 
too.  We’ll return to this later when we study “quantum trajectories.” 
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Problem 2: Autler-Townes (25 Points) 

Consider a 3-level atom, with one ground state, coupled through two different laser fields 
to two excited states in a “V-configuration”.   

For the transition, , the laser weakly excites the atom, and can be detuned from 
resonance.  The transition  is tuned on resonance and can be highly excited.  The 
goal of this problem is to study the effect of the strong  coupling on the optical 
response on the  transition. 

The density matrix for the atom evolves according to the Master Equation, 

, 

where the “effective” non-Hermitian Hamiltonian in the RWA is, 

. 

(a) Show that the equations of motion of the density matrix elements are,
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(b) Under the assumption of weak excitation of , in order to find the response on the 
 transition, we need only retain terms to first order in .  Coherence  is 

dominated by the strong field, . Further we will assume .  Show that in steady 
state in these approximations, 

,   ,   . 

(c) Put all this together to show that the population excited into  is 

 

Plots  as a function of , normalized in units of , for different coupling 

strengths on the auxiliary transition, , are shown below. 

For no coupling, we see the familiar Lorentzian lineshape.  As the coupling increases so 
that , we see the line split into a doublet known as the Autler-Townes splitting.   

A more intuitive understanding of the origin of the Autler-Townes doublet is to think 
about the “dressed states” of atom+laser.  The strong laser field on the  dresses 
the atom.  The weak laser then probes the absorption from the dressed states. 

(d) Find the dressed states of the  two-level system, coupled on resonance 
(diagonalize of the Hermitian part of the  Hamiltonian matrix in the 
subspace).  Based on the eigenvalues and eigenvectors, explain the doublet. 

(e) Explain the physical difference between Autler-Townes splitting and EIT.  Under
what conditions are they equivalent? 
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