Physics 566: Quantum Optics I
Problem Set #7
Due: Wednesday Oct. 8, 2025

Problem 1: Dark states (25 points)
Let us consider again a three level “lambda system”

The two ground states are resonantly coupled to the excited state, each with a different
Rabi frequency. Taking the two ground states as the zero of energy, then in the RWA
(and in the rotating frame) the Hamiltonian is
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(a) Find the “dressed states” of this system (i.e. the eigenstates and eigenvalues of the total
atom laser system). You should find that one of these states has a zero eigenvalue,
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This particular superposition is called a “dark state” or uncoupled state because the laser
field does not couple it to the excited state.

(b) Adiabatic transfer through the “nonintuitive” pulse sequence. Suppose we want to
transfer population from | gl> to | g2>. A robust method is to use adiabatic passage, always

staying in the local dark state. This can then be on resonance. 1f we apply a slowly varying
pulse Q,(#) overlapped, but followed by €2,() shown below, we accomplish this transfer

Sketch the dressed state eigenvalues a function of time. Explain the conditions necessary
to achieve the adiabatic transfer.



(c) As discussed in lecture, when including spontaneous emission of the excited state, the
atom will “relax” to the dark state. This is known as coherent population trapping (CPT).
In class we solved this under the conditions of adiabatic elimination. Let’s return to this

here, under the condition of strong coupling. Consider, for simplicity, the case that
Q, =Q, =Q, and the atom decays with equal rates to the two ground sublevels:

Write the master equation in the basis {| D)= % ,| B
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| D) is the dark-state and | B) is the bright-state. Show that
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Comment on this representation.
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(d) Show that the equations of motion for the density matrix in this basis are
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and the steady state solution is p** =|D){D|, i.e., the system relaxes to the dark-state.
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Epilogue: The relaxation to the dark state is somewhat mysterious from the equations of
motion since a spontaneous decay of along one of the two paths sketched above CANNOT
land us in the dark state — we land in | g1> or ‘ g2> . Actually, we relax to the dark state when

we DO NOT see a spontaneous decay. Not seeing spontaneous emission is information
too. We’ll return to this later when we study “quantum trajectories.”



Problem 2: Autler-Townes (25 Points)

Consider a 3-level atom, with one ground state, coupled through two different laser fields
to two excited states in a “V-configuration”.
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For the transition, |3) <>|1), the laser weakly excites the atom, and can be detuned from
resonance. The transition |3)«>|2) is tuned on resonance and can be highly excited. The
goal of this problem is to study the effect of the strong |3) <> |2) coupling on the optical
response on the |3) <> |1) transition.

The density matrix for the atom evolves according to the Master Equation,
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where the “effective” non-Hermitian Hamiltonian in the RWA is,
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(a) Show that the equations of motion of the density matrix elements are,
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(b) Under the assumption of weak excitation of |1), in order to find the response on the
|3) <> 1) transition, we need only retain terms to first order in Q,. Coherence p,, is
dominated by the strong field, Q,. Further we will assume T’, <<T,. Show that in steady
state in these approximations,
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(c) Put all this together to show that the population excited into |1) is
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Plots p,, as a function of A, normalized in units of 1_—12 P53, for different coupling
1

strengths on the auxiliary transition, Q,, are shown below.
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For no coupling, we see the familiar Lorentzian lineshape. As the coupling increases so
that Q, > T, we see the line split into a doublet known as the Autler-Townes splitting.

A more intuitive understanding of the origin of the Autler-Townes doublet is to think
about the “dressed states” of atom+laser. The strong laser field on the |3) <> |2) dresses
the atom. The weak laser then probes the absorption from the dressed states.

(d) Find the dressed states of the |3) <> |2) two-level system, coupled on resonance
(diagonalize of the Hermitian part of the 2x2 Hamiltonian matrix in the |3),|2)
subspace). Based on the eigenvalues and eigenvectors, explain the doublet.

(e) Explain the physical difference between Autler-Townes splitting and EIT. Under
what conditions are they equivalent?
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