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Using correlated photons from parametric down-conversion, it is possible to measure the absolute quantum
efficiency of photon detectors.  The technique is also applicable to measuring the intrinsic absolute radiance
of a photon source.  This measurement allows absolute calibration of both a source and a detector without
making relative measurements against externally calibrated sources or detectors.  This paper examines the
underlying physics of correlated photon production and parametric down-conversion and discusses
applications to detector and source calibration.
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I.  Introduction

For most people quantum mechanics is one of the more
difficult areas of physics to understand.  While its successes
are most impressive, its inability to convincingly explain
several basic experiments without invoking arguments of
almost religious significance is distressing.  Hence, the
philosophical foundations of quantum mechanics remain the
source of considerable controversy.

On the other hand, classical physics is easier for most
people to understand as the explanations for observed
phenomena can be related to common experiences.  Often,
quantum mechanics appears to pursue Òodd theoriesÓ to
explain phenomena which in many cases can be explained
with semi-classical arguments.  Many of the great quantum
successes such as explanations of Bremsstrahlung radiation,
the Lamb shift, spontaneous emission, vacuum polarization,
blackbody radiation, the Raman effect, the Compton effect
and the photoelectric effect all have easily understood semi-
classical explanations [1].  The success of some theorists at
explaining what appear to be quantum effects with semi-
classical theories does little to enhance the image of
quantum mechanics in the mind of nonbelievers.  There are
however, some processes that cannot be explained
classically such as the scattering of light by light and
spontaneous parametric scattering of light (SPSL).

This paper, will examine one of these phenomena with
real-world applications which only have an explanation in
quantum mechanics.  Specifically, this paper will examine
correlated photon production from parametric down
conversion (PDC) and its applications to absolute calibration
of both detectors and radiometric sources without
comparison to externally calibrated standards.

Throughout the literature, PDC is sometimes referred to as
spontaneous parametric scattering of light (SPSL) [2] and
parametric fluorescence [3].  Here the phenomena will be
referred to as parametric down conversion (PDC).

While PDC in a nonlinear medium can be explained with
classical arguments, the spontaneous generation of photon
pairs with only the presence of a pump laser, or spontaneous
parametric fluorescence, is a purely quantum effect requiring
quantization of the field and quantized vacuum fluctuations

[4].  PDC is normally classified as a three-wave mixing
nonlinear effect.  However, due to vacuum fluctuations,
PDC can occur with only a single input beam.  The other
two beams result from the PDC process itself.  The pump
beam spontaneously decays into signal and idler beams at
wavelengths longer than the pump provided energy and
momentum are conserved in the crystal.  The designations of
ÔsignalÕ and ÔidlerÕ are historical and date to when
parametric amplification was first demonstrated in
microwave cavities.

Spontaneous PDC results in the production of paired
photons, one in the signal beam and one in the idler.  The
photons are correlated with almost absolute certainty, hence,
the presence of one indicates the existence of the other [2].
This property makes possible a variety of unique
applications such as highly accurate transmission and
absorption measurements of material samples [4], measuring
the linear refractive index of nonlinear materials at
wavelengths where strong absorption occurs [4], and the
subject of this paper, absolute calibration of photon detectors
[5] and radiometric sources [6].

II.  Parametric Down Conversion

PDC is a three wave mixing phenomena which occurs in
the presence of a χ(2) non-linearity.  This effect is usually

seen in crystals with a second order nonlinear component to
the polarizability.  Under the right conditions, energy is
transferred from the pump to the signal and idler beams.
The Ôright conditionsÕ are known as the phase matching
conditions.  They require conservation of momentum and
energy within the crystal.  These conditions are expressed as

isp ωωω +=
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where ω and k are the frequency and wave vector of the

various beams within the crystal.  The subscript p signifies
the pump, s the signal and i the idler.  ∆k accounts for any
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mismatch in phase among the three beams.  Ideally ∆k is

zero.  Non-zero values arise from the finite length of the
nonlinear crystal.  The phase matching conditions are rather
stringent constraints and are difficult to meet.  In general,
they can only be met in a nonlinear crystal.

To understand PDC, we turn to quantum mechanics and
follow a derivation along the lines of that published by
Louisell and Yariv [7].  While it is possible to understand
most of the physics from a classical derivation, the classical
result cannot explain the phenomena of spontaneous
parametric fluorescence.  The quantum development
requires quantization of the electromagnetic field and the
vacuum.  A review of field quantization can be found in
texts such as [8].  The goal of the present development is to
obtain time-dependent equations for the creation and

annihilation operators )(ö tas
+ , )(ö tas , )(ö tai

+  and )(ö tai  of

the parametric modes ωs and ω i.  (Note:  The notation

)(ö tas
+  is used for the Hermitian conjugate of )(ö tas .)

For the present development, we use a formalism which
couples a classical pump with two quantum modes of the
field, the signal and the idler.  This development is sufficient
to understand PDC.  However, to fully understand the
dynamics of the process and obtain a theoretical
understanding of how closely in time the paired photons are
created, a multi-mode or contimuum of modes development
as presented in [9] is necessary.

Usual development begins by considering the EM fields in
a cavity of finite volume.  Later this volume is extended to
fit the nature of the problem.  For this presentation, the
initial volume can be that of the nonlinear crystal.  While not
specifically presented, rather than extending the volume to
include more field modes, it is appropriate to apply cyclic
boundary conditions.

Beginning with a cavity volume, the fields are given as

t
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where A is the field vector potential A(r,t) and r  is the
position vector.  Classically, the vector potential is expanded
as a set of cavity modes as
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Usual boundary conditions require that tangential

components of uk and normal components of ku×∇
vanish.  Normalization requires

∫ =
V
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The free-field Hamiltonian is given as

∫ +=
V

o dVHEH )( 22
8
1

rr
π .

Using dqk/dt = pk, applying boundary conditions and some
vector identities, we can rewrite the Hamiltonian as

∑ +=
k

kkko qpH )( 222
2
1 ω .                   (3)

Next we quantize the free-field Hamiltonian by replacing

the quantities pk and qk with Hermitian operators kpö  and

kqö  which satisfy the commutation relations

]ö,ö[0]ö,ö[ '' kkkk qqpp ==   and  '' ]ö,ö[ kkkk ipq δh= .

kpö  and kqö  are in-turn expressed in terms of the non-

Hermitian operators kaö  and +
kaö  as

))(ö)(ö()2/()(ö tatatq kkkk += +ωh ,          (4a)

))(ö)(ö()2/()(ö tataitp kkkk −= +ωh ,         (4b)

and the commutation relations for kaö  and +
kaö  are found to

be

'' ]ö,ö[ kkkk aa δ=+ ,

]ö,ö[0]ö,ö[ '
++== kkkk aaaa .

Then the free-field Hamiltonian (3) can be rewritten as

∑ += +

k
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kaö  and +
kaö  are the usual Heisenberg annihilation and

creation operators respectively.  They satisfy the usual
equations
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kkkkk nnnaa =+ öö ,

11ö ++=+
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1ö −= kkkk nnna ,

where nk is the number of photons in the state kn  and

kkk naa ööö =+ , the number operator.  As kaö , +
kaö  and oHö  are

all Heisenberg operators, their equations of motion are

kkokkdt
d aHaai ö]ö,ö[ö ωhh == ,                (5a)

+++ −== kkokkdt
d aHaai ö]ö,ö[ö ωhh ,            (5b)

with solutions

ti
kok
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keata ω++ = ö)(ö ,      (5c)

indicating as expected for a free-field Hamiltonian, the total
number of photons in mode k is constant in time.

To enable coupling between various modes of the field,
we introduce a nonlinear relative dielectric constant of the
form

)()cos(1),('1),( rfttrtr ϕωεεε +∆+=+= ,    (6)

where f(r) is yet to be specified.  We assume ∆ε is weak and

ϕ is some arbitrary phase.

With Eq. (6), the Hamiltonian now has the form of

'ööö HHH o += ,

where
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V
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8
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r
επ .

This interaction Hamiltonian is more easily recognized in
the form

∫=
V
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Given Eq. (4) and a little math, the equation for 'öH  is found
to be

∑ −−+−= ++
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''', )öö)(öö()cos()('ö
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kkkkkk aaaaCttH ϕωh ,

(7)

where the coupling coefficients Ck,kÕ are given as

∫
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V
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With the nonlinear relative dielectric constant, we return
to Eqs. (5) and use the complete Hamiltonian to calculate

equations of motion for kaö  and +
kaö  as

∑ −++= ++−++
+
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(9)

and the equation for kaö  is the Hermitian conjugate of (9).

Equation (9) and its Hermitian conjugate will couple
modes of frequency ω, ωk and ωkÕ if the coupling coefficient,

Ck,kÕ is nonzero for some k and kÕ.  This requires the
unspecified function f(r) be nonzero over some region.  In
general, most choices of f(r) will result in coupling an
infinite number of modes.  Classical derivations are able to
limit the coupling to only a few modes.  The quantum
approach however, requires careful selection of the pump
frequency to limit coupling to only two modes.

In the absence of mode coupling, Eq. (5c) gives the time

dependence of kaö  and +
kaö .  Combining with Eq. (9) and its

Hermitian conjugate and employing first order perturbation
theory, we see that

∑ −++−+
+

−+=
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Notice that conditions on ω and ωkÕ are such that they give

rise to a time dependence for +
kaö  of  (iωkt).  This places

restrictions on ω and ωkÕ.  That is, the time dependence of
+
kaö  requires that the coupled modes result in changes in +

kaö
synchronous with the free-field behavior.  Much like in the
rotating wave approximation, terms which are not
synchronous result in a rapid beating of one state against
another which averages to zero on any relevant time scale.

With the above development and restrictions, we have two
modes coupled by a pump beam at frequency ω.  We shall

now refer to these modes as the signal and idler at
frequencies ωs and ω i , such that ω= ωs+  ωi.  Then

considering only these modes, Eqs. (7,9) are rewritten as

]öööö[)(ö )()(' ϕωϕω ++−++ +−= ti
is

ti
is eaaeaaCtH h
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and

i
ti

sssdt
d aiCeaia ööö )( ϕωω +++ −= ,              (10a)

s
ti

iiidt
d aiCeaia ööö )( ϕωω +++ −=             (10b)

plus their Hermitian conjugates.  Here C is the coupling
coefficient for the two modes in question.  These equations
show signal and idler photons being created or annihilated in
pairs at the expense of a pump photon.  This is the
parametric down conversion process.  In this mode, the
crystal also functions as an amplifier and hence, such
applications of crystals are often given the general name
Ôoptical parametric amplifiersÕ or OPAs.  The PDC effect
has other modes of operation which are equally interesting
but not the subject of this paper.  One such mode is when
ω= ωs- ωi, then the effect functions as a frequency converter.

Notice that from Eq. (10), we see that

)öö()öö( iidt
d

ssdt
d aaaa ++ = .                        (11)

These are known as the Manley-Rowe relations [5].  As the

number operator is defined as sss aan ööö +=  (with the identical

form for the idler), it is clear from Eq. (11) that the number
of signal photons exactly equals the number of idler photons.
This is critical to the use of PDC for absolute calibration of
detectors.  Signal and idler photons are exactly correlated.
One implies the presence of the other.

The solutions for Eqs. (10) are found to be

))sinh(ö)cosh(ö()(ö CtaieCtaeta so
i

io
ti

i
i +−− += ϕω ,   (12a)

))sinh(ö)cosh(ö()(ö CtaieCtaeta io
i

so
ti

s
s ϕω −= ++ ,    (12b)

plus their Hermitian conjugates.  These are similar to
equations presented by other authors [5].  Recall that C is the
coupling coefficient for the two modes.  Later we will see
that C is actually the exponential amplification coefficient.
From Eqs. (12), it follows that

)(sinh)ö1()(coshö)(ö 22 CtnCtntn soioi ++=
]öööö)[2sinh(2

1 ϕϕ i
soio

i
soio eaaeaaCti −+ −++ ,     (13a)

)(sinh)ö1()(coshö)(ö 22 CtnCtntn iosos ++=
]öööö)[2sinh(2

1 ϕϕ i
soio

i
soio eaaeaaCti −+ −++ .     (13b)

Equations (13) are different from their classical
equivalents.  The factor of Ò1Ó indicates that even when the
initial number of signal and idler photons are zero

( 0öö == soio nn ), we still get equal numbers of signal and

idler photons in the output.  This is the result of spontaneous
parametric down conversion.  It results from quantum
fluctuations of the vacuum and represents the equivalent
signal and idler inputs of one photon per mode.  This effect
makes absolute calibration of detector quantum efficiency
and source spectral radiance possible.  The vacuum
fluctuations seed the PDC process and result in paired
photon outputs even with no signal or idler inputs.

III.  Absolute Calibration

It is often said that there are two fundamental problems in
radiometry, having calibrated detectors to measure a source
and having a calibrated source to measure the performance
of detectors.  Conventional approaches usually involve one
of two types of measurements. Either the detector is used to
record the signature of a known calibration source, or the
measurement with the unknown detector is compared to one
made with a previously calibrated detector.  Either way, the
result is a measurement calibrated against a chain of
measurements leading back to some primary calibration
standard.  Calibration of the primary standard usually relies
on a well controlled process where a calorimeter is used to
record some energy input.  These techniques always involve
a change entropy.  No matter how precisely such procedures
are performed, there are always sources of error.

Calibration using paired photons from PDC is somewhat
unique.  The techniques are relatively new and somewhat
unknown in the world of radiometry.  First, the process is
exceedingly simple.  Calibrations do not require comparison
of measurements to a standard or accounting for various
system efficiencies.  Second, the process is absolute and self
consistent.  Two detectors of unknown quantum efficiency
are used to calibrate one another.  The calibration is absolute
because it is based on one very simple fundamental physical
process, PDC.  Third, even with an unknown detector, it is
possible to absolutely calibrate the spectral radiance of an
unknown source without comparison to another detector or a
standard.  Finally, it is possible to use detectors and sources
which operate in different parts of the spectrum to calibrate
one another (UV to thermal IR depending on the crystal and
phase matching conditions).

Because the process is simple and robust, anyone with a
small laser and the right nonlinear crystal can have absolute
calibration.  There is no need for expensive standards or
sending sensors out to be externally calibrated.

A.  Absolute Detector Calibration

Absolute calibration of photon detectors relies on the
absolute correlation of paired photons from the spontaneous
PDC effect.  The goal is to calibrate the quantum efficiency
of some detector within a given range of wavelengths
centered on λs or λ i, the signal or idler wavelengths.  All that
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is required is a PDC system generating photons at the
desired wavelength and a detector sensitive at the idler
wavelength.  Neither detector need be calibrated.

In theory, it is possible to absolutely calibrate both
detectors at the same time.  In practice however, due to
issues associated with experiment setup, one detector is used
to precisely calibrate the other.  Which detector gets
calibrated is arbitrary and only depends on the setup.  The
roles can be interchanged with a suitable change in optical
components.

ωidler

ωsignal

ωpump

FIG. 1.  An illustration of the various beams in
spontaneous PDC.  The geometry shows one possible
arrangement obeying the phase matching conditions.  Notice
that the signal and idler beams are oriented at different
angles from the pump.  Photons from the two beams are
perfectly correlated.

First we look at the basic procedure where both detectors
are calibrated.  This will show the simple nature of the basic
technique.  Then we discuss the more practical case where
both detectors are used but only one results in an absolute
calibration.  The technique is along the lines of that
published in numerous journal articles [2,6,10-13].

Consider a situation where the signal and idler detectors
exactly intercept signal and idler photons with conjugate
matched spectral bandwidths.  If in a given time, N photons
strike the signal detector, then in the same time exactly N
photons will strike the idler detector.

If the quantum efficiency of the signal and idler detectors
are η s and ηi respectively, then the number of counts

registered by each detector is given as

Ns = ηs N     and     Ni = ηi N,                 (14)

and the coincident count rate is given as

Nc = ηi ηs N.                               (15)

From Eqs. (14-15), the absolute quantum efficiency of each
detector is

ηi = Nc / Ns     and     ηs = Nc / Ni .             (16)

Theoretically, this is all that is required to absolutely
calibrate two detectors.  Collect counts for the single

detectors and the coincident events and form simple ratios.
The calibration is absolute, there are no constants or curve fit
parameters.  However, the procedure is a bit more difficult
in practice making it possible to calibrate only one detector
at a time.

The difficulty in simultaneously calibrating two detectors
has to do with production of the paired photons.  When a
photon pair exits the crystal, the geometry is not quite as
shown in Fig. 1.  The actual geometry is three dimensional.
The photons emerge from the crystal in cones centered on
the pump beam axis.  A single pair of photons will emerge
along conjugate vectors, but subsequent pairs of conjugate
photon vectors can be located anywhere around the cone.

ωidler

ωsignal

ωpump

(a)

ωsignal

ωidler

ωpump

(b)
FIG. 2.  (a) Pairs of photons emerge from the crystal in

cones along conjugate vectors which can be oriented
anywhere around cones centered on the pump beam.  (b) An
end view of the colored cones emerging from the crystal.
The colors here are notional.  The pump has the shortest
wavelength while the idler has the longest.  The width of the
cones depends on the phase matching properties of the
crystal.

The width of the cones depends on how precisely the
phase matching conditions are met within the crystal and
what spectral bandpass a given phase matching geometry
will allow.  When placing detectors to intercept signal and
idler beams, they need to be some distance from the crystal
to minimize the detection of out-of-band photons.  Generally
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this is accomplished with narrow bandpass filters and
precisely placed apertures.  However, the quantum
efficiency measurements resulting from Eqs. (14-16) yield
the total quantum efficiency.  Fresnel losses at filters, miss
aligned or miss centered apertures, and miss positioned
detectors all result in lowering the number of photons a
given detector sees.  Thus if one is not careful, the quantum
efficiency calculated, while absolutely correct for the
experimental setup, will be of limited accuracy for the
individual detector.

The solution to this problem is to calibrate only one
detector at a time.  That detector has a broad entrance
aperture with no filters to ensure it collects all photons
conjugate to the second.  The second detector has a small
entrance aperture very precisely defining the center
wavelength and bandpass the detector sees.  A narrow
bandpass filter is also used to eliminate stray photons from
scattering within the crystal.  While this arrangement
reduces the counts detected by the second detector, this does
not affect the calibration of the first detector.

If the detector to be calibrated is the signal detector, then
the idler detector should have the narrow entrance aperture
and narrow bandpass filter.  Again, individual detector and
coincidence counts are recorded and the quantum efficiency
of the signal detector is given as

ηs = Nc / Ni = ηs ηi N  /  ηi N.                  (17)

As shown in Eq. (17), the filters and apertures which reduce
the apparent quantum efficiency of the idler detector cancel
out in the equation.  We are left with an absolutely calibrated
signal detector.

There is one other problem which can arise while using
this technique for detector calibration.  That is the problem
of coincidence detection.  We know that the paired photons
are produced almost simultaneously.  Early experiments
suggested the photons were produced within a few
nanoseconds of one another [14], however, more recent
measurements suggest that the time delay is on the order of
100ps [15].  This latter value is in excellent agreement with
a full multi-mode theoretical treatment by Hong and Mandel
[9].

If the time gate used for the coincidence circuitry has a
characteristic width of τg, then we will have a finite rate of

coincident counts from random detection overlap given as

bc = Ns Ni τg.

If this background coincidence rate is to have negligible
effect, then it is necessary that Nc >> bc.  This suggests that

N τg  << 1,

which effectively limits the photon arrival rate at either
detector.  This says that we must keep the intensities and the
count rates low.

B.  Absolute Source Calibration

There are times when one needs to calibrate a source
rather than a detector.  A technique similar to that used for
detector calibration can be used to measure the absolute
spectral radiance of a source.  The technique results in a
measure of source brightness in the fundamental quantum
unit of photons per mode.  One research team refers to this
unit of measure as the plank [16].  However, there remains
confusion in the literature as to exactly what constitutes one
photon per mode [6,16-18].

Photons per mode is a measure of spectral radiance
although Klyshko [16] prefers to call this the spectral
concentration of radiance as it has units of W/m2-µm-sr.

The two most common values given for one photon per
mode are

3/ λhc      and     52 / λhc .

Both are correct but the usage depends on how the spectral
interval is specified.  When the spectral interval is measured
in units of wavelength, the spectral radiance equals

one photon per mode = 52 / λhc    (W/m3-s-sr).

When the spectral interval is measured in units of frequency,
the spectral radiance equals

one photon per mode = 3/ λhc    (W/m2-sr).

The units (per sr) do not come about from the constants
themselves.  It is necessary to remember that the spectral
radiance is measured over some collection solid angle, or
radiated into some solid angle.  Klyshko [16] notes that at
λ=1 micron, one photon per mode is roughly 0.6

W/angstrom-cm2-sr.

ωidler

ωsignal

ωpump

input 
signal

FIG. 3.  The basic setup for stimulated PDC.  Notice that
the signal and idler designations have been reversed.  Their
order does not matter but it made sense to keep the PDC
signal associated with the input signal.  Notice also that the
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PDC process generates the idler wave.  Since the idler
photons are conjugate pairs with the signal photons, the
idler beam contains all the information about the IR source
but at a visible wavelength.

To calibrate the absolute spectral radiance of a source, we
again use paired photons from PDC.  We also make two
separate measurements and ratio their results to arrive at the
desired quantity.  However, the overall approach is
somewhat different as source calibration relies on the
stimulated PDC process.

Stimulated PDC is another process which occurs in
nonlinear crystals.  When a weak signal is brought in such
that it is aligned with the internal phase matched signal beam
in both wavelength and direction, it stimulates the PDC
process resulting in paired signal and idler photons.  The
idler beam is at a different wavelength.

To see how the input signal beam affects the number of
photons in the signal and idler beams, we return to Eqs. (13).

ionö  represents the initial number of idler photons which is

zero.  sonö  is the initial number of signal photons.  This is the

number of photons input into the crystal from the IR source
to stimulate the PDC process.  It is an unknown at this time.
Then, dropping the phase terms as we are only concerned
with the time average values, we find that Eqs. (13) can be
rewritten as

)(sinh)ö1()(ö 2 Ctntn soio += ,               (18a)

)(sinh)1()(coshö)(ö 22 CtCtntn soso += .      (18b)

Notice the term )ö1( son+  in Eq. (18a).  The 1 represents the

one photon per mode contribution of vacuum fluctuations.
In the last term of Eq. (18b) we see another 1.  This was left
in the equation to emphasize its origins.

Assume that the unknown source radiates somewhere in
the SWIR and that the pump laser, crystal and phase
matching conditions are selected such that the idler beam
will be in the visible (or near visible Ð still in the sensitive
detection range for silicon).  To make an absolute
radiometric calibration of the source, we place our detector
on the idler beam and make two measurements: one with the
source signal entering the crystal, the other with it blocked.

If we define )(ö ONniout  as the idler output when the source

signal is allowed to enter the crystal, and )(ö OFFniout  as

the idler output when the source signal is blocked, we find
that their ratio

so
so

iout

iout n
Ct

Ctn

OFFn

ONn
ö1

)(sinh]1[

)(sinh]ö1[

)(ö
)(ö

2

2

+=+= .

The ratio of these two measurements gives a spectral

radiance of )ö1( son+  photons per mode.  Then, the absolute

spectral radiance of the source is

so
iout

iout n
OFFn

ONn
ö1

)(ö
)(ö

=−  photons per mode.

Thus, we can use PDC to exactly calibrate an unknown
thermal source.  The measurement does not require a
calibrated detector.  The source black body temperature can
be calculated from

)ö/11ln(
)(

soB

k

nk
KT

+
=° ωh

,

where kB is the Boltzman constant.

C.  Results of Published Experiments

Aside from being interesting physics, the theory of
detector and source calibration also has practical
applications.  Results of a number of experiments appear in
the literature but it is not the focus of this paper to simply
recount these.  Mostly what is learned from reviewing
published experiments are the details of the laboratory setup.
While based on simple physical principles, the experiments
are not trivial to implement.

In one experiment, Migdall et al. [6] set out to measure the
spectral radiance of a source at 3.415 and 4.722µm.  They

used a 457.9nm Argon ion laser as the pump and a LiIO3

crystal cut with the optic axis inclined 33.6° from surface

normal.  The conjugate photon pairs were at 0.5288 and
3.415µm and 0.5065 and 4.722µm.  Their setup was defined

as Type 1, with the pump being an extraordinary ray and
both the signal and idler being ordinary rays with the same
polarization.  The radiance was measured along the visible
idler beam using a silicon avalanche photodiode.  Results of
the PDC measurement were compared with results from a
detector calibrated by the National Institute of Standards
(NIST).  The two measurements agreed to within 3%.  This
is excellent agreement for two such measurements.
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Pump

IR Source

LiIO3

Crystal
λIR Out

λvis Out

Lens
Filter and
Detector

FIG. 4.  Experimental setup used by Migdall et al. [6] for
absolute source calibration.

One question left open by the Migdall experiment is that
of which measurement contained the error.  It is most likely
that both measurements had some error as techniques for the
PDC approach are still being refined.  Unfortunately it is
being reported by some that the NIST experiments
demonstrated the PDC technique to be within 3% of
absolute.  It is likely in the future that NIST will use the
PDC technique as the new absolute standard.

Table 1.  Results of source calibration experiment [6].

In-Band Spectral 
Radiance 

(photons/mode) λλλλ=3.415µµµµm λλλλ=4.772µµµµm
Conventional 
Measurement

0.6057 +/- 
0.0130

1.6455 +/- 
0.0322

Correlated 
Photon 

Measurement

0.5947 +/- 
0.0117

1.6575 +/- 
0.0186

In another experiment, Migdall et al. [5] demonstrated the
PDC technique for calibrating a photo multiplier tube at four
separate wavelengths.  In this experiment, the second
detector was an avalanche mode silicon photodiode.  The
pump beam was from an Argon ion laser at 351.1nm.  The
nonlinear crystal was KDP with the optic axis inclined 52°
to the surface normal of the input face.  The four conjugate
wavelength pairs (signal and idler) selected for the
calibration were

APD 702nm 608nm 633nm 788.6nm
PMT 702nm 831nm 789nm 633.2nm

Note that the first set of wavelengths constitute the
degenerate point where signal and idler are identical.  The
polarization was Type 1.  Comparison of the PDC
calibrations with calibrations against conventional NIST

standards demonstrated agreement to within 3.13% at one
wavelength and within less than 1% at the other three
wavelengths.  These results are shown in Fig. 5.

What is important to note in these experiments is that
while detector and source calibration experiments are really
in their early stages, they already compare favorably with
calibrations against precision standards at NIST.  The reason
the two experiments by Migdall et al. were discussed here is
that they were conducted at NIST where the research teams
have direct access to primary calibration standards rather
than equipment with a second, third or fourth generation
calibration pedigree.  Standards and calibration are of
course, primary functions of NIST.  They are working with
PDC calibration techniques to assess their suitability for
replacing existing primary standards.  The other important
point is that these calibrations did not involve any process
with a large change in entropy.  The experiments are
conceptually simple.  Details of these and other experiments
are available in some of the references [2,5-6,9-13,16-18].

Percent Error Between Conventional Measurement 
and Correlated Photon Measurement
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FIG. 5.  Results of the absolute detector calibration
experiment by Migdall et al. [5].

IV.  Other Applications of PDC

The parametric down conversion process has a number of
other applications which include parametric amplification,
frequency conversion, a parametric oscillator, a precise
source of temporally correlated photons and a source of non-
classical squeezed-state light.  Even a brief treatment of all
these applications is beyond the scope of this paper.
However, optical parametric amplification is sufficiently
similar to absolute detector calibration that it warrants a brief
discussion.

Equations (12-13) are a representation of the equations for
the parametric amplification process.  If we are concerned
with the time averaged number of photons resulting on both
the signal and idler branches for the general PDC effect,
Eqs. (13) become

)(sinh)1()(cosh 22 ττ CnCnn soioi ++= ,    (19a)
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)(sinh)1()(cosh 22 ττ CnCnn iosos ++= .    (19b)

The time dependence has been replaced with τ, the

interaction time for photons crossing the region of the crystal
where three wave mixing occurs.  We have also changed
from the operator notation, nö , to an average number
notation, n .  Recall that C was the coupling coefficient
between the modes.  From Eqs. (1-2,8) we see that C is
proportional to the square of the total electric field within the
crystal.  Hence, C is the gain coefficient.  For any reasonable

value of C, the cosh2 and sinh2 arguments reduce to τCe2 .
We shall define this quantity as the gain G, where

τCeG 2= .                                (20)

In a general application, the optical parametric amplifier
(OPA) will have pump and signal inputs, much like shown

in Fig. 3.  Hence, the input conditions will be 0=ion  and

ssoso Pn ωh/=  where Pso is the power of the input signal.

This assumes the input signal is quasi-monochromatic which
is required for the phase matching conditions.  Combining
Eqs. (19-20), we find the expected outputs from the signal
and idler beams as

Gnn soi )1( += ,                             (21a)

Gnn sos )1( += .                             (21b)

To be more precise, since this is a stimulated emission
effect, Eq. (21b) should be written as

GGnnGnn sososos ++=++= )1()1( .

When G is not overwhelming, depletion of pump energy is
not an issue and these equations are appropriate.  When the
gain is very high, depletion of the pump must be considered
and the development of Brunner [4] should be followed.  For
small input signals, gains on the order of 104 to 105 are not
uncommon [19].

One application of optical parametric amplification is to
imagery.  It is possible to inject an image into the OPA as
the input signal.  When overlapped with a strong pump, an
amplified image is produced along both signal and idler
beams.

An OPA has significant advantages over other amplifier
techniques.  When combined with a sub-nanosecond pulsed
pump laser, the OPA allows one to achieve precise time
gating and frequency selection with significant optical gain
and frequency agility.  In a recently published series of
experiments, Cameron [19] applied an OPA to a LIDAR
system and demonstrated the ability to form optical images
of targets obscured by dense clouds.  The OPA provided

both precise time gating for scatter rejection as well as
amplification to boost the weak return signal.

V.  Summary

This paper has briefly discussed some of the physics of
paired photon production from parametric down conversion
and its applications to the absolute calibration of sources and
detectors.  Conventional calibrations involve either relating
one measurement to more basic physics in yet another
measurement, or comparison of the measurement in question
against one made with a ÒcalibratedÓ source or detector.
Such approaches require one to trust the calibration given.

In contrast, the PDC effect allows absolute calibration of
both sources and detectors.  With relatively basic optical
laboratory equipment, it is possible to use the PDC effect to
absolutely calibrate both detector quantum efficiency and the
absolute spectral radiance of a thermal photon source.  The
calibration is based on fundamental physical processes.
There are no conversion coefficients, fudge factors or
assumptions that part of some measurement contains only a
small error.  For either type of calibration, one simply takes
the ratio of two different photon counting (or intensity
measuring) events and has the answer.
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