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The use of spontaneous parametric down-conversion (SPDC) to produce the entangled 

two-photon state (called the biphoton state) for experimental purposes is relatively new.  

This paper explores the early experimentation and theoretical treatment of Hong, Ou, and 

Mandel (HOM) upon their entangled photon interferometer.  The photon-photon 

interference picture of this experiment is compared with an HOM interferometer which is 

slightly modified.  The modified HOM interferometer demonstrates the necessity for 

considering all possible path amplitudes of a self-interfering biphoton and shows the 

limitations of the photon-photon interference picture.  These theoretical and experimental 

studies foster a deeper practical understanding of quantum coherence and provide 

examples of uniquely quantum behavior. 
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I.  INTRODUCTION 

 

Despite the demonstration of the theoretical rigor of quantum optics in explaining experimental results 

[1], it is humbling to realize that optical interference experiments are still being carried out – indicating a 

still developmental stage of quantum optics and the physical understanding of results.  A system commonly 

studied is the biphoton whereby two photons are generated by the same quantum event and are hence 

entangled.  The description of these experiments can hardly be complete without a theoretical and 

experimental overview of photon-pair production processes [2,3], and the detection process [4].  These are 

subjects in and of themselves which in turn introduce concepts such as the EPR paradox [5], 

complementarity [6], and quantum entanglement [7].  Hence, this paper is not a historical review of the 

field, but rather of theoretical and experimental elements, cogent to the clear understanding of the system 

quantum state and its interference and coherence properties.  

The standard way of producing an entangled two-photon state is through spontaneous parametric 

down-conversion (SPDC).  Typically, a UV beam interacts with a nonlinear medium.  The nonlinear 

interaction acts to “split” the incident photon into two output photons, the signal and idler, of lower 

frequencies, 1ω  and 2ω , where 21 ωωω +=p .  In this photon-pair production process only pω  is well 

defined whereas 1ω  and 2ω  can vary, but must satisfy the energy conserving frequency-sum condition 
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above.  In practice, sets of apertures and interference filters select degenerate photon pairs ( 21 ωω ≅ ) 

which result from the crystal phase-matched condition, sip kkk
���

+= .  The actual bandwidth of this 

selection determines the bandwidth of the detected photon wave-packets.  See [8] for a review of relevant 

coherence properties of the SPDC process. 

The jth beam with a conically spread wave-number, k, at the output of the nonlinear medium is 

quantized with the electric field operator [3] 

 

( ) ( ) ( )
�

−⋅+ =
k

ti
jkjkj

jkeaEtE ωrkˆˆ     (1) 

where 
2/1

02 �
�
�

�

�
�
�

�
=

Qjk

jk
jk Vn

iE
ε

ω�
;         (2) 

jkn  is the index of refraction experienced by the jth photon at frequency jkω ; QV  is the quantization 

volume.  The pump field is a classical wave-packet with relatively long coherence time modeled as, 
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To the first order in perturbation theory the signal-idler pair is (ignoring the vacuum component) 

 

( ) ( ) ( )( ) ( ) ( ) ( )0     33 kakakkkkkkdkdFd ispisppp ′′−−′′−−′=Ψ �
���������

δωωωδωω  (4) 

 

where all the constants and slowly varying functions have been taken under ( )pF ω  which varies as a 

Gaussian.  The delta function in k-space indicates the phase matched condition which the apertures are 

carefully arranged to fulfill.  The limits of the integration are defined by interference filters placed before 

the detection equipment.  Additional terms in the expansion are not necessary because the probability 

amplitudes for the generation of further photon-pairs are much smaller.  Again, the degree to 

which ( ) ( )kk is

��

′= ωω  is determined by interference filters placed before the detectors.  So we may write 

 

( ) spisFd ωωωωωω −==Ψ � ,      (5) 

 

where ( )ωF  is now a weighting function peaked at sip ωωωω === 2/  [9]. 
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II. THE HONG, OU, MANDEL, EXPERIMENT AND MUTUAL PHOTON INTERFERENCE 

  

To demonstrate the salient features of biphoton interference we examine two experiments.  The first is 

an early biphoton interference experiment, the title of which belies a main motivation of resolving short 

optical pulse information, not introducing an entire class of quantum optical experiments: “Measurement of 

Subpicosecond Time Intervals between Two Photons by Interference,” performed by Hong, Ou, and 

Mandel (HOM) [9].  In this experiment, two photons are generated by SPDC.  Here, an Argon-ion beam of 

frequency pω  (corresponding to the 351.1 nm line) interacts with an 8 cm long nonlinear crystal of 

potassium dihydrogen phosphate (KDP).  The apertured interference filters have a bandwidth of 12105×  

Hz ( 21 ωω ≅ ) which result from the mode-matched condition.  Figure 1 shows the setup.  The 

coincidence rate of D1 and D2 is determined by counting 

detections occurring within the 7 ns temporal resolution of the 

counter.  Hence, ignoring incidentals, only if both photons 

reflect (rr case) or both transmit (tt case) through the beam 

splitter will coincidences occur.  The beam splitter can be 

adjusted an amount cx ⋅= δτδ , say, to vary the pathlength 

associated with each possibility.  This slowly introduces 

distinction between the different paths which affects the 

coincidence count.  The coincident counting is the 4th order 

interference of the field, or intensity correlation  [4], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tEtEtEtEKP ++−− ++= 122112
ˆˆˆˆ τττ       (6) 

 

Where, for example, ( ) ( )τ++ tE2
ˆ  is the positive frequency 

component of the field operator at D2 which caused the 

detector to fire at a time difference of τ after D1 (for positive τ ); K  is a constant scaling the detector 

efficiency.  For any single position of the beam-splitter τ  varies as a Gaussian.  It should be noted here 

that the photon beam temporal coherence is not longer than the several nanosecond resolution of the 

counter.  Hence, the sinusoidal second order interference that would be present with a variation of δτ  is 

not present at either detector.  If we assume ideal degenerate mode-matching with 0=δτ  to obtain 

probability amplitudes for the tt and rr cases, we obtain 

( ) ( ) ( ) ( ) ( ) ( )tERitETtE si
+++ += ˆˆˆ

1       ( ) ( ) ( )( ) ( )( )tERitETtE is
+++ += ˆˆˆ

2  (7)  

( )( ) ( )( )[ ]tEtE +− = 2,12,1
ˆˆ †

. 

Fig. 1. Diagram of the Hou, Ou, Mandel 

optical setup.  AF denotes the Aperture-

interference filter combinations.  The BS is 

the beam-splitter, and D1 and D2 are 

photomultiplier detectors.  
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Putting (7) into (6) results in,  

( ) ( ) 0222
12 =−+= RTRTKP τ ,          (8) 

for a 50/50 beam-splitter.  So there are no coincidence counts for this ideal condition.  In reality, the finite 

bandwidth of iω  and sω  is demonstrated as the beam-splitter is moved from this null position, making a 

nominally non-stochastic delay of δτ2  between detection times.  Over the integration time, the finite 

bandwidth leads to, 
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where ( )τg  is the normalized Fourier transform of ( )ωF  and represents the temporal width associated 

with the interference filters.  Multiplying the last term in Eq. (9) is a normalized temporal convolution of 

the two photons wavepackets.  The integration limits are infinite because this temporal width is much 

greater than the coherence time of the photons.  For a Gaussian ( )ωF  we let 

( ) ( ) 2/ 2δτωτ ∆−= eg           (10) 

so that (9) becomes 
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The results of this equation and experimental data are shown in Fig. 2.  The solid line is calculated using 

Eq. (11) for the experimentally derived value of 95.0/ =TR .  Incomplete contrast in the data is most 

likely due to imperfectly aligned beams, introducing a slight distinguishability in the two paths.  The 16-

mµ bandwidth of the coincidence dip corresponds to 100 fs of relative delay, corresponding to the 

temporal coherence defined by the interference filter passband.  The visibility of this dip is about 100%, 

twice that expected for classical field amplitudes [10].   

This experiment, then, resolves the temporal coherence of the photon wave-packets.  These strictly 

quantum effects are visible because the biphoton is a quantum phenomenon as represented in theory by the 

state-vector describing all possible paths.  Detection schemes nonlinear in the field, such as the Hanbury-

Brown—Twiss arrangement as used in this case, brings out the quantum nature of the biphoton.  The 

authors’ analysis was that the interference was simply between the individual photon E-field amplitudes, 
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and that the dip-width was a measure of the temporal convolution of the two single-photon wave packets.  

By describing the coincident E-field at the detectors then, the indistinguishable pathways were 

automatically summed and squared.  This is a very classical concept which works because the photons are 

incident on the beam-splitter at the same time.  The next experiment introduces a more generally correct 

way to think of the signal and idler photons, and the single quantum state they describe.   

 

 

 

II.  THE STREKALOV, PITTMAN, SHIH EXPERIMENT AND THE BIPHOTON SELF-

INTERFERENCE 

 

Ideas in quantum optics commonly evolve through gedanken experiments specifically devised to 

demonstrate differences between classical and quantum-mechanical concepts.  A model example of this 

approach can be studied in [11].  Similarly, after the HOM experiments, another generation of experiments 

emerged, specifically to demonstrate that the interference observed in the HOM experiment was not due to 

any local mutual interaction of the photons at the beam splitter (a classical phenomenon), but really the 

interference of the different possible path amplitudes of the single biphoton state.  That is, the biphoton 

interferes with itself.  Typically, the experiments keep the two photon incidences at the beam-splitter 

spacelike so that they never coincide at the beam-splitter at the same time (e.g., [12], [13], [14]).  Most 

experiments have the quantum mechanical expectation of 100% interference visibility, but result in less-

than 50% [14].  This leaves open the possibility of a classical, hidden-variable, interpretation of results.  

Recently a spacelike experiment by Strekalov, Pittman, and Shih (SPS) [13], succeeded in eliminating the 

hidden-variable interpretation by producing a nearly 100% visibility result.   

In its construction, the SPS interferometer is merely a variation of the HOM interferometer, but its 

interpretation forces a more complete analysis of the biphoton.  In this experiment, as shown in Fig. 3, 

Fig. 2 The experimental near 100% interference dip

in coincidence counts (dashed curve).  Solid curves

represent the theoretical and fitted theoretical results

expected from Eq. (11) (after Hong et al., 1987) [9].
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LS LLL << 0  such that, for 0=xδ , LLLLL SL ∆=−=− 00 .  In this way, upon emerging from 

the KDP, each photon can travel three possible distances.  L∆  is within the dynamic range of the BS 

adjustability when δτδ cLx 22 =∆= .  It seems clear that there should be two coincidence dips for 

Lx ∆=± δ2 , the delay-compensation positions of the beam-splitter.  Because only half the photons have 

either path length SL  or LL , then over the integration time of the detection, these dips should now have 

50% visibility.  Taking the approach of HOM, then, it also seems clear that no interference will occur 

around the 0=xδ  position because, in this case, no two photons experience the same pathlength.  The 

result of the experiment, shown in Fig. 4, however, does show an interference dip at this central position 

and it has high visibility.   

To explain this phenomenon it helps to examine all potential pathways of the two photons as clearly 

shown in Feynman-like diagrams with space along one axis and time along the other [15].  Several 

interesting features become evident.  First, it is clear in Fig. 5 that there are four possible path amplitudes in 

the description of the biphoton probability.  Second, photon pairs are not detected at the same time.  Third, 

the photons do not overlap in time at the beam-splitter, negating the possibility of a local-interaction picture 

explaining any result.  Two of the paths have D1 firing t∆  before D2, and the other two have D1 firing 

t∆  after D2; these two types of firings are distinguishable in principle, but in this experiment t∆  is not 

resolved by the discrimination window of the coincidence counter.  In this treatment, despite the lack of 

experimental resolution, all the amplitudes distinguishable in principle are taken into account.  Hence, all 

Fig. 3. Scheme of the SPS experiment.  SL  and LL are the short and long

pathlengths to the beam-splitter, for the signal beam, respectively.  0L  is

the pathlength for the idler beam. 
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four paths, which are indistinguishable in this experiment, are nonetheless summed and squared.  This 

analysis by SPS is different from that of HOM because here the biphoton state is expanded according to its 

possible path amplitudes and is treated as interfering with itself, rather than the more classical concept of 

photons fields interfering with each other. 

 

 

Fig. 4. Experimental results of the SPS experiment with the high-contrast center

peak (after Strekalov, et al., 1998) [15]. 

Fig.5. Feynman-like diagrams showing the different path 

possibilities of the biphoton state (after Strekalov, et al., 

1998) [15]. 
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To begin an explanation of the results, we follow the treatment of SPS throughout and start with the 

general equation for the rate of coincidence counts time-averaged over the detection time of detectors D1 

and D2 

( ) � � ΨΨ∝ ++−−
T T

c EEEEdTdT
T

xR
0 0

212121
ˆˆˆˆ1  ,φ       (12) 

where T  is the integration time associated with the coincidence counter, 2,1T  are the absolute detection 

times such that 21 TT −  is the amount of time between counts of the detectors.  With Ψ  defined as Eq. 

(5), we get  

( ) 2
21

2

212121 ,ˆˆ0ˆˆˆˆ TTEEEEEE Ψ≡Ψ=ΨΨ ++++−−    (13) 

where ( )21 ,TTΨ  is the biphoton state in terms of the absolute detection times.  To put this in more 

meaningful notation let ( )cLTt jjj /−=  where jL  is the pathlength taken to the jth detector and let 

21 TTT −=−  21 TTT +=+  21 ttt −=−  21 ttt +=+  ( ) cLLT SLSL /0,, += . (14) 

Rearranging, we get two expressions discriminating the four amplitudes easily.  The first,  

tTt ∆±= −− ,           (15) 

discriminates amplitude set {(a),(b)} from set {(c),(d)} (referring to cases in Fig. 5), or, which ones had D1 

fire before D2 vs. the other way around.  The second, 

SLTTt ,−= ++ ,          (16) 

discriminates amplitude set {(a),(d)} from set {(b),(c)}, or, which set had a photon going along LL  vs. SL .  

Hence, it is apparent that the four amplitudes can be completely distinguished in a basis recognizing 1) 

which detector fires first and 2) which path, SL  or LL , was taken by the signal beam.  Having established 

notation completely determining all amplitudes, we may finally express, 

( ) ( ) ( ) ( ) ( )LSSL TTTATTTATTTATTTAtt −++−++−−+−−=Ψ +−+−+−+−+− ,,,,, ττττ        (17) 

where reference [3] shows each amplitude term can be written in the form 
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( ) pctitt eeeAttA λπσσ /
0

2222

, +−−++ −−−
+− = .         (18) 

In Eq. (18), +σ  is the coherence time of the pump laser and can be considered constant over the detection 

time, T ; cohlc 2/=−σ  is associated with the coherence time of the biphoton itself, which is not resolved 

in the longer detection time, T .  In this way, the Gaussian envelope functions in Eq. (18) have the effect of 

keeping all the different amplitudes indistinguishable in this setup.  Substituting Eq. (18) into the following 

reconfigured equation equivalent to Eq. (12), 

( ) ( )� � +−+− Ψ∝
T T

c ttdTdT
T

xR
0 0

2,1  ,φ ,        (19) 

to get  
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We can now explain all of Fig. 4.  These three terms agree with the experiment remarkably well and are 

present in Fig. 4 as lines following the data.  The central peak is modulated by φcos  where φ  is the 

nominal phase difference between beams exiting the LL  vs. SL  pathlengths.  This phase was controlled to 

determine the sense of the peak.  It is interesting to note that the central interference pattern arises for a 

setting of the beam-splitter which, classically, would not allow interference. 

 

IV. CONCLUSION 

 

Two experiments have been examined.  The HOM experiment introduces the idea of mixing SPDC-

produced entangled photons on a beam-splitter and interference effects are explained by the signal and idler 

photons’ quantized electric fields undergoing fourth-order interference.  However, the HOM method does 

not generally predict the outcome of the biphoton experiment.  The SPS experiment intends to demonstrate 

the necessity of considering the single biphoton state as the entangled signal and idler photons.  Only by 

describing the biphoton state in terms of all distinguishable path probability amplitudes are the SPS results 

understood.  This approach considers the signal and idler photons as entangled sub-systems of the biphoton 

state.  Hence, it is not generally correct to treat the interference of entangled photon states as individual 

photon wave packets interfering with each other -- despite the fact that quantum optical experiments of this 

type have traditionally been referred to as two-photon interferometry.  
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