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A review of electromagnetically induced transparency is given. A semiclassical
Hamiltonian is used to show that atomic coherence can inhibit absorption and
enhance dispersion in the adiabatic limit. Experimental demonstrations and
applications are discussed. The nonadiabatic effects are derived in the c-number
Langevin formalism, and shown to give rise to correlate the phase of two
incident fields.

PACS numbers: 42.50.Gy, 42.50.Ct, 32.80.-t, 42.50.Hz

I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] occurs when a coherent superposition of

atomic states inhibits optical transitions via destructive interference. This is induced in a three

level Λ-type atomic system (Fig. 1) by applying an electromagnetic field to each single photon

transition. Under these conditions a medium which is strongly absorptive in the presence of one

field can become completely transparent when the second field is applied. This behavior is

accompanied by rapid variations in the index of refraction, creating the novel situation of strong

dispersion with little or no absorption. These unique properties have a wide range of

applications in quantum optics, including subrecoil atomic cooling [2], adiabatic population

transfer [3], lasing without inversion (LWI) [1], ultraslow light propagation [4], pulse matching

and phase correlation [5], and the enhancement of nonlinear processes such as nondegenerate

four wave mixing, frequency conversion [6], and two photon absorption [7].

This review is comprised of two sections. In section II a brief review of the semiclassical

theory in the adiabatic following approximation is given which demonstrates the atomic

coherence and strong dispersion associated with EIT, and a discussion of a demonstrative

experiment is given. This allows an understanding of many of the applications listed above, but

a detailed analysis of each of these is beyond the scope of this article. In section III the c-

number Langevin formalism is used to demonstrate pulse matching and phase correlation which

are not seen in the adiabatic theory.
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II. THE SEMICLASSICAL APPROACH

A. Dark States and Electromagnetically Induced Transparency

A schematic of the two fields E1 and E2 and the three level system is shown in Fig. 1. It is

assumed that in the electric dipole approximation E1 only couples the states 1  and 3 , and E2

only couples the states 2  and 3 , as in the case of a ground state with hyperfine splitting. The

population decay rates from 3  to 1 , and 3  to 2  are γ1 and γ2, respectively, and the total

decay rate from 3  is written as Γ= γ1 + γ2. The two lower states are taken to be very long lived,

and population decay between them is neglected, but dephasing of coherent superpositions of

the ground states is included as the dephasing rate γ0. This dephasing rate can be attributed to

the long but finite lifetimes of the ground states, and to collisions in a gaseous sample. The

detunings are defined as ∆ = (ω1 - ω31), and δ = (ω2 - ω1) – (ω32 - ω31), where ωi is the

frequency of the field Ei, and ωjk is the transition frequency between the states j  and k . Thus

∆ is recognized as the one photon detuning, and δ is recognized as the Raman detuning. Doppler

effects are ignored.

With the basis vectors defined as 1  = (1,0,0), 2  = (0,1,0), and 3  = (0,0,1), the density

matrix is transformed to a frame rotating as

      ( ) ti
1212

ti
2323

ti
1313 e~̂ˆ   ,e~̂ˆ   ,e~̂ˆ δδ+∆−∆− ρ=ρρ=ρρ=ρ .               (1)
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Fig. 1: The Λ-type atomic levels. ∆ and δ are the
detunings from the one and two photon resonances,
respectively.γ0 is taken to be a pure dephasing rate.
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The Hamiltonian in this basis can then be written as
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where Ωi≡(℘ 3iEi)/� are the Rabi frequencies, and ℘ 3i is the dipole moment. The decay rates are

added phenomenologically by writing the relaxation terms as
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and adding them to the equations of motion:

             [ ] jkjkjk R̂~̂,Ĥ
i
1~̂ +ρ=ρ
�

� .              (4)

These equations are not analytically solvable, and approximations are required to proceed.

But before doing so it is possible to demonstrate the atomic coherence that is at the heart of EIT.

To do so we transform to a set of orthogonal basis states defined as − = cosθ 1 -sinθ 2 , + =

sinθ 1 +cosθ 2 , and 3 = 3  under the transformation [8]
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θθ
θ−θ

=
100
0cossin
0sincos

T ,              (5)

where sinθ = Ω1/Ω, cosθ = Ω2/Ω, and Ω = (Ω1
2 + Ω2

2)1/2. The Hamiltonian is transformed by

1TĤTĤ −=′ , giving
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This Hamiltonian is written in the basis − = (1,0,0), + = (0,1,0), 3 = (0,0,1). Thus the off-

diagonal elements represent the coupling strength between the states, and it can be seen that the

−  state is no longer coupled to the excited state (H –3 = 0). This decoupling occurs because the

1  and 2  states are out of phase in this superposition, and the dipole moments coupling these

two states to the excited state destructively interfere. This is commonly referred to as the dark

state. On the other hand, in the +  state the two ground states are in phase, so the dipole

moments add, and the +  is strongly coupled to the excited state (H+3 = -�Ω/2). This is referred

to as the bright state. The dark state is coupled to the bright state by H -+= (�δsin(2θ))/2, and

therefore the system will absorb photons unless H -+= 0. This occurs when Ω1 = 0, which

corresponds to simple optical pumping via Ω2 into the 1=−  state, or when δ = 0, which

corresponds to Raman resonance. This is the condition for EIT. In this case the steady state

population will be trapped in the dark state and the absorption of both fields will approach zero.

One interesting feature of the dark state is that the populations of the 1  and 2  in the

superposition state are weighted by the field strengths Ω2 and Ω1. This means that once EIT is

established, one can control the populations of the ground states by slowly changing the

intensities of the two fields. Thus it is possible to shift the population from the lower of the two

ground states to the upper one. This is referred to as adiabatic population transfer, and is used in

both cw and pulsed systems to highly populate an upper ground state which is normally not

populated. The population can be made greater than 1/2 (the saturation limit), and can be used

as a ground state in another optical process (such as interactions with a fourth level) [9].

Conversely, one can create a dark state with maximal coherence (|ρ12| = 1/2). Such a state

can then be used as an atomic local oscillator and mixed with a third laser beam to generate

light at the sum and difference frequencies. Since the absorption is low for atoms in the dark

state the atomic density can be made very high, increasing the efficiency of the mixing process.

Furthermore, it can be shown that the third order nonlinear susceptibility of atoms in the dark
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state is resonantly enhanced, though a derivation of this result lies beyond the scope of this

review. These effects were demonstrated by M. Jain et al. [10] in an optically thick 208Pb vapor

(a Λ-system), in which the transmission coefficient of the E2 pulse in the absence of coherence

would be e-300000. This strong absorption was completely eliminated with EIT. The dark state

was generated with maximal coherence with λ1 = 406 nm, λ2 = 283 nm, and then a third pulse

was applied at 425 nm to generate the sum frequency field at 293 nm with a conversion

efficiency of ~40%. Similar techniques were used to enhance nondegenerate four wave mixing

with cw fields in an optically thick 87Rb vapor by Yong-qing Li et al. [11].

To demonstrate strong dispersion in the presence of almost zero absorption the first order

optical susceptibilities of the EIT feature can be derived from the original equations of motion

(Eq. 4) by making the adiabatic following approximation. In this approximation the relaxation

of the upper state is taken to be much faster than the time scale over which the populations

change: γ1,2 >> Ω1,2. The population of the upper state ρ33 is therefore negligible when

compared with that of the lower states ρ11 and ρ22, and can be dropped from the equations of

motion. The resulting equations are then solved in steady state, giving the absorption and

dispersion for the Ei field: χ’’∝  Im(ρ3i), and χ’∝  Re(ρ3i). To simplify the final results it is

convenient to consider one field to be a strong coupling field, and the other to be a weak probe

field, though the choice of field is arbitrary. Keeping terms of lowest order in Ω1,2/γ1,2 one finds

that for a strong coupling field Ω1, the relevant matrix element for the propagation of the probe

field Ω2 is

        ( ) ( )( )

1

0

2
12

32 2/ii4
1

2/i2
~

−

�
�
�

�
�
�

Γ−δ+∆γ−δ
Ω−

Γ−δ+∆
Ω=ρ   .              (7)

The real and imaginary parts of this expression for various strengths of the coupling field and

relaxation rates as a function of the Raman detuning are shown in Fig. 2. It can be seen that in

the middle of the normal Lorentzian two level absorption profile (centered on the one photon

resonance ∆+δ = 0) is a dip of width ∆ωEIT ≈ γ0 + Ω1
2/(2Γ), centered on the Raman resonance δ

= 0. Associated with this dip is a strong dispersion as shown in Fig. 2(a). In Fig. 2(b), it can be



6

seen that the depth of the dip in the absorption is determined by γ0, which is simply the lifetime

of the dark state coherence − = cosθ 1 -sinθ 2 .

B. Experimental Demonstration

A nice experimental demonstration of these phenomena was made by A.S. Zibrov et al. in a

gas cell of 87Rb [12]. The three level system was realized in the D1 transition by coupling the Fg

= 1 and Fg = 2 hyperfine ground state manifolds of the 5S1/2 level to the single upper state

hyperfine manifold Fe = 2 in the 5P1/2 level with right-hand circularly polarized light near 795

Fig. 3: The energy levels for the D1 transition in 87Rb. Three Λ-
systems are created with rhcp light. The thick and dashed arrows
represent the strong coupling and weak probe fields, respectively.
H is a weak magnetic field used to couple population out of the Fg
= 2, mFg = 2 state. the repump field is not shown.

-2 -1 0 1 2
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

χ''

∆ = 0
Ω1/Γ = 0.5

 γ0/Γ = 0.001
 γ0/Γ = 0.2
 γ0/Γ = 2.0

N
or

m
al

iz
ed

 S
us

ce
pt

ib
ili

tie
s

Normalized Raman Detuning δ/Γ

-2 -1 0 1 2
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 ∆ = 0
Ω1/Γ = 0.2
γ0/Γ = 0.001

χ'

χ''

N
or

m
al

iz
ed

 S
us

ce
pt

ib
ili

tie
s

Normalized Raman Detuning δ/Γ

Fig. 2:(a) The real and imaginary susceptibilities showing the strong
dispersion and dip in absorption for EIT. (b) The imaginary susceptibility
for three different ground state coherence lifetimes γ0.
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nm, as shown in Fig. 3. In this way three degenerate Λ systems are created. Note that linearly

polarized light could not be used because the (Fg = 2,mFg = 0) to (Fe = 2,mFe = 0) transition is

dipole forbidden, meaning that a strong coupling cannot be created on this transition, so there

would be strong absorption on the (Fg = 1,mFg = 0) to (Fe = 2,mFe = 0) transition. Also, a weak

magnetic field H was applied so that atoms would not become trapped in the (Fg = 2,mFg = 2)

state. These details are mentioned to highlight some of the issues which were ignored in the

theoretical model above.

Zibrov et al. measured the transmission of the probe beam with a simple photodetector, and

the phase lag with a Mach-Zehnder interferometer. They also applied a weak incoherent (150

MHz linewidth) repump beam to redistribute population out of the lowest state. The atomic

number density was relatively high, ~1012 cm-3. This was done to accentuate the high

transimissivity of a medium which would normally completely absorb the 5 µW probe. The 10

mW coupling field was resonant with the one photon transition (∆ = 0), and the probe was

swept through the Raman resonance, giving the data shown in Fig. 4, which agrees with the

narrow dip in the absorption and the attendant strong dispersion predicted by Eq. 7. It should be

Fig. 4. Experimental demonstration of EIT by A.S. Zibrov et
al. Trace a is the transmission of the probe field as a function
of detuning. Trace b is the phase shift measured by
interferometry. Box iii is a close-up of box ii.
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noted that the transmission of the probe exceeds 100% on Raman resonance. This is due to the

repump beam, and demonstrates the phenomenon of gain without inversion, the essence of LWI

[1].

Another fascinating experiment which takes advantage of the first order susceptibilities in

EIT was performed by L.V. Hau et al. [4]. Noting that the group velocity of a pulse is given by

          

p
pp

g n)(n

cv

ω∂
∂ω+ω

= ,              (8)

Hau et al. used the steep variation in the refractive index associated with  EIT (as in Fig. 2(a)) to

dramatically reduce the speed of a pulse in a gas of ultracold sodium atoms. Since the

absorption was almost zero due to EIT they were able to cool the sample to 50 nK in a 4 Dee

trap, creating an almost pure Bose-Einstein condensate ( ≥90% of atoms in 4 Dee trap ground

state), and thus a very high atomic density. They show that a pulse travelling through the 229

µm long gas cloud was delayed by 7.05 µs from a pulse traversing free space, indicating that the

light speed in the cloud was an amazing 32.5 m/s. Because these pulses are moving so slowly,

they are interacting with the cloud for times approaching the dephasing time γ0
-1; Hau et al. note

that this sets the ultimate limit on the propagation rate of the pulses.

Another interesting aspect of this experiment is that these pulses are spatially compressed:

the 2.5 µs pulse used by Hau is 750 m long in free space, but only 42 µm long in the cloud. S.E.

Harris et al. [9] note that this creates very high optical energy densities in the cloud, and thus

allows one to observe nonlinear phenomena at very low light intensities.

III. THE C-NUMBER LANGEVIN APPROACH

The semiclassical model in the adiabatic limit gives an excellent introduction, and illustrates

many of the essential features associated with EIT. But it has been shown that in the adiabatic

limit the model ignores some of the higher order effects of EIT. Specifically, a perturbative

approach demonstrates that the applied fields can develop phase correlations due to the
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nonadiabatic response of the atomic system (the atoms have a finite ‘memory’). In this section a

perturbative approach is used in the c-number Langevin formalism to describe these effects [5].

With the atomic operators σjk defined in the usual way for density matrix elements we write

the Hamiltonian for a single atom in the rotating wave approximation as

{ }
( ) ( ){ }32223223111311

)s(
22211133322110

)s(
0

ˆâˆâgˆâˆâgÎ

ˆˆˆn̂n̂Ĥ

ÎĤĤ

σ+σ+σ+σ=

σε+σε+σε+ω+ω=

+=

++
�

� ,              (9)

where iii âân̂ +=  is the number operator for the ith field, εj is the energy of the jth level, and gi is

the coupling strength given by

�

� i3

0

i
i AL2

g
℘

ε
ω

= ,             (10)

in which A is the beam cross section, L is the interaction length. The superscript (s) denotes the

Schrödinger picture. The Hamiltonian is recast in the interaction picture, giving

      ( ) ( ) ( ) ( )( ){ }ti
322

ti
2322

ti
311

ti
1311 eˆâeˆâgeˆâeˆâgtÎ δ+∆−δ+∆+∆−∆+ σ+σ+σ+σ= � .            (11)

The time evolution of the atomic operators follows from

    ( )[ ] ( )tF̂R̂ˆ,tÎ
i
1ˆ jkjkjkjk

.
++σ=σ

�
,             (12)

where Fjk(t) are quantum noise operators which are used to include the phase diffusion effects of

coupling to the vacuum reservoir [5]. The fluctuation forces for different atoms are

uncorrelated. The atomic relaxation rates are considered much slower than those of the reservoir

as in the Markov approximation [1]. The noise operators have zero mean value, and are delta-

function correlated in time

     ( ) ( ) ( )ttDtFtF kjjkkjjk ′−δ=′ ′′′′  ,             (13)
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where Djkj’k’ is the single atom diffusion coefficient. With this Hamiltonian we can write the

equations of motion for the atomic operators as

      ( ) ( ) ( ) ( )tF̂.a.H~̂âig.a.H~̂âigˆˆ 3323221311332133
.

+−σ−−σ−σγ+γ−=σ ++  ,             (14)

      ( ) ( )tF̂.a.H~̂âigˆˆ 11131133111
.

+−σ+σγ=σ +  ,             (15)

      ( ) ( )tF̂.a.H~̂âigˆˆ 22232233222
.

+−σ+σγ=σ +  ,             (16)

      ( ) ( )tF̂~̂âig~̂âig~̂i~̂
121322321112012

.
+σ+σ−σγ−δ−=σ +  ,             (17)

      ( ) ( )tF̂~̂âigˆˆâig~̂
2

i~̂
1312221133111313

.
+σ+σ−σ−σ�

�

�
�
�

� Γ−∆=σ  ,             (18)

      ( ) ( ) ( )tF̂~̂âigˆˆâig~̂
2

i~̂
2321112233222323

.
+σ+σ−σ−σ�

�

�
�
�

� Γ−δ+∆=σ  ,             (19)

where a transformation has been made to frame rotating as in Eq. 1. For correspondence, it can

be shown that these equations of motion reduce to the semiclassical equations (Eq. 4) with the

substitutions ai = 1, gi  = - Ωi/2.

In order to describe the propagation of the two fields through the sample we follow the

approach of P.D. Drummond et al. [13] in which the quantized field operators 2,1â  are replaced

by space and time dependent complex amplitudes ( )t,z2,1α  which obey the Maxwell equations

in the slowly varying amplitude and phase approximation,

      ( ) ( )t,zNigt,z
z

c
t 3iii σ=α�

�

�
�
�

�

∂
∂+

∂
∂  .             (20)

where N is the mean number of atoms in the sample, and σ13(z,t) and σ23(z,t) are continuous

versions of the atomic operators, and can be derived by summing over the individual atoms and

positions. Since these are sums of the individual atomic operators, they obey the same equations

of motion as the individual atom operators, but the noise operators must be modified to include

the new spatial dependence, giving the correlations
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( ) ( ) ( ) ( )ttzz
N
LDt,zFt,zF 'k'jkj'k'jjk ′−δ′−δ=′′  .             (21)

After making these substitutions into the equations of motion, the equations of motion and

the Maxwell equations may be solved by assuming that both the atomic and field variables have

a time dependence which only causes small fluctuations about their steady state values:

( ) ( ) ( )t,zxzxt,zx δ+= . For simplicity we take the fields to be on resonance for both the one and

two photon transitions (∆ = δ = 0). To find the steady state behavior we drop the time

derivatives and quantum noise fluctuations, which reduces the equations of motion to algebraic

expressions. After a modicum of algebra, the resulting expressions for ( ) ( )z and z 2313 σσ  are

used in the Maxwell equations, giving

     

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )[ ]zngzng2zngzngznzngg12D

zzn
Dc

Ngg2
z

z
                                

2
2
21

2
1021

2
212

2
121

2
2

2
10

2,11,22,1
0

2
2

2
1

2,1

++Γγγ+γ+γ≡

αγ
γ

−=α
∂
∂

            (22)

where ( ) ( ) 2
2,12,1 zzn α≡ . In Eq. 22 it can be seen that in steady state the propagation of one

field depends only on the amplitude of the other field. Thus there is no coupling of the field

phases in steady state. Furthermore it can be seen that the absorption rate

( ) ( ) Dc/znNgg4z 2,12,10
2
2

2
12,1 γγ=κ             (23)

approaches zero as γ0 approaches zero, as was seen earlier (for δ = 0). These are the same results

derived in section II.

We next solve the linearized equations for the small fluctuations δx(z,t). The algebra is

simplified by restricting the analysis to Fourier frequencies smaller than the fast atomic decay

rates [5]. This limit is taken by making an adiabatic elimination of the atomic variables which

decay with the rate γ1 or γ2, namely, σ33, σ13, σ23, and the sum of the lower level populations σ11

+ σ22 = 1 - σ33. It should be noted that this limit is not really a restriction; we are most interested
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in low frequency fluctuations since Fourier frequencies outside the atomic linewidth interact

only weakly with the system. We then write the field variables as

( ) ( ) ( )t,zi
2,12,1

2,1et,zt,z φα=α   .             (24)

The differential equations for the remaining atomic variables can be transformed to a set of

algebraic equations by making a Fourier transformation [5]. The results are substituted into the

field equations, giving the following expression which governs the propagation of the phase

difference between the fields δφ(z,ω) = δφ1(z,ω) − δφ2(z,ω)

( ) ( ) ( )[ ] ( ) ( )ω+ωδφκ−κ−=ωδφ
∂
∂

φφφ ,zF,zz~iz
2
1,z

z
  .             (25)

where the phase difference damping rate κφ(z) is

( ) ( ) ( )( )

2

2
gg

2
21

2
2

2
1

1

1
c

znznNgg8
z

ω

Γ
+

ΓΓ
+

=κφ             (26)

( )
Γ
+

+γ=Γ 2
2
21

2
1

0g
ngng

2   .             (27)

The term at the far right of the expression for κφ can be recognized as a Lorentzian dip of width

Γg, causing zero damping at ω = 0. This is the EIT feature; note that if we make the

semiclassical substitution gi = -Ωi/2, and take one of the fields to be much stronger than the

other, then Eq. 27 is identical to the semiclassical result for ∆ωEIT. This expression shows that

phase differences between the two fields which occur at a Fourier frequency outside the EIT

width are strongly damped as the fields propagate through the gas cell. This can be understood

by considering that these fast phase differences occur at a rate faster than the superposition state

can follow adiabatically. Thus these frequency components are absorbed by the atomic system.

It is this phenomenon which gives rise to the pulse matching of two pulses on resonance with a

three level system [14].
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The stabilization of the phase of two initially uncorrelated fields suggests using this system

to generate a stable beatnote between two lasers. The stability is ultimately set by the width of

the EIT feature, which may be reduced by reducing the field amplitudes. However, it can be

seen from Eq. 22 and Eq. 23 that as the Rabi frequencies decrease, the absorption increases. The

effectiveness of the system in reducing the phase difference fluctuations is determined by the

ratio of the phase difference damping length 1/κφ to the absorption length 1/κ1,2 [5].

IV. SUMMARY

A review of the optical properties of EIT has been given in the semiclassical picture. The

dark state atomic coherence was derived from the Hamiltonian of a Λ-type atomic system

interacting with two fields. The dark state atomic coherence was shown to inhibit absorption on

Raman resonance, and to allow control of the ground state populations. An experiment was

reviewed which demonstrated that the dark state can be used to increase the efficiency of

nonlinear processes such as frequency conversion. The relevant first order susceptibilities were

calculated and shown to exhibit strong dispersion in the absence of absorption. An experiment

which clearly demonstrated these susceptibilities was reviewed, illuminating some of the details

of EIT in real atomic systems. This experiment also demonstrated the role EIT plays in LWI.

The application of the strong dispersion in the absence of absorption associated with EIT to

ultraslow light propagation and novel regimes of nonlinear optics was introduced. The

nonadiabatic effects have been calculated in the c-number Langevin formalism, and shown to

give rise to phase correlation between the incident fields. Applications of this effects to the

Raman clock were discussed.

Overall, EIT describes a novel set of optical properties, the essence which can be calculated

quite easily. Researchers have found a wide variety of applications for this phenomenon, and

new applications will undoubtedly be reported soon [15].
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