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Abstract

Quantum nondemolition measurements seek to evade the precision limit set

by the Heisenberg uncertainty relation by forcing the measurement back ac-

tion into one of a pair on noncommuting observables. This allows very

precise measurements of the observable of interest. In effect, one measures

an observable while maintaining the value of that observable through the

measurements. In this article, I review the theoretical criteria for quantum

nondemolition measuementsand examine recent experimental results.
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I. INTRODUCTION

Every physicist is familiar with the Heisenberg uncertainty relation: the product of the

uncertainties for two operators is related to the commutator by

∆X∆Y
1

2
X,Y . (1)

For noncommuting operators, this product is non zero. It is a common misconception that

this relationship implies a limit to the precision of a measurement of X or Y . In fact, the

Heisenberg uncertainty relation only applies to a simultaneous measurement of both X and

Y . If one is willing to accept an arbitrarily large uncertainty in one variable, then one can

measure the other variable with arbitrary precision. However, this measurement changes

the state of the system. Often, the state changes such that a second measurement of the

observable of interest is different than the original measurement. A classic example of this

is the Stern-Gerlach experiment. One can measure the spin state of a particle, but the state

is destroyed by the detector. Condsider a state which is an eigenstate of an observable. In

order to gain informataion about this state, one must couple it to another system. Even

though the original state was a stationary state of the original Hamiltonian, it is likely

not a stationary state of the combined Hamiltionian. Therefore, the measurement process

changes the original state.

The Þeld of quantum nondemolition (QND), seeks to make precise measurements of an

observable in ways that preserve the existence of the system and the measured value of the

observable. With such measurements, the back action is shunted onto the noncommuting

variable. These measurements were originally considered for mechanical oscillators. [1]

QND measurements are made by coupling a meter to the system of interest, also called

the signal. The meter and system are allowed to interact and become correlated. An

observable of the meter is measured by some destructive method. Because of the correlation,

the measurement of the meter observable gives information about the system. Ideally, the

meter would have no impact on the observable of interest and would only contain information

about the observable of interest.
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II. THEORY

A. Ideal QND measurements

Consider a system of two non-commuting operators: Xs and Ys. Let this system inter-

act with a meter: Xm and Ym. After the interaction period, the system observables are

unchanged, and the meter is an exact duplicate of the system.

Xs Xs Ys Ys (2)

Xm Ys Ym Xs (3)

Now, a measurement of Ym is also a measurement of Xs. However, any measurement

of Ym will perturb Xm. Since Xm = Ys, any perturbation of Xm will also perturb Ys.

The measurement has changed the state of the system, but not the measured value of the

observable Xs.

B. Non-ideal QND measurements

Because experiments never achieve the theoretical limit, we require some criteria to deter-

mine how well the experiment approximates ideal QND. We must consider three quantities:

(1) the correlation between the system and meter, (2) the impact of the meter on the system,

and (3) the information contained in the measured meter observable which does not come

from the observable of interest. I will follow the analyses of Grangier et. al. [2], Roch et.

al. [3], and Holland et. al. [4]

We deÞne the state of the combined system as a four element vector

=

Xs

Ys

Xm

Ym

. (4)
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The observable of interest is Xs; the measured observable is Ym. The ßuctuations of an

observable are given by

δX = X X . (5)

The ßuctuations after the measurement are then given by

δ out = λ δ in + δ ad (6)

where λ is a matrix which deÞnes the interaction of the meter and system and ad is an

additional noise term. The correlations between the ßuctuations of each operator are deÞned

as a covariance matrix W , given by the outer product of δ with itself.

W = δ δ T (7)

Note that WAbAb = (∆Ab)
2 is the square of the uncertainty or noise in the observable A.

This is a directly measurable quantity. Take the photon number, n, as an example. The

photon number is proportional to the intensity of the electromagnetic Þeld. (∆n)2 is then

related to the power spectral density of amplitude noise. The output covariance matrix in

terms of the input is

W out = λ W in λT +W ad. (8)

For the ideal measurement considered in the previous section,

W in =

∆Xin
s

2
0 0 0

0 ∆Y in
s

2
0 0

0 0 ∆X in
m

2
0

0 0 0 ∆Y in
m

2

, (9)

λ =

1 0 0 0

0 1 0 0

0 1 0 0

1 0 0 0

, (10)
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and

W out =

∆X in
s

2
0 0 ∆X in

s

2

0 ∆Y in
s

2
∆Y in

s

2
0

0 ∆Y in
s

2
∆Y in

s

2
0

∆X in
s

2
0 0 ∆X in

s

2

. (11)

The off diagonal elements of W in are zero since the initial observables are uncorrelated with

each other. However, W out has non zero off diagonals because of the correlations between

the signal and meter cerated by the interaction.

Our three criteria can be found in the elements of the covariance matrix. The correlation

of Xout
s with Y out

m is given by W out
XsY m. The impact of the meter on the system is contained

in W out
XsXs. The noise on the meter is in W

out
Y mY m.

C. Correlation

Instead of working with W out
XsY m directly, it is more convenient to deÞne

WQSP =W
out
XsXs

W out
XsY m

2

W out
Y mY m

=W out
XsXs

W out
XsY m

2

(W out
Y mY m)

2W
out
Y mY m =W

out
XsXs g2W out

Y mY m.

(12)

QSP stand for �Quantum State Preparation.� WQSP indicates how well the meter was

prepared as an exact quantum duplicate of the system. For suitably normalized operators

and shot noise limited states, ∆X = ∆Y = 1. With no correlation, g = 0, WQSP = 1.

However, if the interaction causes a correlation (WQSP < 1) our Þrst criterion is met. Using

the elements of the output matrix from eq. 11, WQSP = 0 for the ideal measurement. If

our initial states are not in a minimum noise state initially, then WQSP > 1. This quantity

is referred to as the conditional variance.
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D. Meter noise

W out
Y mY m written in terms of the input is given by

W out
Y mY m = γms

2 [W in
XsXs +

1

γms
2 ( δms

2W in
Y sY s + γmsδ

∗
msW

in
XsY s + γ

∗
msδmsW

in
Y sXs +

γmm
2W in

XmXm + δmm
2W in

Y mY m +W
ad
Y mY m)], (13)

where γms, δms, γmm, and δmm are elements of the coupling matrix λ. Clearly, the output

signal is not solely a function of the input signal. All of the extra terms contribute to

additional noise on the output. The sum of these terms is relabeled Neq
m , which is a �noise

referred to the input.�

Neq
m =

1

γms
2 [ δms

2W in
Y sY s + (γmsδ

∗
msW

in
XsY s + γ

∗
msδmsW

in
Y sXs +

γmm
2W in

XmXm + δmm
2W in

Y mY m +W
ad
Y mY m)] (14)

Essentially, these terms make our observable of interest appear more noisy. If we assume

that W in
XsY s = 0, then Neq

m is positive or zero. For our QND measurement, Neq
m < 1,

preferably 0. No noise is good noise. The assumption W in
XsY s = 0, means that the input

signal operators are not correlated: a requirement for QND. If the inputs are correlated,

W out
Y mY m measures the whole state instead of Xs. The deÞnition of N

eq
m may also be written

in terms of measurable quantities,

Neq
m =

1

γms
2W

out
Y mY m W in

XsXs. (15)

In the literature, a more common measure is the noise transfer coefficient Tm deÞned as

Tm =
1

1 + (N eq
m )

2 . (16)

Using the elements of the output matrix from eq. 10 and eq. 11, Neq
m = 0 and Tm = 1 for

the ideal measurement.
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E. Signal noise

Just as we deÞned a noise referred to the input for W out
Y mY m, we deÞne a similar term for

additional noise added to the signal.

Neq
s =

1

αss
2 ( βss

2W in
Y sY s + αssβ

∗
ssW

in
XsY s + α

∗
ssβssW

in
Y sXs +

αsm
2W in

XmXm + βsm
2W in

Y mY m +W
ad
XsXs). (17)

In terms of measurable quantities,

Neq
s =

1

αss
2W

out
XsXs W in

XsXs. (18)

As before, a more common measure is the noise transfer function deÞned as

Ts =
1

1 + (Neq
s )

2 . (19)

With the same assumption as before, Neq
s is positive or zero. Neq

s = 0 and Ts = 1 is the

ideal so that input observable Xs is not disturbed. The �classical� limit for the noises is

Neq
mN

eq
s 1. [3] The corresponding relation for the transfer coefficients is Ts + Tm 1. In

the quantum regime, Neq
mN

eq
s 1 and 1 Ts + Tm 2.

F. Measurement regimes

We now have our criteria for QND measurements: WQSP 1 and Ts+Tm 1. The ideal

QND measurement is one for which WQSP = 0 and Ts + Tm = 2. These conditions deÞne

four regions, as shown in Fig. 1.

A measurement is QND when both condition are met. The meter is correlated with the

signal, and the noise added to the signal and meter is less than the calssical limit. This is

the lower right quandrant in Fig. 1. The measurement is QSP (lower left quadrant) when

only the correlation condition is met. In this case, the meter is prepared as a duplicate of

the signal, but there is excess noise in either the meter or the signal. This happens when

the initial signal state observable of interst is disturbed or destroyed. A measurement is in
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the upper qight quadrant when is does not introduce excessive additional noise but does not

build correlations between the signal and meter. this is sometimes refered to as a quantum

tap. The meter has coupled into the signal while adding additional noise below the classical

limit. The measurement is �classical� when neither condition is met.

G. Ideal parametric coupler

The coupling of two light beams is an illuminating example of the QND criteria. This

example is treated in references [2] and [3]. Consider two beams coupled with the cross-Kerr

effect. The phase of one beam is affected only by the amplitude of the other beam. The

observable for each beam are the photon number, n, and the phase φ. In the limit of large

average photon number, the observable abey the uncertainty relation ∆n∆φ 1/2. I�ll use

the normalized variables deÞned by

X =
n

n
Y = 2 n φ. (20)

The coupling between beams is given by the transforms

Xout
s = Xin

s Y out
s = Y in

s +GX in
m (21)

and

Xout
m = X in

m Y out
m = Y in

m +GXin
s . (22)

The observable of interest is Xs. The measured meter observable is Ym. Note that the

coupling leaves Xs unaffected. However, the measured meter observable has two terms: the

desired Xs and an extraneous Ym. This extra term will add some unwanted noise. Given

this coupling, WQSP and the transfer coefficients become

WQSP =
1

1 +G2
, Ts = 1, Tm =

G2

1 +G2
. (23)

The dashed line in Fig. 1 described the parametric coupler as a function of the gain. ForG =

0, there is no coupling. For any non zero G, this system meets the QND criteria. As G gets
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very large the parametric coupler approaches a perfect QND measurement. Experimentally,

WQSP , Ts, Tm and are relatively easy to measure. While we have deÞned the elements ofW

in terms of normalized operators, the measurable quantities are the ßuctuation in photon

number and the ßuctuation in phase. W out
XsXs is proportional to the amplitude noise power

of the signal beam; W out
Y mY m is proportional to the phase noise power of the meter beam.

One can measure WQSP simply by multiplying the output of the meter phase detector by

some gain and subtracting it from the output of the signal photodetector. When the gain

is equal to g as deÞned in eq. (12), the noise of the combined signal is less than the shot

noise of the signal photodetector signal alone. WQSP is the ratio of the measured noise

to the shot noise. The noise transfer coefficients can also be measured by looking at the

appropriate noise levels of the input and output beams (eqs. (15) and (18)).

III. RECENT EXPERIMENTAL RESULTS

While QND was originally conceived of in terms of mechanical oscillators, the experimen-

tal successes have come in optics. Most of these experiments have used some combination

of photons and atoms. Experimental results are included in Fig. 1.

A. QND of a single photon

Nogues et. al. [6] have devised a novel QND experiment to detect the presence of a single

photon using a single atom as the meter. The experiment relies on partial cycles of Rabi

oscillations. The experiment consists of an interaction region to prepare the atom, a high

Q cavity to hold the photon, and a second interaction region to measure the atom�s Þnal

state (see Fig. 2). The atom can be considered a three level system: the initial state i , the

ground state g , and the excited state e . The Þrst interaction region prepares the atom

in a superposition of the initial and ground states by applying a π/2 pulse of light tuned to

the i g transition. Ψ = 1/ 2( i + g ). The atom then enters the cavity which may

or may not contain a photon tuned to the g e transition. If the cavity has a photon,
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the atom receives a 2π pulse. This leaves the photon number in the cavity unchanged, but

changes the phase of the ground state by π. If the cavity contains a photon, the resulting

state is Ψ = 1/ 2( i g ). The state is unchanged if there are no photons present. The

second interaction regions again applies a π/2 pulse of light tuned to the i g transition.

If the atom interacted with a photon, the second π/2 pulse leaves the atom in the ground

state. If there was no photon, the pulse leaves the atom in the initial state. This is a

Ramsey interferometer with a phase shift provided by the atom-photon interaction. The

state of the atom is then detected. The preceding explanation is simpliÞed and applies only

when the interaction regions are exactly at the i g resonance. As the light is tuned away

from resonance, the measurement of the atom oscillates between the excited and the ground

state. The presence of a photon in the cavity shifts the oscillation by π.

B. QND with trapped atoms

Roch et . al. [7] use a 4 wave mixing process to couple signal and meter beams. The

coupling mechanism is an interaction with trapped rubidium atoms at very low temperature.

The low temperature of the atoms minimizes additional noise coupled into the optical beams.

The rubidium D1 line is a Λ-type three level system. See Fig. 3. The signal is slightly

detuned from the 1 2 transition, and the meter is slightly detuned from the 0

2 transition. The strong signal beam saturates the 1 2 transition. The weak

meter beam picks up additional phase due to the change in the energy of level 2 caused by

the saturation. This change is directly related to the photon number of the signal. The

phase change is detected with a balanced homodyne scheme. Theoretical treatment of

this experiment predicts nearly perfect QND (WQSP < 0.1, Ts > 0.9, and Tm > 0.9) when

the meter is tuned near one of the Rabi split levels. [8] However, the theory also predicts

instability if the meter is nearly resonant with the shifted level.

This results of the experiment are remarkable: WQSP = 0.45, Ts = 0.90, and Tm = 0.65.

This experiment was well within the QND region.
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C. QND with semiconductor receivers

High efficiency photodiodes can transform a sub-shot noise limited beam of light into

a sub-shot noise limited electrical signals. High quality LEDs can perform the inverse

transformation. This leads to experiments which satisfy the QND criteria. The experiment

of Roch et. al. [9] measured WQSP = 0.76 and Ts + Tm = 1.8. Goobar et. al. [10] achieved

similar results with WQSP 0.7 and Ts + Tm = 1.8.

However, these experiments are not truly �nondemolition� experiments. They actually

destroy the photons to make the measurement. However, the electronics are capable of

reproducing the states with very high Þdelity. These are more like quantum resurrection

experiments.

D. QND with optical parametric amplifiers

Levenson et. al. [11] use a degenerate parametric down converter to make QND mea-

surements of an input signal. The input signal is horizontally polarized. The meter is

initially in the vacuum state and is the orthogonal polarization. The measurement device

consists of a frequency doubled laser which acts as the pump for the nonlinear process. The

residual unconverted laser light is the incident signal. The signal passes though a half wave

plate and a KTP crystal. The half wave plate rotates the polarization of the input signal so

that the OPA acts as a phase sensitive ampliÞer. The signal then passes through polarizing

beam splitter cube to a detector. The meter is reßected from the beam splitter to another

detector. The detector output are mixed to measure the relative noise between the signal

and meter. The experimental results are clearly in the QND regime with WQSP 0.77 and

Ts + Tm = 1.32.

A later experiment by Bencheikh and Levenson [12] used two down converters to make

repeated measurements of the same signal beam. There are Þve important quadratures:

X in
S1, X

out
M1, X

in
S2, X

out
M2, X

out
S2 . X in

S1 is the signal incident on the Þrst device. Xout
M1 is the
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output meter of the Þrst device. Xin
S2 is the signal output of the Þrst device which is incident

on the second device. Xout
M2 and X

out
S2 are the meter and signal output of the second device.

For the Þrst device, WQSP 1 0.66 and Ts1+Tm1 = 1.34. This indicates that the Þrst device

is a QND measurement. More importantly, the conditional variance between Xout
M1 and X

out
S2

was measured at 0.66. This shows that the signal output from the second device remains

strongly correlated with the meter from the Þrst device. Plainly, the second device did not

destroy the quantum state of the signal.

IV. SUMMARY

While is it impossible to measure a system observable without perturbing the state, one

can measure an observable without changing subsequent measurements of that observable.

Because of the potentially strong coupling between atoms and photons, the most effective of

these measurements have been made using optical systems interacting with atomic systems

or optical systems interacting with other optical systems through an atomic mediator.
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Figure 1: Measurement regions and recent experimental results. Measurements
in the top left quadrant are classical. The bottom left quadrant represents
Quantum State Preparation where the meter is closely correlated to the signal
but the measurement has introduced excess noise. Measurements in the bottom
right quadrant are true Quantum Non-demolition measurements. The Points
show the experimental results for the cited sources. The dotted line is for the
parametric coupler. Reproduced from ref. 3.

Figure 2: CND of a single photon. An atom enters the apparatus and is put
into a superposition i and g by the Þrst interaction region. The atom then
interacts with the photon in the cavity which is tuned to the g e transition.
The atom then sees another interaction region tuned to the i g transition.
If there was no photon in the cavity, the atome leaves in the initial state. If
there was a photon, the atom leaves in the ground state. Reproduced from ref.
5.



Figure 3: Λ energy level conÞguration. The strong signal saturates the 1 2
transition and shifts the energy of level 2. The weak probe tuned to the 0 2
transition picks up a phase shift which can be measured. The measure phase
shift depends on the amount of energy shift which depends on the intensity of
the signal. Reproduced from ref. 7.


