
Atom Interferometry

Shohini Ghose

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico

87131

(January 25, 2000)

Abstract

Atom interferometers are of interest because of their use as sensitive tools

for the measurement of inertial forces, physical constants and various topo-

logical phases. In these devices, laser fields act as beam-splitters that split

the atomic wave into two or more spatially separated states that accumu-

late different phases due to some external potential. When these states are

recombined Ramsey fringes can be observed. The general theory of atom

interferometers and, in particular of the Borde interferometer, is presented.

Interferometry experiments for the measurement of gravity and rotational

forces are described. Gravity measurements yield an uncertainty of δg/g on

the order of 10−9, while the rotation sensors have a short term sensitivity of

10−8 rads/s. The phase shift induced by the dc Stark effect has also been

measured using atom interferometers. Finally, experiments in which topo-

logical phases such as the Aharanov-Casher phase and Berry’s phase have

been measured are summarized and the accuracy of these measurements is

analyzed.
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I. INTRODUCTION

Atom interferometry has fast become a powerful tool for the study of fundamental phys-

ical effects. The interference in these devices is caused by the superposition of atomic de

Broglie waves. Atomic beams can be split and recombined in the same manner as optical

beams by the use of laser pulses in order to create an interferometer [1]. The laser beams split

the matter wave into two or more spatially separated arms that may get different phase shifts

due to external potentials which, when the wave is recombined, results in Ramsey fringes.

The primary use of atomic interferometers has been for the measurement of inertial forces

such as acceleration due to gravity and rotations [2,3]. The large rest mass of atoms make

these interferometers very sensitive to small phase shifts caused by such inertial forces. An-

other advantage of the use of atoms is their rich internal structure. Interaction of the atoms

with electromagnetic fields can lead to potentials that cause a phase shift in the interference

fringes. Such shifts can be used to make precision measurements of physical effects such as

the dc Stark shift [4]. The non-dynamical or topological phase accumulated by a system

due to the cyclic evolution of parameters in the system Hamiltonian can also be measured

using atom interferometers. An example is the measurement of the Aharanov-Casher phase

[5].

In Sec.II the general theory of atom interferometers and in particular the Ramsey method

of separated fields that is commonly used in Bordé interferometers is presented. Section III

consists of a description of typical atom interferometry experiments for the measurement

of gravity gradients, rotations, the dc Stark shift and the Aharanov Casher phase. The

accuracy and the factors limiting the precision of these measurements is discussed. Finally

a summary and conclusion is included in Sec.IV.
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II. THEORY

A. General Quantum Theory

Consider a Mach-Zender type of interferometer in which the atoms are split into two

arms α and β by a beam splitter and later recombined in another beam splitter, after which

they are detected in detector a or detector b depending on which path, α or β, the atom took

(Fig.1). We assume that the wave function undergoes a π/2 phase shift upon reflection and a

phase phase shift of φ1,2 upon transmission through the beam-splitters 1 and 2 respectively.

The wave function of the ith atom after recombination is [6]

|φ〉i = ψa |1a0b〉i + ψb |0a1b〉i (1)

where ψa and ψb are the amplitudes of the wave function at detectors a and b respectively.

ψa =
eiθa

2
(1 − e−iφαβ), (2)

ψb =
eiθb

2
(1 + e−iφαβ). (3)

θa = π/2+klα +φ2 and θb = klα +φ1 +φ2 depend on the phases that are accumulated at the

beam splitters and the mirrors, k is the wave vector and φαβ = k(lα− lβ) is the phase due to

the path difference. The total state vector for N atoms is a product of the individual state

vectors. The number operator for the number of atoms at detector a or b can be written as

Nσ =
N∑

i=1

a†σ,iaσ,i (4)

where σ = a, b and â and â† are the creation and annihilation operators obeying Bose or

Fermi statistics. The atom statistics are important for high densities of atoms or if they

are injected into the interferometer in a correlated manner. The expectation value of the

number of particles in detector a is thus

〈Na〉 =
N∑

i=1

∣∣∣∣∣1 − e−iφαβ

2

∣∣∣∣∣
2

〈1a, 0b|na,i |1a, 0b〉i . (5)

The number of atoms detected is thus modulated as the interferometer path difference is

changed and one can observe interference fringes.
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B. Ramsey’s Separated Field Method

In order to implement atom interferometry, coherence-preserving atomic beam-splitters

and mirrors are required. Recent advances in optics have made it possible to create such

devices. In grating interferometers, coherent path separation is achieved by the diffraction of

the atomic de Broglie waves by a solid amplitude grating or by a standing wave phase grating

created by counter-propagating lasers [7,8]. Several elegant experiments using gratings have

been performed [9,10]. The method of adiabatic transfer can also be used to create efficient

mirrors [11,12].

In this article we will focus on the implementation of an atomic Mach-Zender interfer-

ometer by the Ramsey separated light field method [13,14]. For a two-level atom interacting

with a laser field, the Hamiltonian can be written as

H = h̄ωe |e〉 〈e| + h̄ωg |g〉 〈g| − ~d · ~E (6)

where ~d is the dipole moment and

~E = ~E0cos(ωt+ φ). (7)

Solving the Schroedinger equation for small detunings, the wave function amplitudes in the

ground and excited state as a function of time are

ce(t0 + τ) = e−iδτ/2
(
ce(t0)cos

Ωrτ

2
− icg(t0)e

−i(δt0+φ)sin
Ωrτ

2

)
, (8)

cg(t0 + τ) = eiδτ/2
(
−ice(t0)ei(δt0+φ)sin

Ωrτ

2
+ cg(t0)cos

Ωrτ

2

)
(9)

where Ωr is the Rabi frequency and δ is the detuning. For the case of zero detuning we

obtain the standard Rabi flopping

|ce(τ)|2 =
1

2
[1 − cos(Ωegτ)]. (10)

Equation (2.8) can now be applied to the Ramsey π/2−π−π/2 sequence of pulses with

initial conditions ce(0) = 0, cg(0) = 1, a time T between each pulse and a duration τ/2 of
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the π/2 pulses . We assume that the Rabi frequency and detuning is the same for all the

pulses but that the phase, φi of each pulse may vary. The occupation probability of the

excited state can be calculated to be

|ce(2τ + T )|2 =
1

2
[1 − cos(∆φ− δT )], (11)

where

∆φ = φ1 − 2φ2 + φ3 (12)

is the phase difference between the three pulses. The probability of finding the atom in the

excited state will yield Ramsey fringes as a function of the phase ∆φ of the lasers or the

detuning δ.

C. The Atomic Mach-Zender Interferometer

The Ramsey method presented in the previous section constitutes an interferometer in

the Hilbert space of ground and excited state. However the external degrees of freedom

have been neglected. In general, the absorption of a photon by an atom is accompanied by

a recoil of h̄k by the excited atom. Emission of a photon causes an opposite recoil. The

difference between the photon energy h̄ω0 and the internal atomic energy h̄ωL must be the

extra kinetic energy of the recoil. This energy conservation condition can be written as

p2

2m
+ h̄ωL =

(p + h̄k)2

2m
+ h̄ω0. (13)

This equation can be solved for the atomic wave vector k. The complete basis of internal

and external states is now |g,p〉 and |e,p + h̄k〉 and the wave can be written as

|ψ(t)〉 = ce,p+h̄k(t) |e,p + h̄k〉 e−i

(
ωe+

|p+h̄k|2
2mh̄

)
t
+ cg,p(t) |g,p〉 e−i

(
ωg+

|p|2
2mh̄

)
t

(14)

with a modified detuning of

δ = ω −
(
ωeg +

p · k
m

+
|p|2
2mh̄

)
. (15)
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In the π/2 − π − π/2 pulse sequence of Fig.2(a), the π/2 pulses create an equal super-

position of ground and excited state. The excited state wave function receives a recoil of

h̄k along the direction of the laser beam while the ground state wave function continues to

propagate in the initial direction of motion. Therefore the excited state spatially separates

from the ground state. The π/2 pulses thus act as 50/50 beam splitters.

The π pulse flips ground and internal states so that the excited state gets a negative

recoil of h̄k as it goes to the ground state while the ground state gains a momentum of

h̄k as it changes to the excited state. The π pulse thus acts like a mirror for the atomic

wave function. The entire π/2 − π − π/2 sequence is therefore identical to a Mach-Zender

interferometer as shown in Fig. 2.

In order to increase the spatial separation of the two arms one can use sequences consist-

ing of more pulses. The Ramsey-Bordé sequence consists of two pairs of counter-propagating

π/2 pulses (Fig.2(b)). A larger enclosed area can increase the sensitivity of the interferome-

ter for measuring inertial forces [15,2,16]. However the use of more pulses also increases the

sensitivity of the interferometer to noise in the intensity and phase of the lasers. Further-

more, the repeated splitting of the wave function by additional π/2 pulses causes the final

detected signal intensity to decrease.

III. EXPERIMENTS

A. Measurement of Inertial Forces

The Ramsey sequence yields fringes as a function of the relative phase ∆φ of the laser

fields (Eq.2.11). In the presence of inertial forces the two arms of the interferometer might

accumulate additional phases that cause a net shift of the fringe pattern. For atoms falling

under the force of gravity the frequency and phase of the lasers is Doppler shifted so that

the phase of laser i at time t is

φi(t) = ωit− ~k · ~gt2 + φ0
i . (16)
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In the π/2 − π − π/2 pulse sequence, if the frequency of the lasers is changed in a phase

continuous way, such that the laser is always resonant with the |g,p〉 to |e,p + h̄k〉 transition,

then the ωit terms drop out of the net phase ∆φ of equation (2.11) [15]. The only extra

phase shift is the kgT2 term.

Recent measurements of this phase shift have resulted in a value of g with an absolute

uncertainty of δg/g = 3 × 10−9 [15]. The internal states used in the experiment are two

magnetic field insensitive hyperfine ground states of cesium. Two photon Raman transitions

which cause twice the momentum recoil are induced by pairs of counter-propagating lasers.

Laser cooled cesium atoms are launched at 1.5µK and are subjected to preparation, Raman

and detection pulses (Fig.3). Since the Raman beams travel the same path before entering

the system, any frequency shift caused by external vibrations is the same for both beams.

Typical pulse spacings are T=160ms, and for one minute of integration time, one can deter-

mine g to a precision of 3× 10−9(Fig.4). The main noise sources are mechanical vibrations

that change the laser frequency and phase noise of the source. Further improvements can

be made by eliminating systematic errors such as the Coriolis effect. Another setup that

better cancels out vibration errors is discussed in reference [3].

Atom interferometers are also used for rotation sensing [2,16]. Consider an interferometer

with a circular path of radius R rotating at Ω rads/s. The velocities of the co-rotating and

counter-rotating arms relative to the rotating frame are thus shifted by ±2ΩR. The two

beams travel slightly different path lengths before recombination due to the rotation. One

can show that the net phase shift due to the path length difference is

∆φ =
2m

h̄
AΩ, (17)

where A is the area enclosed. The proportionality of the phase shift to the area can be

shown to hold true for any shape of area enclosed. This shift is called the Sagnac phase

shift.

Experiments similar to the gravity measurement experiments in which two-photon Ra-

man transitions are driven between cesium hyperfine states have also been performed to make
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precision rotation measurements [2]. The experimental set-up is shown in Fig.5. Preparation

involves optically pumping the atoms into a magnetically insensitive hyperfine state. After

the usual π/2 − π − π/2 Raman pulse sequence, the ground state F=3 to F=4 transition

is detected by resonance fluorescence. The fringes are offset from zero due to the rotation

rate of the earth that has to be compensated for. There is some loss of contrast due to

the averaging of the phase shift over the longitudinal velocity distribution. Again the main

sources of errors are vibration as well as alignment of the Raman beams. An advantage of

the Raman beam method is that the line width can be adjusted to address large velocity

spreads.

The sensitivity of the measurement is 2×10−8rads/s. This sensitivity can be increased by

using multiple pulse sequences to increase the enclosed area. Also if a counter-propagating

atomic beam is introduced and the difference in the phase shifts of the two beams is taken,

many systematic errors cancel out. It has also been shown that by adding an additional

potential Vo the sensitivity to rotations can be increased [17].

B. Measurement of the dc Stark shift

The internal structure of an atom can be probed by causing the atom to interact with

an electromagnetic field. For example, when an electric field, E is applied to one arm of a

Ramsey interferometer, the dipole interaction leads to an external potential in terms of the

atomic polarizability α

V (x) = −1

2
αE(x)2. (18)

The external potential affects the motion of the wave packet in this arm of the interferometer

which leads to a path difference between the two arms,

∆x ∝
∫
V (x)dx. (19)

The path difference results in an extra phase shift of k∆x. The dc Stark shift of the Mg

intercombination line has been measured using a Bordé interferometer consisting of a beam
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of Mg atoms passing through two pairs of counter-propagating π/2 laser pulses [4]. When the

frequency of the lasers is scanned interference fringes are obtained (Eq.2.11). An electric field

is then applied by placing a capacitor between the two pairs of laser beams. An additional

magnetic field is applied in order to select the mx = 0 state (Fig.6). Since the separated

atomic wave packets are in different internal states, the two arms experience different Stark

shifts. The electric field can therefore extend over both arms. The resulting potential

difference leads to a shift of the fringes as the frequency is scanned, relative to the initial

scan without the electric field. The population in the exit port is measured by counting the

fluorescence of the excited state with a photo-multiplier. The frequency shift as a function

of voltage across the capacitor can be measured to obtain a value for the difference in

polarizabilities of the 3s2(1S0) and the the 3s3p(3P1) states of 8.0±1.0 kHz (kV/cm)−2. This

is in reasonably good agreement with the theoretically calculated difference of 6.3± 2.0kHz

(kV/cm)−2. The main sources of error are due to uncertainties in the statistical fitting of

the data and an incomplete knowledge of the electric field distribution.

The dc Stark shift has also been measured using calcium atoms in a similar Bordé

interferometer set-up [18]. The measurements of the dc and ac Stark shift are important since

these effects must be corrected for when using such atoms as optical frequency standards.

C. Measurement of Topological phases

A quantum system that evolves cyclically in the parameter space of the Hamiltonian can

accumulate a time-independent geometric (Berry’s) phase in addition to the usual dynamical

phase as first shown by Berry [19]. Geometric phases can be topological phases that do not

depend on the trajectory of the particle. An example of a topological phase is the Aharanov-

Casher phase shift acquired by a magnetic dipole moment that follows a closed path around

a charged wire [20,21],

∆φAC =
1

h̄c2

∮
~µ× ~E · d~r. (20)
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The Aharanov-Casher phase can be measured via several different techniques [5,22,23].

Initial experiments were performed by letting the two arms of an atomic beam with magnetic

moment µ encircle a line charge and then recombining the beams to measure the interference.

An equivalent set-up is to have the two arms of the atomic beam have opposite magnetic

moments and let them pass through the same electric field [5]. In this case since the two arms

will accumulate opposite phases, there is no need to spatially separate them. The interference

occurs in the parameter space of magnetic ‘up’ and ‘down’ states. Such an experiment was

performed using thallium fluoride molecules prepared in a coherent superposition of opposite

spin states using an rf magnetic field (Fig.7). The particles then travel a length of l=2.05m

in a strong (10-30V/cm) external electric field. A second rf magnetic field acts as the second

beam splitter after which the internal state population is measured. Since the spins tend

to align along the direction of the electric field, a magnetic field is used to give the spins

a component perpendicular to the field. This component gives the ~µ × ~E phase shift. The

phase shift measurement had an accuracy greater than 99% when compared to the theoretical

value. The velocity independence and the proportionality of the phase shift to the electric

was also demonstrated.

Another major type of geometric phase occurs in the adiabatic evolution of a spin in

a magnetic field or, equivalently, a two-level atom in an electromagnetic field. Recent ex-

periments to measure the Berry’s phase of atoms in an optical lattice have been performed

[24].

IV. CONCLUSIONS

Even though the field of atom interferometry is relatively young, a wide range of ex-

periments have already been performed. These experiments have shown that atom interfer-

ometers are versatile devices and can be used to make highly sensitive measurements. The

measurements of gravity and rotation are of importance for geophysics and navigation. The

ability to measure phases due to physical effects such as the Stark shift as well as geometric
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phases is necessary if atoms are to be used as frequency standards. In precision measure-

ments of frequency standards, a standard tool used is the Ramsey method of two separated

light fields. The Bordé scheme of atom interferometry might prove to be a more precise

technique than the standard Ramsey method and is capable of relative precision and accu-

racy in the range of 10−15. Another rich area of research is the atom-interferometric study of

Bose-Einstein condensation [25]. The future holds many applications of atom interferometry

to make a wide variety of precision measurements.
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FIGURES

FIG. 1. Schematic for an atom interferometer[M. O. Scully and M. S. Zubairy, Quantum Optics

(Cambridge University Press, Cambridge, CB2 2RU, UK, 1997)]. The wave function accumulates

different phases due to the mirrors and beam splitters in the two different arms.

FIG. 2. Recoil diagrams for (a) the π/2 − π − π/2 geometry and (b) the Ramsey-Bordé se-

quence[Atom Interferometry , edited by P. Berman (Academic Press, San Diego, CA 92101-4495,

USA, 1997)].

14



FIG. 3. Measurement of g using raman transitions to drive the π/2 − π − π/2 sequence[A.

Peters, K. Y. Chung, and S. Chu, Nature 400, 849 (1999)].

FIG. 4. Interferometric fringes for the g measurement[A. Peters, K. Y. Chung, and S. Chu,

Nature 400, 849 (1999)]. One full fringe corresponds to 2× 106g.
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FIG. 5. Apparatus for rotation measurements also using two-photon stimulated raman transi-

tions to drive the π/2−π−π/2 sequence [T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys.

Rev. Lett. 78, 2046 (1997)].

FIG. 6. Measurement of the dc Stark shift using Mg atoms [V. Reiger, K. Sengstock, U. Sterr,

J. H. Müller, and W. Ertmer, Opt. Comm. 99, 172 (1993)]. The Stark effect leads to a potential

V(x) between the capacitor plates.
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FIG. 7. Experimental configuration for measuring the AC phase [K. Sangster, E. A. Hinds, S.

Barnett, and E. Riis, Phys. Rev. Lett. 71, 3641 (1993)]. An rf magnetic field is used as the 50/50

beamsplitters. Spatial separation of the atomic beam is not necessary since the two arms have

opposite magnetic moments and get different phases.
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