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Abstract

Nonlinear spectroscopic techniques, such as two-photon absorption and four-

wave-mixing, on atoms in high-Q cavities (strong coupling limit) provide

a means to probe higher-order transitions in the Jaynes-Cummings ladder

of energy states of the atom+cavity system. It can be used for exploring

and improving our understanding of the rich structure of the atom+cavity

\molecule". The dressing of the atomic levels by the quantized cavity �eld al-

ters the nonlinear susceptibility of the atoms leading to new resonances. These

resonances exhibit super-radiant character. The resonances also exhibit de-

pendences on the number of atoms present in the cavity. The nonlinearity of

the radiation-matter interaction along with the coupled atom+�eld oscillator

model has to be used to explain the new resonances.
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I. INTRODUCTION

Cavity Quantum Electrodynamics (QED) is an exciting frontier of quantum optics re-

search where new technology is now making it possible to experimentally test the validity

of concepts of light matter interactions in the quantum limit. The radiative properties of

atoms such as the spectrum and spatial distribution of electromagnetic noise are modi�ed

when they are con�ned to a cavity of dimensions comparable to the wavelength. This was

demonstrated by Purcell [1] half a century ago.

In free space the atom decays spontaneously by coupling to a large number of vacuum

modes. This decay is exponential in time and is irreversible. The transition rate is governed

by Fermi's Golden rule. But when an atom is placed in a high{Q cavity, it couples to the

eigenmodes of the cavity. The radiation from the atom can survive for long in the cavity and

is able to re-excite the atom. Hence spontaneous emission in a high{Q cavity is oscillatory

and non-perturbative [2].

The strong coupling limit is de�ned as the regime where the atom{cavity �eld interactions

evolve faster than the dissipation due to spontaneous emission and cavity losses, ie. g0 �
; � where g0 is the atom{cavity coupling,  is the atomic decay rate and � is the cavity

decay rate. New technology makes it possible to fabricate extremely high{Q cavities suitable

for the study of the atom{cavity system in the strong coupling limit. The atom and cavity

form a joint system with new eigenstates belonging to the atom + cavity \molecule". Hence

the absorption and emission spectra are modi�ed. Under these conditions the number of

photons required to saturate an intracavity atom is [2] n0 � 2=g20 � 1. The number of

atoms required to have an appreciable e�ect on the cavity �eld is [2] n0 � �=g20 < 1.

Cavity QED is being used to test our fundamental concepts on the quantum theory of

light and matter. For example, Haroche et. al., have shown that the strong entanglement

between the atom and the cavity �eld can be used to generate \Schr�odinger cat" states and

to study nonlocal correlations which would shed light on Bell's inequalities issues. Walther

et. al., have used a one{atom maser (micromaser) to generate nonclassical states of light
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displaying sub-Poissonian photon statistics with photon number uctuations much below

the standard quantum limit. A good review of these and other interesting cavity QED

experiments can be found in Ref. [2].

In this paper we study how the nonlinear response of the atom + cavity \molecule" is

modi�ed. Pump{probe techniques are used to study the two-photon absorption (2PA) and

four-wave-mixing (FWM) behavior of the system. These nonlinear spectroscopic studies

shed light on the rich level structure of the higher order transitions in the \molecule". The

appearance of interesting e�ects such as the dependence of the transition frequency on the

number of atoms and superradiant behavior have been predicted.

II. THEORY

In the strong coupling limit, the atom and the cavity �eld form a system of coupled

oscillators. The case of a single atom interacting with a single mode of a high{Q cavity was

studied by Jaynes and Cummings [3]. The generalization to multiple atoms was given by

Tavis and Cummings [4]. In the rotating wave approximation and for the dissipationless

case, the total Hamiltonian for N atoms in a cavity is given by

H = H0 +H1 where

H0 = �h!0�
z + �h!câ

yâ

H1 = �h
NX
l=1

�
g0â

y�̂�l + g�0 â�̂
+
l

�

where g0 = 
Rabi=2, �̂
+
l and �̂�l are the raising and lowering operators for the lth atom

and â; ây are the annihilation and creation operators of the cavity �eld mode satisfying

[â; ây] = 1. The operator �̂z

2
+ âyâ is a conserved quantity for the above Hamiltonian.

Physically this means that the total number of excitations of the atom+cavity �eld system

is conserved. Hence the dressed states of the system can be classi�ed according to the

eigenvalues of �̂z

2
+ âyâ.

In general the atom{cavity coupling gives rise to an in�nite hierarchy of states. We shall
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concentrate on the limit of vanishing excitation. In �(3) processes such as 2PA and FWM,

the atoms absorb at most two photons from the external �eld. So the cavity �eld excitation

can change by a maximum number of two photons. Hence it is su�cient to look at dressed

states corresponding to the eigenvalues of �̂z

2
+ âyâ equal to

�N
2
;�N

2
+ 1;�N

2
+ 2

corresponding to 0, 1 and 2 excitations respectively [5].

The ground state j0i corresponds to zero excitations of both the atoms and the cavity

�eld. The energy of the state is E0 = �N
2
!0.

For a single quanta of excitation of the atom+cavity system, the basis states are

j 1i = j1icj0iA; j 2i = j0icj1iA

where jnic is the state of the cavity �eld with n photons,

j1iA �
NX
l=1

j0i1j0i2 : : : j1il : : : j0iN and

j0iA ) all atoms are in the ground state.

The eigenstates containing a single excitation are given by

j�i = 1p
2
[j 2i � j 1i] :

The energies are E� =
��N

2
+ 1

�
!0 � g0

p
N .

For states with two quanta of excitation, ie. h �̂z
2
+ âyâi = �N

2
+ 2, the basis states

are j�1i = j0icj2iA; j�2i = j1icj1iA; j�3i = j2icj0iA
where j2iA �

NX
l 6=p

j0i1 : : : j1il : : : j1ip : : : j0iN .

The eigenstates are linear combinations of the j�ii and are given by

j1i =
�
N � 1

4N � 2

�1=2

j�1i+ 1p
2
j�2i+

�
N

4N � 2

�1=2

j�3i

j2i = �
�

N

2N � 1

�1=2

j�1i+ 0� j�2i+
�
N � 1

2N � 1

�1=2

j�3i

j3i =
�
N � 1

4N � 2

�1=2

j�1i � 1p
2
j�2i+

�
N

4N � 2

�1=2

j�3i:
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The eigenenergies are given by

E1;3 =

�
�N
2
+ 2

�
!0 � g0(4N � 2)1=2; E2 =

�
�N
2
+ 2

�
!0 :

The �rst two excited state energy levels for the Jaynes-Cummings (single atom case) and

Tavis-Cummings (multiple atoms case) energy ladders are shown in Fig.1(a) and (b) respec-

tively.

So far we have discussed the ideal case of a dissipationless system with no incident

�elds. Our aim is to study the dynamics of the atom+cavity system when it is excited

with pump and probe �elds. In reality the atom+cavity system decays due to spontaneous

emission (to modes other than the cavity modes, k), transverse decay (? = k=2 for pure

radiative decay) and cavity �eld decay (�). The evolution of the system under these various

inuences is governed by the Heisenberg's equations of motion which can be derived from

the quantum master equation [6]. In the semiclassical approximation where the atomic and

cavity �eld wavefunctions are considered disentangled (thereby making approximations such

as h�̂zâi ! h�̂zihâi; hâ�̂�l i ! hâih�̂�l i; and hây�̂+l i ! hâyih�̂+l i possible), the Heisenberg's
equations of motion for the cavity �eld mode hâi, atomic polarization h�̂�l i and inversion

h�̂zi for the l th atom in a sample of N atoms is given by [7]

h _̂ai = �(� + i�)hâi+
NX
l

gh�̂�l i+ � (1)

h _̂��l i = �(? + i�)h�̂�l i+ ghâih�̂zi (2)

h _̂�zi = �k(h�̂zi+ 1)� 2g�(hâyih�̂�l i+ hâih�̂+l i) (3)

where � = (!c � !p)=� is the cavity detuning, � = (!a � !p)=k is the atomic detuning

and � = �p+ �
0e�i�t is the pump plus probe driving �elds. The pump is at frequency !p and

the probe is at a frequency detuning � from !p. The equations tell us that the evolution

of the atoms and the cavity �eld is entangled. From these equations it is possible to derive

the the absorption coe�cient and other related quantities of interest.
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FIGURES

FIG. 1. Comparison of the level structure of the �rst two excited states of a coupled atom{cavity

system for the one atom case (left) and the many atom case (right). In �g. (b) the ground state

is j0i, the one excitation state has levels j+i (higher energy) and j�i (lower energy) and the two

excitations state is made up of levels j1i; j2i; and j3i in descending order of energy. The various t

's in the �gure indicate some of the possible transitions.

III. TRANSITIONS IN THE ATOM{CAVITY MOLECULE

A. Linear absorption

We �rst look at the case of linear absorption by the atom+cavity system. The two

channels for a single photon absorption are j0i ! j�i, with resonances at ! = !0�g0
p
N in

the absence of dissipation (cf. Fig.1). In the N = 1 limit, the splitting is �g0. The

interaction of the atom with the cavity �eld mode gives rise to the single atom vacuum-Rabi

splitting which has been observed in spectroscopy experiments [8,2].

In the presence of dissipation, the transmission of a weak probe beam for the case of zero

detuning between cavity and atom (i.e. !c = !0) would be [7]

tlin(!p) =
�(? � i!p)

(�+ � i!p)(�� � i!p)
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where �� = ��+?
2

�
h�

��?
2

�2 � g20N
i1=2

, i.e. the resonances are shifted. The condi-

tion �+?
2

< g0
p
N (strong coupling limit) is essential for observing the split in resonance so

that it is not smeared out by the dissipation.

B. Nonlinear interactions

We now turn our attention to nonlinear interactions in the atom+cavity system. Pump-

probe experiments where a pump beam in tuned to one of the resonances and the absorption

of a weak tunable probe beam is monitored, are used to study the nonlinear spectroscopy

of the system. For example, if we consider the following sequence of absorption j0i !pump���!
j+i !probe���! j1i, resonance occurs at

!probe = !0 + g0(
p
4N � 2�

p
N)

! !0 + g0
p
N for large N

! !0 + g0(
p
2� 1) for N=1

For 2PA with !pump = !probe = !, resonances occur at ! = !0 � g0
p
N � 1=2.

Four-wave-mixing susceptibilities can be calculated using standard perturbative methods.

For example, the nonlinear interaction arising due to �(3)(!1; !1;�!2) has resonances at
[5] !2 = !0 � g0

p
N; and !2 = 2!1 � !0 � g0

p
N .

Another interesting e�ect is that of atomic coherence. By tuning the pump to !0, the

paths j0i ! j�i ! j1i and j0i ! j+i ! j1i can be made equivalent. The destructive

interference between the two paths can give rise to a interference minimum for two photon

absorption [9]. This is similar to the creation of dark states where the phase relation between

the wavefunctions of intermediate states results in destructive interference for the process

of absorption to a higher state.

In all the examples given above, we see that each free space resonance of the nonlinear

absorption spectra is split by the interaction with the cavity modes into a doublet. The

resonance frequency depends on the number of atoms in the cavity. Also the strength of
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these transitions depend on the dipole matrix elements which depend on N . For example

[9,5],

d�0 = d
p
N=2; d�1 =

d

2

�
(2N � 2)

[2(2N � 1)]1=2
�N1=2

�
:

where d is the free atomic dipole moment and dij are the dipole moments for transitions

from the i to the j states. In the limit of large N ,

d3+; d1� ! 0; d1+ ! dN1=2; d2� ! �d(N=2)1=2:

Hence depending on the number of atoms present, some transitions are enhanced while others

are destroyed. The radiation due to each transition varies as the square of the dipole matrix

elements and so we see that certain transitions, for example the transition j0i ! j+i ! j1i,
will exhibit a N2 dependence, ie. superradiant character. Also since d1� � 0 in the large

N limit, there would no longer be an interference minimum for 2PA mentioned above.

IV. EXPERIMENT

I shall now briey describe the experimental e�orts by Kimble et. al. [7] towards the study

of nonlinear cavity QED. The experiments are sensitive to the slightest of uctuations and

are di�cult to perform. The whole experimental apparatus has to be actively controlled and

stabilized. The main experimental problems arise from the fact that the number of atoms

in the cavity and their positions uctuate leading to a change in the coupling constants and

in the energy level structure.

A high �nesse cavity (F � 105) of length 346 �m formed by two high reecting curved

mirrors (transmission � 10�6, scattering losses � 10�6) is used. As mentioned earlier,

such high quality cavities are essential to achieve the strong-coupling condition for these

experiments. The cavity length is actively controlled. An optically prepared beam of cesium

atoms intersects the cavity axis at 90o. In this experiment the (6S1=2F = 4; mF = 4) !
(6P3=2; F

0 = 5; m0
F = 5) transition was investigated at 852 nm.
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FIG. 2. Experimental setup (from Ref. [7]).

The probe �eld is generated by modulating the output of a frequency stabilized titanium-

sapphire laser with an acousto-optic modulator (AOM) and an electro-optic modulator

(EOM). The pump �eld required for pump-probe experiments is generated by adding an

additional constant-frequency, variable strength rf signal to the probe. Figure 2 shows a

schematic of the setup. Figure 3 shows the transmission spectrum of the probe beam in the

absence of the pump �eld. The observed doublet structure with peaks at ! = �g0 arising
due to the j0i !probe���! j�i transitions is a direct spectroscopic measurement of the vacuum-

Rabi splitting.

To study the multiphoton quantum transitions, the average number of atoms in the

cavity is increased to �N = 4:2 so that semiclassical approximations are valid. The sequence

of transitions j0i !pump���! j+i !probe���! j1i is probed. One expects the peak of the transmission

to decrease from g0
p
N (about !0) for no pump to g0(

p
4N � 2 � pN) with the pump.

Fig.4 shows the transmission of the probe beam as the pump intensity is gradually increased

from zero. For zero pump intensity, we see the vacuum-Rabi splitting talked about before.

As the pump intensity is increased, the strength of the \unpumped" peak decreases while

that of the pumped peak increases. At the same time the pumped peak migrates inwards
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towards the common atom-cavity frequency. In addition, the width of the peak decreases.

For a linear system, the probe response would have been independent of the pump beam.

Hence �g.4 is a manifestation of the nonlinear dynamics of the atom{cavity system.

FIG. 3. Linear spectrum for �N � 1:1 atoms measured by heterodyne detection shows the

vacuum-Rabi splitting at ! = �g0 (from Ref. [7]).

FIG. 4. Sequence of probe spectra for �N �= 4:2 atoms with !a = !c � 0. The frequency 
 of

a constant amplitude probe beam is swept and the transmission is recorded. Trace (a) is without

a pump beam. From (b) to (d) the pump power is increased (from Ref. [7]).

10



V. CONCLUSIONS

The interaction of the atoms with the cavity modes in the strong coupling regime has been

discussed theoretically and experimentally. The interaction leads to a modi�cation of the

energy level structure. The free space resonances are split into doublets by the interaction.

The energy levels and transition matrix elements depend strongly on the number of atoms in

the cavity. Nonlinear spectroscopy experiments towards these studies have been described

briey.
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