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Abstract

Atom trapping and cooling using optical lattices is reviewed. A general theory

and an example of a one-dimensional lattice is discussed. Some experimental

achievements in the field are reviewed.
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I. INTRODUCTION

A set of intersecting laser beams establishes a stable periodic potential through its in-

terference pattern. Neutral atoms can be trapped in the wells of this potential via the

ac Stark effect(“light shift”), creating a lattice structure, that is commonly referred to as

optical lattice (OL). The localized atoms in the OL can be as many as a few micrometers

apart. At this distance, strong interactions between neighboring atoms are negligible, which

enables one to study an atom’s sole interaction with the environment. The optical lattice

potential can be modeled exactly and can be produced relatively easily in the laboratory.

Using a careful choice of the lasers’ parameters (polarization, intensity, frequency, and geom-

etry of the set of lasers), one can easily choose and control the lattice (lattice symmetry,

potential well depth and size). We begin the discussion of OLs in Section II, with a one-

dimensional model developed by Dalibard and Cohen-Tannoudji [1]. In this system, the OL

is constructed by two cross-polarized plane waves propagating in opposite directions. The

trapped atom has angular momenta Jg = 1/2 in the ground state and Je = 3/2 in the excited

state. In this model, the atom is trapped only in one dimension. The field’s polarization

and/or intensity are varying only in one dimension; therefore it is the only dimension in

which the atom is trapped. In the other two dimensions, the atom is free to move and is not

cooled. The process called “Sisyphus Cooling”, in which an atom looses its kinetic energy

(i.e., gets cooled), is described in this section. In section III, we discuss the basic theory

of laser cooling in OLs. In section IV, the use of spectroscopy to probe cooling in OLs is

discussed. In section V, we review two spectacular experiments in OL recently conducted,

and in chapter VI, we discuss possible new developments and directions that the research

might take.
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II. SISYPHUS COOLING IN 1D OPTICAL LATTICES

We consider a 1D model made of two counter-propagating plane waves propagating in

the +ẑ and the −ẑ direction, and linearly polarized in the x̂ and ŷ direction, respectively.

The electric field of of the laser EL(~z) is:

EL(~z) = −E0(x̂exp[ikz] + iŷexp[−ikz])

=
√

2E0(ê+ cos kz − iê− sin kz) (1)

From Eq. (1), we see that the field can be expressed as a superposition of two standing

waves with polarizations σ+ and σ−, respectively; it is offset by λ/4 so that the amplitude

maxima of one wave coincide with the amplitude minima of the other one. The intensity,

I , of the field is constant and independent of the spatial coordinate z (Iα |E|2), while the

polarization changes from circular to linear and back to circular as z changes by λ/4.

Consider an atom with angular momenta Jg = 1/2 in the ground state and Je = 3/2 in

the excited state, represented in Fig. 1. Taking into consideration the field at hand that

has only σ+ and σ− components, the atom-laser system divides itself into two subsystems:

(|e,−1/2〉 , |g, 1/2〉 , |e, 3/2〉) and (|e,−3/2〉 , |g,−1/2〉 , |e, 1/2〉). These two systems are cou-

pled through δm = 0 spontaneous transition between |e,±1/2〉 states. The potentials for

the |g,±1/2〉 states have simple form in a low saturation regime,

U1/2(z) =
2

3
U0 cos(kz)2 +

1

3
U0 (2)

U−1/2(z) =
2

3
U0 sin(kz)2 +

1

3
U0 (3)

where the maximum value of the light shift is U0 = 1
2
h̄∆s0. The saturation parameter for

|g, +1/2〉 ←→ |g,−1/2〉 transition at a point where the polarization of the laser field is

purely σ+ is s0 = 2Ω2/(4∆2 + Γ2), with associated Rabi frequency Ω and detuning of the

lattice from atomic resonance ∆ = ωL − ωA. For negative detuning, ∆ < 0, cooling of the

atom occurs due to optical pumping between the ground states |g, +1/2〉 ←→ |g,−1/2〉.
Considering the center-of-mass and the momentum of the atom classically, the illustration

of the process of cooling is simplified. Suppose an atom moving in the zzz direction, originally
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in the ground state |g, +1/2〉. At some time this atom is at the minimum of the potential

U1/2. As the atom continues to move, it decreases its kinetic energy climbing out of the

potential well of U1/2. At first, the probability that optical pumping will occur is minimal

since the local polarization is mostly σ+. As it continues to propagate, the atom encounters

the region where the local polarization is more σ−, thus the probability of pumping increases.

It reaches maximum at the top of the hill of U1/2, which corresponds to the bottom of the well

of U−1/2 potential, and the atom undergoes transition to |g,−1/2〉 state. Upon transition,

it finds itself on the bottom of the well of U−1/2 potential. As the atom continues to move

along zzz direction, it decreases its kinetic energy, again due to the increase of the potential

energy along the hill of U−1/2 potential. At the top of the hill of U−1/2 potential, the atom

undergoes another optical pumping that takes it to the bottom of the well of U1/2 potential.

The process continues until the atom loses enough of its energy and becomes localized in

one of the potential wells. This process in which the atom constantly climbs potential hills

and loses its kinetic energy, was named Sisyphus Cooling [1].

The above model describes the position of the atom up to the atomic wavelength scale.

Once the atom is trapped, the dynamics of the atom near the bottom of the potential well

can be approximated by a thermally excited simple harmonic oscillator (SHO). We expand

the optical potential about the minimum of the potential well, which gives the oscillation

frequency of the SHO,

ωOSC =
2

3

√
6
√

U0ER, (4)

ER =
1

2

h̄2K2
L

M
, (5)

where ER is the single photon recoil energy (i.e., kinetic energy an atom with mass M receives

if it absorbes a photon with h̄KL momentum). The oscillatory motion approximation only

makes sense if the time that the atom spends in the potential well is comparable to the

inverse of the oscillation frequency. In this case, one must treat the problem quantum

mechanically since the variation of the atomic center-of-mass can be on the order of the

atomic wavelength.
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III. THEORY OF LASER COOLING IN OPTICAL LATTICES

Consider a system of a monochromatic laser field tuned near resonance of an atomic

transition between ground and excited energy levels corresponding to two values of angular

momentum, Jg and Je, respectively. The atomic system consists of a total of 2(Jg + Je + 1)

states that evolve coherently through the interaction with the laser field. The dissipation

in the atomic system is due to the interaction with vacuum. In the case of a low intensity

laser field or large detuning, we reach the low saturation limit. In this limit, the population

of the excited state is small compared to the population of the ground state. Therefore, the

time scale of spontaneous emission is large compared to the time scale of optical pumping.

Effectively, populations and coherences relating the excited states become constant com-

pared to changes in populations and coherences of the ground state. Thus, the simplified

Hamiltonian has the following form,

H =
1

2

~P 2

M
U0(~εL(~x)d̂)†(~εL(~x)d̂) (6)

where the dipole operator d̂ ≡ ∑
Cmg+q

mg
|e; Je, mg + q〉 〈g; Jg, mg| e∗q. The atomic center-

of-mass variables are ~P and ~x, and Cmg+q
mg

is a shorthand notation for Clebsch-Gordan

coefficients for the states |Je, me〉 and |Jg, me〉 and eq are spherical basis vectors (q = 1, 0,

-1). The above given Hamiltonian in Eq.(6) describes only the coherent evolution of the

atomic state. To study laser cooling dissipative processes, the optical pumping between

ground states, must be considered as well. The master equation for density operator ρ does

this. As shown in [2] the master equation for the density operator, after adiabatic variables

were eliminated, has the following form

dρ

dt
=

[H, ρ]

ih̄
− γs{Λ, ρ}+ γs

∑ ∫
d2ksNh(ks)(Wh(ks)ρW †

h(ks)) (7)

where the operator Λ is given by Λ = (~εLd̂)†(~εLd̂), {·, ·} is the anticommutator, and the

operator Wh(ks) = (exp(iksx)~ehd̂)†(~εLd̂) represents absorption of a lattice photon, followed

by emission of a fluorescence photon of wavevector ks and helicity h along the quantization
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axis. The first term in the master equation, Eq. (7), is the term from the Heisenberg

equation of motion due to the Schrödinger Hamiltonian. It describes a coherent evolution of

the density matrix operator. This term determines the time scale of coherent processes such

as the oscillation of an atom when extremely localized close to the bottom of the potential

well. The next two terms describe the dissipative processes in the system and determine

the time scale associated with those processes. The second term characterizes the depletion

of population of a ground state to another ground state due to optical pumping. The third

term characterizes the replenishing of a population of a ground state due to optical pumping

to that ground state from some other ground states. Eq. (7) provides a description of laser-

atom interaction in a low saturation limit. However, solving it is a non-trivial task. For a

discussion of different approaches of solving Eq. (7) see [3].

IV. SPECTROSCOPY AND OPTICAL LATTICES

Spectroscopy has been used as the most successful method for probing the cooling in

atomic lattices. We briefly discuss two spectroscopic techniques: Resonance Fluorescence

and Probe Transition Spectroscopy. The former we discuss in more detail than the latter.

The group of Phillips [4] has developed a technique of optical heterodyne spectroscopy

of resonance fluorescence, which is shown schematically in Fig. 2(a). An atom, cooled

and trapped emits fluorescence that is collected, mixed with a local oscillator beam, and

detected by a photodiode. The signal from the photodiode is input to a radio frequency

analyzer which outputs the power spectrum of the atomic fluorescence. Figure 2(c) shows the

fluorescence spectra obtained in the experiment conducted by Jessen [5], where alkali atoms

were cooled in a 1D lattice discussed in section II. With a classical treatment of center-of-

mass motion for low saturation, the power spectrum of the scattered electric field is a delta

function centered at laser frequency ωL broadened by the atomic motion. The presence of

only one pair of strongly suppressed sidebands is strong evidence that the radiating atoms

are well localized in potential wells of the OL [3]. Such a successful localization of atoms,
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also known as Lamb-Dicke limit, is on the order of localization achieved in experiments with

ion trapping [6]. On average, an atom undergoes one full oscillation before it is optically

pumped or photon scattering randomizes the phase of oscillation. Quantum mechanical

consideration of the atom’s center-of-mass motion provides a description of the sidebands

in the spectra (Fig. 2(c)) in terms of transitions between quantized vibrational states in

a harmonic potential. These transitions are spontaneous Stokes and anti-Stokes Raman

transitions depicted in Fig. 2(b), which change the atomic vibrational quantum number

by ∆n = ±1. That is why these bands are referred to as “Raman sidebands”. Finally,

the temperature of the cooled atomic sample can be extracted from the asymmetry in the

Raman sideband and the oscillation frequency ωOSC [3].

Another successful technique, developed by Salomon, Grynberg, and Kimble [7], mea-

sures the attenuation of a weak probe beam as its frequency is varied in the neighbourhood

of the lattice laser frequency. In this case, Raman transitions between oscillatory eigenstates

are stimulated (Fig. 3(a)). Figure 3(c) shows the spectra obtained in the experiment using

the probe technique, applied to a sample of alkali atoms [8].

V. EXPERIMENTS

We choose to discuss two experiments in which atoms are trapped and cooled in OLs.

A. Resolved-Sideband Raman Cooling

This subsection is based on an experiment discussed in [9]. Neutral Cs atoms were

trapped in a 2D OL and cooled by resolved-sideband Raman cooling. The method relies

on Raman coupling intrinsic to the lattice potential and uses a magnetic field to tune the

coupling to the “red sideband”. The cooling results in a ground state population greater

than 95%.

Figure 4(a) illustrates the experimental setup. Three coplanar laser beams [10] with equal

amplitudes E1 and linear polarizations are in the lattice plane. The lattice consists of nearly
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isotropic potential wells located at positions where the local polarization is either σ+ or σ−.

The lasers are detuned far (typically 20 GHz) below the 6S1/2(F = 4) → 6P3/2(F
′ = 5)

transition at 852 nm. A weak magnetic field Bz along ẑ is added to Zeeman shift states

|n, m = 4〉 and |n− 1, m = 3〉 into degeneracy. Here |n〉 is a two-dimensional harmonic

oscillator state in a harmonic potential for the magnetic sub-level |m〉. The transition

|n, m = 4〉 ↔ |n− 1, m = 3〉 is then stimulated by the lattice. Optical pumping provides

relaxation from |n− 1, m = 3〉 to |n− 1, m = 4〉 via a pair of σ+-polarized beams.

The experiment is conducted as follows. A sample of ∼ 106 Cs atoms was confined to a

volume ∼ 400µm and cooled to the temperature of about 3 K, using a vapor cell magneto-

optic trap and 3D optical molasses. The atoms are further cooled in a near-resonance 2D OL

with the same beam configuration. A far-off-resonance lattice (FORL) is then adiabatically

imposed while the near-resonance lattice was diminished. When the adiabatic transfer is

completed and the atoms are localized deep in the Lamb-Dicke regime, resolved-sideband

Raman cooling is initiated first, by adding a field Bz tuned so that the lattice Raman

coupling occurs in the red sideband and secondly, by turning on the pumper-repumper

beams. Figure 4(c) shows that after 11 ms of cooling, at least 90% of the atoms have

been transfered to |m = 4〉 ground state. From the experimental data, an average kinetic

temperature T = 997±50nK is obtained. This corresponds to a population Π0 = 0.984±31

for atoms in |m = 4〉 state in two-dimensional vibrational ground state.

B. High Density Cooled Atoms in OLs

In the experiment discussed in [11], atoms are cooled and trapped in a 3D far-off-

resonance OL with high degree of occupancy (44% of the lattice sites have a single atom

near the vibrational ground state). The atoms are first cooled in a 3D FORL constructed

from three orthogonal standing waves. The amplitudes of two horizontal lattice beams are

decreased to zero adiabatically, so that only a 1D FORL trap remains. Distributed in a

“pancake-shape” manner, the atoms are confined to 50 nm in the vertical and 0.4 nm in

8



the horizontal direction. The 1D wells are about 200 µK deep. The atoms have less then 1

µK of kinetic energy, forcing them to be near the top of their trajectories in the transverse,

Gaussian shaped potential. After a quarter of a cycle, all the trapped atoms collapse at

about the same time toward the center of the trap. At this instance, when the concentra-

tion of atoms is the greatest, the horizontal beams are turned back on adiabatically, trapping

85% of the atoms at the lattice potential wells. To cool the atoms to a lower temperature,

laser cooling is applied again in the 3D FORL. The best results of this experiment show

that with a high initial density, 44%±1% of the lattice cites are populated with atoms after

multiply occupied cites decay, leaving the atom sample at average temperature of 350 nK.

The reported phase space density is 0.037, which is 6 times higher than the results in any

experiment that does not require evaporative cooling.

VI. OUTLOOK

OLs are of considerable importance in numerous areas and have recently been used in

experiments studying wave packet dynamics, laser cooling, and atom optics. Since OLs are

relatively easy to implement in the laboratory with a high degree of control, OLs find their

place in the experiments that are traditionally condensed matter in nature, such as Bragg

scattering and Bloch oscillations. Potential applications are numerous as well. For example,

OLs can be used for preparing cold atomic samples for atomic fountain clocks, developing

new lithographic techniques based on light-controlled deposition of atoms onto a substrate

[3]. If OLs were occupied more densely, as in the example discussed in section V B, then

experiments that depend on atomic interactions could be performed as well. In this case,

it may be possible to achieve Bose-Einstein condensation without any use of evaporative

cooling [11]. Finally, it may be possible to obtain quantum logic gates and open the way for

costructing of quantum computers [11].
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