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Abstract

This paper reviews generalized coherent states for the problem of a Coulomb potential. They

allow us to describe the correspondence between the quantum mechanical expectation val-

ues and the corresponding classical variables. Within this context, the dynamics of highly

excited electrons, so called Rydberg electrons, is discussed. Furthermore, the creation, ob-

servation, and stabilization of Rydberg electron wave packets is described. In particular, the

preparation of an atomic electron in a state closely analogous to a Schr�odinger cat state is depicted.

PACS number(s): 03.65.Ca, 32.80.Rm
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I. INTRODUCTION

Since E. Schr�odinger introduced coherent states for the harmonic oscillator to obtain a

quantum description of the behavior of a classical harmonic oscillator [1], it has been a

challenge to generalize this idea of quantum-classical correspondence. During the last two

decades, there has been progress in the development of coherent states for the bound state

part of the Coulomb potential. In 1990 su(2) generalized coherent states were invented

[7] and in 1996 Klauder proposed coherent states for the hydrogen atom [2]. Proposals

for new descriptions of coherent states have been made for Gaussian wave packets which

successfully accounted for pump-probe experiments [3, 5]. Besides the development of a

theoretical representation, interesting experimental work was also done. One example is

the preparation of a superposition of two atomic coherent states. Because of the immense

computational e�ort that is required for a complete quantum treatment, classical mechanics

is often a practical and also successful way to study such systems. Usually, more complex

atoms, like alkali atoms, are used for experimental studies, but their high energy states can

in good approximation be treated as in the hydrogen atom.

The paper will be organized in the following way. A short review on generalized coherent

states according to [2, 3] will be given at the beginning. After an introduction to coherent

states for the hydrogen problem, a brief discussion about their properties will follow. The

paper continues with a section about creation, stabilization, and measurement of the prop-

agation of Rydberg electrons. Then an experiment with coherently superimposed Rydberg

wave packets is described and �nally a conclusion is given.

II. THEORY

A Generalized coherent states

In the following coherent states according to the approach of Klauder are discussed.

Another discription, which will not be treated in this paper, is given by Perelomov [16].
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In analogy to the coherent states of the harmonic oscillator (here in polar coordinates,

� = rei�)

jr; �i = e�
1

2
jrj2

1X
n=0

rnp
n!
ein�jni; (1)

where [a; ay] = 1 and jni denote normalized eigenstates of the harmonic oscillator Hamilto-

nian H0 = �h!aya, Klauder's coherent states for Hamiltonians with discrete spectra

Hjni = Enjni = �h!enjni (2)

are de�ned by

jn0; �0i = (N(n0))
�1=2

1X
n=0

n
n=2
0p
%n
eien�0 jni: (3)

Here the range of the azimuthal angle �0 is extended from �1 to +1 which is important

for the resolution of the identity operator and an essential step in Klauder's construction. en

is dimensionless and ordered by magnitude (e0 < e1 < e2 < ...). For the harmonic oscillator

en = n + 1
2
and for the hydrogen atom en = 1

(n+1)2
. The Klauder generalized states are

usually not minimal uncertainty states, but ensure temporal stability according to Klauder's

de�nition [2].

For the hydrogen problem, generalized angular momentum coherent states (also called

su(2) generalized coherent states) are needed. According to [3] they have the form

jj;�; �i =

2jX
p=0

eip�

p!
cos2j�p(�) sinp(�)

�
(2j)!p!

(2j � p)!

�1=2

jj; j � pi, (4)

with jj;mi as an eigenstate of J2 and Jz for the su(2) algebra of angular momentum oper-

ators. These states are normalized and provide a resolution for the identity operator.

B Rydberg coherent states and their properties

According to Bohr's correspondence principle, atomic electrons in highly excited states

should behave like classical, charged particles. That means the electron should move along
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a Kepler orbit around the nucleus and stay well localized. This picture is similar to the

motion of celestial bodies. In quantum mechanics it means that the expectation values

of the corresponding classical variables follow the classical equations of motion and the

variances of these variables do not increase with time.

Atoms in highly excited states can be described by a Hamiltonian similar to the hydrogen

atom

H =
p2

2m0

� Ze2

r
; (5)

which has the energy eigenvalues

E = �(Ze2)2m0

2�h2n2
: (6)

Following Klauder's construction, Majumdar and Sharatchandra [5] and Fox [3] proposed

coherent states for the hydrogen atom. With these Rydberg states it is possible to describe

the dynamics of the electron as characterized by the expectation values of the angular

momentum ~L and the Runge-Lenz vector (eccentricity vector) ~� both de�ned by

~L = ~r � ~p and ~� = ~r � 1

2Ze2m0
(~p � ~L� ~L � ~p): (7)

Under the assumption of conserved angular momentum and eccentricity, Fox shows that the

expectation values of ~L and ~� follow the classical equations of motion and that the variances

of these two operators are time independent. Also the ratio of the square root of the variance

and the principle quantum number n0 decreases with increasing n0. Furthermore it can be

shown, depending on the chosen state, that the expected value of the position follows a

circular or slightly eccentric orbital motion. Nevertheless, it is also important to know the

development of the uncertainty (variance) in the coordinates corresponding to the classical

variables r, �, and �. By knowing the explicit coordinate dependence of the Rydberg

states ( Ryd(r;�; �; t) = hr;�; �jRyd; n0; �0; ti) it is possible to calculate these values. For
circular Rydberg states the root-mean-square deviation divided by the mean isph�2�i

�=2
=

p
2

�
p
n0

for � (8)
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and

ph�2ri
r0

=
1p
2n0

for r: (9)

Hence, for su�ciently large principle quantum numbers n0, � is localized in the azimuthal

plane and r is relatively close to the circle radius. This is in agreement with the quantum-

classical correspondence discussed at the beginning of this section. In contrast to these

time independent results, the distribution for the azimuthal angle � is time dependent and

the variance increases within a Kepler period by a factor of � 103 for typical experimental

Rydberg atom states with 50 � n0 � 200. That means that there will be a total dephasing

in � after less than one orbital period. Fox points out that the dephasing at least improves

when celestial mechanics is treated by this approach. That means for n0 � 1074 in the case

of the system sun and earth. By this, he demonstrates the quantum-classical correspondence

principle for very large quantum numbers.

The rapid dephasing in the azimuthal angle for these coherent states has also been demon-

strated by Bellomo and Stroud [4] by using the time autocorrelation function proposed by

Nauenberg [11]

C(t) =

����h jexp
�
� i

�h
Ht

�
j i
����
2

(10)

(in a.u.) with j i standing for a generalized coherent state or a wave packet. The autocor-

relation function contains information about when and how a state returns to its original

con�guration. When representing an electron on a Kepler orbit, it should return to one or

very close to one, which is the maximum value for normalized states. Figure 1 shows the

result of the time evolution of the autocorrelation function for principle quantum numbers

n0 = 25 and n0 = 400.
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FIG. 1: Autocorrelation for temporarily stable states: in (a) n0 � 25, in (b) n0 � 400.

The small recurrence peaks of (a) disappear in (b).

III. EXPERIMENTS

A Creation and measurement of Rydberg atoms

As in the experiment described below, very often other elements, e.g. alkali metals, than

hydrogen are used to produce Rydberg atoms, since it is much easier to excite their valence

electron to a Rydberg state. The excitation energy is in the UV spectrum of the light

and the pulse durations for a coherent excitation are on a femto- to picosecond scale. The

experimental surrounding conditions have to be chosen carefully, since thermal collisions

can ionize the highly excited atoms. The binding energy of hydrogen with, for example,

n0 = 100 is only 1:36� 10�3 eV and the energy separation between two energy eigenstates

�E is of the magnitude 10�5 eV [12]. The wave packet is composed of the eigenstates

spanned by the frequency bandwidth of the laser pulse around the mean excitation level

n0 and oscillates between the nucleus and the classical outer turning point at rC = 2n20 (in

a.u.). To measure the quantum state distribution of the excited electron, state-selective �eld
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ionization is used. Here, a DC electric �eld is ramped on. It ionizes the population from

di�erent excitation levels at di�erent times. The produced ions are collected with an electron

multiplier and counted according to their arrival time. The resulting time-resolved ion signal

has peaks which correspond directly to di�erent Rydberg eigenstates in the superposition.

By varying pulse length and �eld distribution, it is possible to create more complicated

wave-packet structures than the ones with a Gaussian shape. To obtain such wave packets,

the pulse can be considered as a superposition of electric �elds that would create separate

substructures.

Creating simple Rydberg packets or even shaped wave packets is only the �rst step

towards demonstrating the control of electronic dynamics in packets. According to reference

[9], a radially localized Rydberg electronic wave packet can be formed by a short light pulse,

creating a coherent superposition of Rydberg states with an average principle quantum

number n0. The corresponding classical system of this wave packet is an ensemble of classical

orbits with arbitrary orientations in space around the nucleus but with synchronized phase

of the electron in each classical realization. Therefore, the entire ensemble appears to be

a shell oscillating in and out from the nucleus. After the excitation pulse the wave packet

is allowed to freely evolve on its elliptical orbit for a delay time �d. Then the state of the

atom is probed by a second short optical pulse. By analyzing the photo-ionization signal

as a function of the delay time, the evolution of the wave packet can be observed since the

ionization probability is larger when the wave packet is near the nucleus.

The interaction of the pulse with the wave packet can be understood classically. When

the electron is near the nucleus it moves faster than when it is near the outer turning point.

The rate of absorption of the second pulse is given by the product of the electron current ~J

which is proportional to its velocity and the electric �eld of the pulse. Therefore, the photo

ionization will be lower when the electron is near an outer turning point.

Since the energy levels of the hydrogen atom are neither equally (harmonic oscillator) nor

randomly spaced, the superposition of the states, represented by the wave packet, neither

stays unchanged, as for the harmonic oscillator coherent states, nor does it spread and
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FIG. 2: Photo-ionization signal as a function of the delay time: (a) measurement, (b)

theoretical prediction. A classic-non classic-classic evolution cycle with a half fractional

revival is shown.

never revive. The temporal measurement shows a fast oscillation representing the electron

wave packet on its Kepler orbit which decays and revives after some time with a periodicity

proportional to the second derivative of the average wave packet energy. Between the periods

of time when the wave packet can be described classically it is possible to observe fractional

revivals. A half fractional revival, for example, means that the electron relocalizes in two

separated wave packets and the frequency of the photo ionization signal doubles. The revivals

of the wave packets are not complete, because there is always a coupling of the system to

sources of decoherence as there is for example the blackbody radiation. An example of a

comparison between theoretical expectation and experimental results of [9] is shown in Fig.2.
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B Stabilization of Rydberg wave packets

Ultra-stable Rydberg states are those with maximum angular momentum, since the in-

teraction between electron and nucleus is then minimal. However, the excitation of the

electron with one pulse usually creates states with low angular momentum. To avoid core

e�ects, which enhance the decay rate of the excited states, it is necessary to increase the

angular momentum of the electron. This is achieved by slowly varying, weak electric, and

magnetic �elds [4, 10]. In order to assemble a wave packet with little or no dispersion in all

variables, a quantum system with (almost) constant energy-level spacings is necessary as in

the case of the harmonic oscillator. This can be achieved by weak external �elds. Lee et

al. [6] show that it is possible to create global equilibrium points with circularly polarized

microwave and magnetic �elds (in a rotating frame). For non-dispersing wave packets these

equilibrium points have to be stable by themselves and the potential of the surrounding area

has to be harmonic in a region that is large compared to the wavelength of the electron.

Otherwise there would be dispersion out of the region caused by tunneling. The states

obtained under these conditions are approximately the conventional coherent states, since

the local Hamiltonian is harmonic. Lee et al. point out, that the equilibrium points are

analogous to those in the restricted three- body problem in celestial mechanics. It is also

possible to manipulate their properties by modifying the external �elds so that the wave

packets stay localized. This classical treatment of the coherent states is justi�ed as long as

the �elds used are weak compared to the Coulomb �eld the electron senses [10].

C Schr�odinger cat state

Schr�odinger brought the distinction between the descriptions of the reality in classical

and quantum physics into sharp focus by introducing the quantum superposition of a \dead

cat" and a \live cat". Basically, it is a quantum mechanical superposition of two classically

distinguishable physical states which are \localized" in one or the other only by the act of
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a measurement.

With the preparation of a coherent superposition of two Rydberg wave packets in 1995,

Noel and Stroud [13] succeeded in creating such a Schr�odinger cat state of nearly macroscopic

size. They formed the Schr�odinger cat state of the atom by the interaction with a pair of

phase-coherent time-delayed laser pulses. The time delay was half the time the electron

needs for a Kepler period. This insured that the �rst part of the wave packet was at the

outer turning point, when the second pulse excited the second wave packet at the inner

turning point. The result of this sequence is a single electron in a superposition at two well

separated spatial locations. The measurement of the quantum state distribution for various

phase di�erences between the two wave packets showed that the presence of a second wave

packet modi�es the state distribution compared to that of a single wave packet. It is possible,

for example, to create even or odd coherent states. They are composed of only even or odd

eigenstates jni. This modi�cation of the population distribution is not the only indication of

the interference between the two quasi-classical wave packets. The characteristic interference

between them in phase space can also be observed for the Schr�odinger cat state.

However, this observation can only be made when the two wave packets spatially overlap

and are near to the core. Since the energy spacing between the eigenstates is not constant

the initially, spatially separated wave packets spread and overlap su�ciently after some time.

To measure the interference between the wave packets a time-delayed probe pulse identical

to the excitation pulse is sent to the atom to determine the location of the radial electron

wave packet. This probe pulse interacts coherently and a rapid oscillation in the excited

state population at the optical period can be seen. The modi�cation of the population

distribution and the oscillation of the fringe visibility with changing phase between the two

wave packets in Noel's and Stroud's experiments showed that the classically distinguishable

wave packets are created in a coherent superposition (Schr�odinger cat state).Unfortunately,

the size of such Schr�odinger cat states is limited by the time scale for mixing due to blackbody

transitions which goes as n2. Since the period of the Kepler period scales with n3 there is

a point at which the coherence between the highly excited wave packets will be lost before
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they can complete even a single orbit.

IV. CONCLUSION

By the description of Rydberg coherent states, a manifestation of the quantum-classical

correspondence principle at high quantum numbers has been made. The behavior of the

proposed states is almost in complete agreement with the measurements. Nevertheless, the

problem of the azimuthal dephasing has not been solved satisfactorily so far. Besides this

correspondence between quantum mechanical expectation values and classical variables, the

Rydberg-atom system still maintains pure quantum mechanical properties. The experiments

done with Rydberg atoms show us that there are other properties in addition to the size

of a system which distinguish the classical limit from the quantum case. The dependence

of the evolution of the wave packets on the initial excitation allows us to manipulate the

transitions of electrons in many ways and thus control the outcome of material processes [15].

In this respect, the increase of the e�ciency of chemical reactions would be an application

of interest. Besides these practical applications, the variety of semi-classical and quantum

features has made and will continue to make Rydberg atoms object of future studies.
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