
Physics 581, Quantum Optics II 
Problem Set #4 

Due: Tuesday November 1, 2016 
 
 
Problem 3:  The EPR state (30 points) 
The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of 
measurements on an entangled state of the motion of two particles.  The EPR state is a 
simultaneous eigenstate of relative position and the center-of-mass momentum 
 

X̂A − X̂ B( ) EPR = Xrel EPR  ,  P̂A + P̂ B( ) EPR = Pcom EPR  
 

The purpose of this problem is to show how one can create an approximation to this state in 
quantum optics, and to study their entanglement properties. 
 
(a) We showed that the photon pair produced in spontaneous parametric down conversion was 
entangled in frequency and time of emission.  By selecting a narrow pinhole of phase-matched 
signal (s) and idler (i) directions, the state can be written 
 

 
Ψ = dω s

!A(ω s )∫ ω s s ⊗ ω p −ω s i
= d ′t A(t − ′t )∫ t s ⊗ ′t i . 

 
Here,  

!A(ω s )  is the spectrum of signal frequencies allowed through the pinhole, ω s(i )  is a mode 

with frequency ω travelling in the s(i) direction, and t s(i )  is a “temporal mode” representing a 
photon localized near position ct along the beam.   
 
Argue that in the limit,  

!A(ω s )→1/ 2π , A(t − ′t )→δ (t − ′t ) , this is the EPR state.  What plays 
the role of position and momentum?   
 
Consider now a parametric oscillator beyond the perturbative limit, where two modes (A and B) 
are phase matched with the pump.  The resulting output state is a two-mode squeezed vacuum 
state 
 

0,0 r = ŜAB(r) 0 A 0 B = e
r â†b̂†−âb̂( ) 0 A 0 B  

 
Our goal is to show that in the limit of infinite squeezing, the is the EPR state. 
 
(b) Show that, 

 
ŜAB
† P̂A ± P̂B( ) ŜAB = P̂A ± P̂B( )e∓r , and thus this operation squeezes the “relative 

position” and “center-of-mass momentum” quadratures.  
 
(c) Show that ŜAB

† X̂AŜAB = cosh rX̂A + sinh rX̂B ,  ŜAB
† X̂BŜAB = cosh rX̂B + sinh rX̂A .  This is a 

Heisenberg statement. 



(d) From this argue that, up to normalization (which is tricky position) 
 

ŜAB(r) XA A XB B = cosh rXA + sinh rXB A cosh rXB + sinh rXA B  
 

(e) Show that the (normalized) position space wave function for the two modes is 
 

Ψr (XA ,XB ) = XA XB 0,0 r =
1
π
e
− (XA−XB )

2

4e−2 r e
− (XA+XB )

2

4e+2 r   (plot for r=2) 

 
and in the limit of infinite squeezing lim

r→∞
Ψr (XA ,XB )⇒δ (XA − XB )  

 
 

(f) By similar arguments, show that the (normalized) momentum space wave function is 
 

 
!Ψr (PA ,PB ) = PA PB 0,0 r =

1
π
e
− (PA+PB )

2

4e−2 r e
− (PA−PB )

2

4e+2 r    (plot for r=2) 

 
and in the limit of infinite squeezing 

 
lim
r→∞
!Ψr (PA ,PB )⇒δ (PA + PB )  

Thus argue that in the limit of infinite squeezing, the two-mode squeezed vacuum is the EPR 
state.   
 
 
(g) Show that in the limit of infinite squeezing, the two-mode squeezed state can be expressed as 
 

lim
r→∞

0,0 r ⇒ EPR = dX∫ X A ⊗ X B = dP∫ P A ⊗ −P B = n A ⊗ n B
n
∑    

 
Note:  This is maximally entangled state in infinite dimensions.  It is not a physical state, 
however, as it requires infinite energy.  Nonetheless, we approximate is with large, but finite 
squeezing. 
 
(h) Show that the Wigner function for the two-mode state is  
 

 
W (XA ,PA ,XB ,PB ) = Ψr (XA ,XB )

2 !Ψr (PA ,PB )
2
= 1
π 2 e

− (XA−XB )
2+(PA+PB )

2

2e−2 r e
− (XA+XB )

2+(PA−PB )
2

2e+2 r  

 
(i)  Extra credit:  The Wigner function is positive, meaning there is a classical local probabilistic 
description of joint measurements of XA ,XB ,PA ,PB .  What are the implications for the EPR 

paradox and Bell’s inequalities?  
 
 
  



Problem 2: Entanglement and the Jaynes-Cummings Model (30 points) 
 
One the most fundamental paradigms in quantum optics is the coupling of a two-level atom to a 
single mode of the quantized electromagnetic field.  In the rotating wave approximation, this is 
governed by the Jaynes-Cummings model (JCM), 
 

 
Ĥ = !ω câ

†â + !ω 0
σ̂ z

2
+ !g σ̂ +â + â

†σ̂ −( ) . 

 
This is a bipartite system with tensor product Hilbert space for the atom and field,  H AF=hA ⊗hF , 
where  hA  is the two-dimensional Hilbert space of the two-level atom, and  hF  is the infinite 
dimensional Hilbert space of the harmonic oscillator that describes the mode.  The goal of this 
problem is to understand the entanglement between the atom and mode, generated by the JCM. 

 
Last semester, we studied how this leads to collapse and revival of Rabi oscillation that follows 
from an initial product state with the field in a coherent state and the atom in, e.g., the ground 
state Ψ(0) AF = g A ⊗ α F .  The probability to find the atom in the excited state oscillates as 

shown (here for n = α 2 = 49 ) 
 

 
 
The collapse is due to the variation of the quantum Rabi oscillations with different number; the 
revival is uniquely a quantum effect arising from the discreteness of the quantized field, 
occurring at a time gtr ≈ 2π n  for large n . 
 
(a) Show that the state at time t the joint state takes the form 
 

Ψ(t) AF = C(t) F ⊗ g A + S(t) F ⊗ e A  

where C(t) F = cn cos( ngt)
n=0

∞

∑ n , S(t) F = −i cn+1 sin( n +1gt)
n=0

∞

∑ n , cn = (α
n / n!)e−α

2 /2  . 

Note C(t) F , S(t) F  are not normalized, nor are they orthogonal. 
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(b) Show that the marginal state of the atom in the g , e{ }  basis is 
 

 

ρ̂A(t) =
C(t) C(t) C(t) S(t)
S(t) C(t) S(t) S(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
2
1̂+
!
Q(t) ⋅ !̂σ( ) . 

 
Write an expression for Bloch vector  

!
Q(t) . 

 
(c) Write the purity of the marginal (a measure of the entanglement between the atom and field), 
in terms of the Bloch vector.  Numerically calculate this and plot as a function of time for 
n = α 2 = 49 .  Your graph should look like 

 

 
 
This plots shows a few surprising features.   During the collapse the atom and field become 
highly entangled, as indicated by the rapid degree in the atomic purity.  However, at half the 
revival time, gtr / 2 ≈ π n , when the inversion looks to be flat, the purity returns to near unity, 
indicating that the atom and field become separable.  The atom and field then become re-
entangled.  When the Rabi oscillations once again revive, the purity again increases, but nowhere 
near to unity.  Our goal now is to use the Schmidt decomposition to understand this. 
 
(d) Given the initial pure state of the joint system and the unitary evolution according to the JCM, 
we know that at all times we can express the state in terms of Schmidt decomposition. 
 

Ψ(t) AF = pu (t) uµ (t) A
⊗

µ=1

2

∑ vµ (t) A
. 

Note, even though the field mode is infinite dimensional, the maximum Schmidt number is 2.   
 
Express the two values of pµ (t)  in terms of the Bloch vector  

!
Q(t) .  Calculate numerically at plot 

as function of time.  Your graphs should look like the following: 

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1.0  

gt 



 
 
Comment on this and what it means for the entanglement. 
 
(e) We can find the Schmidt vectors by the following procedure.   
- Find the atomic Schmidt vectors uµ (t) A{ }  as the eigenvectors of the marginal state ρ̂A(t)  in 

the standard basis g , e{ } .  

- Using Ψ(t) AF = C(t) F ⊗ g A + S(t) F ⊗ e A = pu (t) uµ (t) A
⊗

µ=1

2

∑ vµ (t) A
, find an expres-

sion for the two Schmidt vectors of the field vµ (t) F{ }  in terms of C(t) F , S(t) F , pu (t) .  

 
(f) We can see the (approximate) separation between atom and field at half the revival time for 
large n  as follows.  Show that in this limit, 
 

g n +1tr / 2 ≈ g ntr / 2 +π / 2, cn+1 ≈ e
− iφcn , where cn = (α

n / n!)e−α
2 /2  and α = n eiφ  . 

 
Using this, show that 

Ψ(tr / 2) AF ≈ g A − ie
− iφ e A( )⊗ C(tr / 2) F  . 

 
Thus we see that the system is separable, with the atom in an equal superposition depending on 
the phase of the coherence state.   
(g) Extra credit (5 points):  More generally show that if Ψ(0) AF = a g A + b e A( )⊗ α F  
 

Ψ(tr / 2) AF ≈ g A − ie
− iφ e A( )⊗ a C(tr / 2) F + b S(tr / 2) F( )  

 
This result shows that regardless of the atomic initial state, at half the revival time, the atom 
goes to the same state.  The information about the initial atomic superposition is transferred to 
the field in a kind of “swap gate.”  For large α , the two field states are macroscopically 
distinguishable.  This is kind of “Schrödinger cat”. 
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Problem 3: Gaussian States in Quantum Optics (EXTRA CREDIT: 35 points) 
 
The set of states whose quadrature fluctuations are Gaussian distributed about a mean value is an 
important class in quantum optics.  These states have Gaussian Wigner functions.  In this 
problem, we explore Gaussian states, their relationship to squeezing, and the canonical algebra of 
phase space. 
 
Consider a field of n-modes, with quadrature defined by an ordered vector: 
 

Z = (X1,P1,X2 ,P2 ,...,Xn ,Pn ) . 
 

The operators associated with these quadratures satisfy a set of canonical commutators relations 
that can be written compactly as, 
 

Ẑi , Ẑ j⎡⎣ ⎤⎦ =
i
2
Σij , where Σ = ⊕

k=1

n 0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥  is a skew-symmetric matrix.   

We define an “inner product” in phase space as Z Q( ) = ZiΣijQj   (summed over repeated indices 
through this problem). 
 
(a) Show that the phase space displacement operator can be written 
 

D̂(Z) = exp −i Z Ẑ( ){ }  

 
A Gaussian state is one whose Wigner function is a Gaussian function on phase space.  Recall 
the characteristic function of a quantum state is defined χ(Z) = Tr ρ̂D̂(Z)( ) .   
The general form of the characteristic function for a Gaussian state with is: 
 

χ(Z) = exp − 1
2
Z C Z( ) + i d Z( )⎧

⎨
⎩

⎫
⎬
⎭

. 

 
Where Cij  is known as the covariance matrix, and di  is a real vector. 
 

(b) Show that: Ẑi = di , and 
1
2

ΔẐiΔẐ j + ΔẐ jΔẐi = Cij , where ΔẐi ≡ Ẑi − Ẑi . 

Hint:  Recall how moments are found from the characteristic function. 
 
The Gaussian state is thus determined by the mean position in phase space and the covariance of 
all the fluctuations. 
 
(c) Find the Wigner function for a state with the general form of the characteristic function. 
 



Let us restrict our attention to Gaussian states with zero mean (the mean is irrelevant to the 
statistics and can always be removed via a displacement operation).   Consider now unitary 
transformations on the state.  A particular class of transformations is the set that act as linear 
canonical transformations, i.e. 
 

Û †ẐiÛ = Sij Ẑ j , where Sij  is a symplectic matrix, defined by STΣS = Σ . 
 

 
A unitary map on the state transforms the state according to  
 

χ(Z)⇒ ′χ (Z) = Tr Û ρ̂Û †D̂(Z)( ) = Tr ρ̂Û †D̂(Z)Û( ) . 
 

(d) Show that for a symplectic transformation, the characteristic function transforms as 
 

χ(Z)⇒ χ(SZ)  
 
and thus the action of the unitary is to preserve the Gaussian statistics, by transforming 
covariance matrix as C⇒ STCS . 
 
(e) Show that the following operations preserve Gaussian statistics: 

• Linear optics: Û = exp −iθij â
†
iâ j( )  

• Squeezing: Û = exp ζ ij
*âiâ j −ζ ij â

†
iâ j
†( )  

 
(f) For each of these, show how the covariance matrix of the Gaussian transforms. 
 
(g) Starting with the vacuum (a Gaussian state) we apply the squeezing operator above.  Show 
that the symplectic transformation on the covariant matrix leads to the expected result. 
 
 
 


