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1 Introduction to this course

A quantum system which is not fully isolated {rom its surroundings must be described
by quantities which are more general than just a wavefunction, and its dynamics shows
features beyond those contained in the usual solutions of Schrodinger’s equation: It is
the purpose of these lectures to present a review of the tools that may be applied to a
system which is weakly coupled to a reservoir into which it dissipates energy. An atom
decaying by spontaneous emission due to the coupling to the surrounding guantized
electromagnetic field, or a field mode which is damped due to absorption of photons by
atoms in a medium, are examples of such "open systems” in quantum optics. Damping
in quantum optics problems is special because, unlike in other fields of physics, it may
occur on the same fime scale as coherent processes (e.g. laser excitation}. - Thus it
neither restricts the system dynamics to the final state of the decay process, nor can
it be accounted for by a simple perturbative correction to the result of the coherent
evolution. o '

First, the standard treatment of dissipation in quantum optics is reviewed. The
density matrix is introduced, and the structure of the master equation, yielding its
time evolution, is discussed together with another important theoretical result, the
quantum regression theorem. I try to make a slightly different presentation than what
is found in many text books, serving hopefully as a supplement to the understanding
for the more experienced reader, and as a short cut to the subject for the beginner in

this field.

Recently, a novel treatment of such systems was introduced. It is possible to apply
wave functions rather than density matrices, provided a stochastic element is included
in the evolution of the wave functions. This new insight was obtained more or less

simultaneously in a number of groups although the motivation and reasoning applied
differed a lot.

 Together with Yvan Castin and Jean Dalibard at ENS in Paris 1 had reached a
rather pessimistic view on the feasibility of numerical calculations on laser cooling in
the general case where the external degrees of freedom have to be described quantum
mechanically [1]. The problem is the important role of spontaneous emission for the
process; one has to apply density matrices with a number of elements equal to the
square of the number of state vectors describing the system. For laser cooling this

" easily brings the number of equations to be solved up to 10% — 103 !

What a substantial reduction if one could do the calculations with wavefunctions
rather than with a density matrix. Without blaming this on my colleagues, I was
so fortunate to be misled by the misconception that any single atom, being only one
siri'gilé quantum system, should be described by a wave function, and the demsity matrix

- should be reserved for ensembles of systems. This view point is not consi

with
 the definition of the density matrix in these notes (see e.g. the wave functi issed

iscussed



above Eq.(7)), but it was, for me, an important driving force, and, as these lectures will
demonstrate, a wave function formulation can be formulated. It is clear that the proper
time evolution has to be stochastic in order to represent the density matrix evolution
from pure into mixed states. Jean Dalibard brought in some of his experience from
the delay function treatment of the quantum jump problem [2], and we constrcted
the Monte Carlo Wave Function method (MCWF) [3, 4, 5]. In Section 3 of these notes
we shall present this method in detail and we shall discuss the physical interpretation
of the crucial stochastic elements in the evolution: The association of a wave funiction
to each individual! system can be made meaningful by a reference to the theory of
measurements in quantum mechanics.

A new misconception which, however, did not last long, was that these indetermin-
istic wave functions could provide a short cut to the calculation of correlation functions.
This is unfortunately not so, the fluctuations in operator averages due to the random
character of the wave function evolution may represent some, but certainly not all the

" quantum noise” which is so important in many quantum optics problems. In Sechen
4 we discuss the application of the quantum regression theorem together with the wave
function simulations to obtain the correct noise correlations. We also discuss the ex-
istence of different simulation schemes, some involving jumps, some bemg in the form
of continuous stochastic differential equations, and all representing the same system
equally well.

In the context of non classical field generation, Carmichael 6] has proposed an ap-
proach named “quantum trajectories”, inspired by the theory of photoelectron counting
7] and quite similar to the spirit of [3] . Based on the continuous quantum theory of
measuremnent [8], Zoller and co-workers [9] have developed a Monte-Carlo simulation
of .the ‘atomic master equation for spontaneous emission. Within the framework: of
quantum jump theory, Hegerfeldt and Wilser have considered a quantum mechanical
model for describing a single radiating atom which could also be the starting point for
a Monte-Carlo evolution with atomic wave functions [10]. Finally the relation to a gen-
eral stochastic formulation of quantum mechanics, considered by a number of authors,
was pointed out to us by Gisin [11]. Gisin and Percival have since then applied the&r

“state diffusion model” to a number of quantum optics problems [12].

We have referred to our approach as the Monte Carlo Wave Function method
(MCWF). We hesitated calling it “Quantum Monte Carlo” because this name is already
associated with another method in theoretical physics, iransforming Schrédinger’s
equation into a thermodynamics type problem solvable by classical Monte Carlo simu-
lations. Qur procedure does not elliminate the quantum nature of the problem at any
point. In several applications, however, the method has now been. referred to as the

-Quantum Monte Carlo method; and I shall.use this name throughout. = -

It has been a pleasure for me to work with Yvan Castin, Jean Dahbarci a.n& Kirstine
Berg-Sgrensen on the development and application of the MCWF method. Alterna-



tive viewpoints and applications, presented by other groups, have been, and still are,
important sources of inspiration to us, and I have enjoyed the enthusiastic atmosphere
in our discussions with the above mentioned authors, and many others, so far.

These lecture notes have improved substantially from the initial version to the
present result. This is, in particular, due to a careful reading of the manuscript by

Ejvind Bonderup, and I am very grateful for his numerous suggestions to the presen-
tation.



2 Standard treatment of dissipation in quantum
optics: Density Matrices, the Master Equation,
the Quantum Regression Theorem.

2.1 The Density Matrix as a Catalogue

Consider a quantum system, S. Using a basis set {|:)} we can write the wavefunction
for the systemn,

=Yl (1)

and we can cast Schrodinger’s equation for the wavefunction

1ﬁ“!¢) Hl) (2)

into a set of linear equations coupling the amplitudes ¢;.

In quantum mechanics, physical quantities are represented by linear operators, act-
ing in the space of wavefunctions, and the theory predicts the average outcome of
experiments measuring the corresponding physical property. A linear operator; A4, is
specified completely by its action on all basis states, * |

Alj) = 3 A, ®)
Hence, if {[z}} is an orthonormal set, we can write the operator as
A=Y At ()
i

The outer, diadic, product, |i}{j], of two basis functions is defined as the operator in
the system Hilbert space which maps a state vector [1) into a vector proportional to |1}
with amplitude given by the overlap of |3) with the j’th basis function, ({}{jDl¥) =
{714} - [{}. It is convenient to apply this element of Dirac notation in the quantum
~ optics problems considered in these lectures.

Any operator can be written in the form (4), hence all information about the system
is contained in the set of expectation values ((iz)(_ﬂ)) For a system described by a
finite number N of basis functions, this implies that a matrix of N X N elements
gives access to all possible system observables. Now, we already have a set of only N
variables, the amplitudes ¢;, which provides the same information, so why consider an
extension of this set ?

Orne answer to this question lies in the observation that if we have for example a big
ensemble of systems, or when our system is part of a much larger quantum mechasical
~ system, with a total number of basis states that may easily exceed N?, any observable
referring to the S-component of the system, is still determined by the N x N elements

led



mentioned. In this perspective N? may be a small number. It is therefore useful to
introduce a catalogue containing these numbers. We call this catalogue the density
matriz (restricted to the system §7), and we define

pii = ({1 ED). (5)

Note how, for a pure state (1), pi; = ¢ic}, and for an ensemble of systems with different

wavefunctions, [¥™) = ¥, cgm)li), the ensemble and quantum expectation value in {5)
becomes

LY

1 ™ m e
pij = -m-chS ™ = (6)

We have introduced the bar ™ to indicate the ensemble average. The statistical def-
inition, (6), of the density matrix may be found in a number of quantum mechanics
text books, but is is not necessarily a good picture of the situation in quantum optics.
Here, we are more often facing a system coupled to some other variables, so that the
total wavefunction may be represented by product states, |i) @ |a}, where |i) denotes
one of the basis states of systemn S, and where the states |a) span the remaining com-

ponents. For a single system with such a wavefunction, |¥) = ¥, ciali) @ |}, we have
the density matrix elements,

pi; = Zciac;w (7)

and it may be more economical to deal with the N? elements of p than the, maybe,
larger number of amplitudes c;,. Provided, of course, that we can get access to these
values - the subject of the next subsection.

A few remarks about the density matrix: The diagonal element p;; yields the popu-
lation of the state [i}. If the system is given by a pure state as in {1) with non-vanishing
populations of two or more basis states, the state is in 2 coherent superposilion, and
the non-vanishing density matrix element p;; = cic; is called the coherence, or the
(ij)—coherence. In the more general case described by (6) and (7) we note that the
{ij)-coherence may be zero, while both populations of the states i) and |j) are finite;
p is then said to represent an incoherent mixture of the states involved. The density
matrix has unit trace (normalization), T'r(p) = ¥J; pii = 1, and it is a hermitian matrix,
pi; = P}, which is easily seen from any of the equations (5,8,7).

Al of p’s eigenvalues are positive, and having unit sum, they can readily be inter-
preted as the populations of the eigenstates of the density matrix. In this ‘basis there
are no coherences, and in most discussions of the density matrix these eigenstates are
taken as a preferred basis and each individual system of the ensemble is claimed to
be in one of these states, so that the fractions of an ensemble populating each state
.. reflect the populations in p. In this way the density matrix unifes clagsica,l___pmf}@bil-
ities and usual wave functions. The diagonalization of p may be an efficient w&y-ubf
synthesizing a density matrix, i.e., preparing an ensemble with certain average proper-
ties, but for the cases we are interested in there is no reason to prefer this basis. The



eigenstates of p have completely arbitrary relations to for example the "true” states
%™} in a real ensemble (6), or to the states conditioned on properiies outside § such

as |Pa) x T ciali). The Quantum Monte Carlo method replaces p by an ensemble
of wavefunctions, and various aspects of the corresponding theory will elucidate this
point further. :

It is natural to associate to the matrix {p;;} an operator, p, the density operator,
which in analogy to {4} can be writlen,

p =3 pisli)l (8)

A pure state |i) has the density operator, p = |$)(1|. The ensemble (6) leads to
p = mr Y, W N (Y™, and for a system which is part of a larger problem, the
density operator is obtained as a partial trace, p = Lo {a|¥}{¥|a), where |¥) is of the
type leading to (7). With this symbol it is possible to apply a compact notation for
-matrix elements and expectation values, e.g.

(4) = Tr(pA). (9)

We find from:Schrédinger’s equation that the density matrix evolves according to
& g

deg 1
2~ —H,0] (10)

The time dependence of a matrix element p;; is found by taking the (| - |7} matrix
element of both sides of Eq.(10) with p on the form of Eq.(8).

2.2 The Master Equation

The fact that p(t) can be calculated with not too much effort is crucial for a number
of quantum optics problems.

2.2.1 On the need for a new equation

The equation (10) may be applied for example to collision problems where the evolution
is unitary, given by the Hamiltonian H, but where the initial state is represented as
a mixture. In this case (10} organizes the theory: angular momentum properties,
impact parameter and velocity distributions could be formulated in terms of density
matrix theory, but as long as the statistics is only in the initial conditions and not in
the dynamics of the process, such a formulation is, if not impractical, then at least
not necessary. In practical applications it is more convenient to solve the Schrédinger
“equation (2) for each of the relevant initial wavefunctions, and then to perform an
incoherent average at the end.



A different situation appears for an ensemble of identical atoms, which are all
individually described by the Hamiltonian H, but which in addition may undergo
elastic collisions, either with one another or with a background gas in the experiment.
The Hilbert space of wavefunctions describing all constituents of this large system
may be enormous, and we may consider instead the state vector of a single atom in
the ensemble, and include a random element in its evolution. Consider for example a
two-level atom with a wavefunction |} = ¢,ig) + ¢.je). During a collision the atomic
energy levels may be perturbed, and as a consequence of the collision the amplitudes
are multiplied by extra phase factors, e*#, e**. The products of amplitudes ¢;c} are
unchanged for i = 7, and they experience a complex rotation of £(x, — x.) for i # j.
We obtain therefore, with some assumptions about the statistics of the collisions, see
e.g. Ref.[13], a modification of the density matrix elements, defined as in (6}, and (10)
is replaced by P | -

Tl {Hs,ﬁl + Lreiax[p]- (11)
L.elaxlp] describes the decay of the mean value ¢,c; and its complex conjugate due to
the randomness of the collisions. Below we shall indicate how the relaxation operator
Lrelax may be derived from the full system-+surroundings Hamiltonian.

The density matrix elements, defined as in (7), may experience a similar damping
if the system + its surroundings initially populates a state |¥) = |9} ® |ow) and
then, because of the coupling, gradually evolves into an entangled state populating
different |c)’s. The best example is probably that of a two-level atom coupled to the
quantized electromagnetic field. Due to the coupling, see (35) below, an initial atomic
superposition state with no photons present, will evolve into a state populating also
different one-photon states [1,): '

(colg) +cle}) ®10) = (cglg) +cile}) ® 10) + aaalg) @ [1a) (12)

By going to second order in the coupling, Wigner and Weisskopf showed, that a discrete

state le) coupled to a broad continuum acquires both a shift (here: Lamb shift) and

becomes unstable, i.e. ¢, decays in time *.

et W denoie the coupling matrix element between the discrete level |i} = le} @ [0} and the
continuum states [A} = |g) @ [11). We write the wave function as

[9(2)) = bit}e™ EH/A) + 3, ba(tle=FAAD).
The Schrodmger equation for the amplitudes b

kL Sha(t) = (B - BtR gy, b(t)
is mttgrated and the resuit is inserted in the equation for b(t):

”b(t) — &2 EA f di'e (BB —-!j[!;w Fb(ﬁ’)
Now, if [W]? is essentially constant over a broad enctgy range KA, and if b{t) can be assumed to vary
on a long time scale 7, so that we can choose A~! €t < 7, we may take |W,|* and b{t’) out of the
t'-integral above. The integral of the remaining exponential equals A{x8(E) — E;) + :‘P(m)] The
subsequent surm (integral) over the energies ) (with the appropriate density of utates) then gweu the
factors in the closed équation for b1},

dtb(t} (- I:‘ + “i’s’)b{t):
where T « iWﬂ(B,-E o+ The energy shift §E (the principal value part of the mteg;ral) is mc!udeci in
the energy F; in practical applications.



Correspondingly the squared norm of the last term in {12) will grow linearly with
time for short times, and not quadratically which is the more common quantum me-
chanical evolution. The evolution of the density matrix elements is described by the
master equation (11), where the Lamb shift may be absorbed in Hg, and where the
relaxation terms may be written

. r

. . r .
Pee = ~Upec  peg = TgPes Pee T TP Pog = Fpee. (13)

2.2.2 Elements of a general derivation of a master equation

Consider first a closed system. The Schrodinger picture, in which wavefunctions are
evolved in time according to (2) is equivalent to the Heisenberg picture, where the state
vector is kept fixed but operators are evolved in time according to

d 1
A= —[A,H]. (14)

This is verified by checking that expectation values of operators evaluated in the iwo
pictures agree, (Y1) Al(2)) = ($|A(t)I).

The Heisenberg equation of evolution (14) also applies when the operator A is one
of the dyads (]2){7]). In the Heisenberg picture also these operators are time dependent,
loosened from their connection, at t = 0, to the set of basis states. The operator (}3){j})
therefore obeys (14}, and since the commutator [}#}(7], H| can be expressed as a linear
combination of the (]J#'}{j’|}’s we obtain a set of linear equations for these operators
which may be solved. We shall come back to this set of equations shortly. According
to (5), the mean values of these operators (and it is much easier to deal with numbers
than operators in numerical applications) are the elements of the density matrix (8).
The Schrédinger and Heisenberg pictures are equivalent, and Eqs.(10) and (14) give
the same results for p;;(t) and ((IJ){:D(i))

We shall now indicate how to obtain a set of equations for the elements of p, in
which certain terms represent the effect of the interaction with a larger system. This
is clearly not possible in all situations, and without being too specific, we restrict
ourselves to the situation of a system S interacting with a "reservoir”, R, illustrated
in Fig. 1.

Two features characterize the coupling between these two components: it is weak,
hence it can be treated by perturbation theory, the reservoir is big and "broad band”,
hence its state is assumed unchanged by the interaction with the much smaller system
5, and it has no "memory”. The precise derivation of the theory can be found in one

of the text book references {13, 14, 15, 16, 17, 18], here we shall merely indicate the
mechanisms and the origin of the terms appearing.

The combined system-+reservoir is described by a Hamiltonian
H=Hg+ Hg + Hsp, (15)

11
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Figure 1: Schematic representation of a "small” system, S, with few states, coupled to
a "big” reservoir, R.

and we assume at this point that any constant or time dependent perturbation of the
system, as for example a laser field exciting some atomic transition, is included in
the system Hamiltonian Hs. Hr describes the free evolution of the reservoir, and the
coupling between the system and reservoir is Hsg.

If we assume that [[i}{j|, Hsr] = LacizaRa, and [Ra, Hsr] = Lop Eaep i),
where the operators R act only on the reservoir, we have the Heisenberg equations of
evolution?

d, ... | 1

le‘)(ﬂ = m“’)(ﬂ: Hg + Hpg] + E;Q}MR.&. (16)
d 1 1 . gt
Sfa =B Hs + Hg]+ — ﬁ?cx,e'rl*){i [ (17)

This evolution is due to the total Hamiltonian. Both Hg, Hz and Hgg are therefore
time dependent, and the (}1){7])’s pick up "reservoir character” just like the Ry’s pick
up "system character”. In Section 2 we consider a two-level atom coupled to the
quantized radiation field, and here the field operators acquire terms proportional to
the atomic dipole - the classical radiated field is proportional to the dipole. At time zero
where the Schrédinger and Heisenberg picture agree, the commutator [[i}{j}, Hs] is a
certain combination of the (}#'}{j'|)’s, but then this combination remains the same, and
Eqs.(16,17) can be applied at all times. This relies on the identity: [([2)(7])(¢), Hs(2)] =
W) GHU), UHUE) = U@ G, HsiU'(2), where U(#) is the unitary
time evolution operator due to the total Hamiltonian (15). I considered only one of
the terms; note that the Hg-term in (16) and the Hs-term in {17) vanish identically.

We now formally integrate Eq.(17) and insert the result into Eq.(16) to make three
kinds of terms appear: system dyads due to the commutator with Hg, reservoir oper-

3 Actually the commutator [|3}{j|, Hsr] may well be a sum of reservoir operators, muliiplying certain
sysiem operators, this has no consequence for the arguments in the derivation of the master equation.



ators R3 evolving in time due to Hpg, only, and, to second order in the Hsp coupling
sirength, a new set of system dyads.

The reservoir-assumption is applied to ensure two non-trivial features: The weak
coupling to the small system does not change the R,’s significantly, so that at any
time we may integrate Eq.(17) from the undisturbed value R}, assuming for simplicity
that all relevant (R») expectation values vanish in the state of the reservoir. The
term proportional to ¢i is an integral over ¢’ containing a factor exp(iwy(¥ — t)) in
the integrand, where w) is the frequency at which R, evolves. The reservoir is “broad
band”, i.e., it is described by operators R, evolving at very different frequencies w,.
The sum over A in (16) therefore effectively introduces a delta function in time which
picks out the system operators [i'}(;'| at time ¢t. Note the similarity between this
reasoning and the Wigner Weisskopf derivation sketched in our previous footnote.

Taking finally expectation values on both sides of (16), we get a closed set of
equations for the densily matrix elements. For a more detailed discussion of these
points the reader may consult one of the textbooks listed in the reference section.

The above discussion is meant to elucidate how the mean values of the [i}{j|s,
i.e. the density matrix elements, obey a closed set of equations. This is the master
equation, and we note that it can be written as in (11). CLrax{p] is linear in the density
ratrix elements, but more than that: in order to preserve the interpretation of p as a

density matrix, i.e. Tr(p) = 1, {|p|l$p} > O for any |}, we must limit Lrnfp] to be
of so-called Lindblad form [19]:

1
Lrclax}p] = -3 Z(C.*Cs‘ﬂ + pCFC) + Z CipCl, (18)

where the sum is over one, a few, or sometimes many different system cperators C;
(C# is the adjoint of C;, and both C; and C;' have dimensions of 1/1/time).

If we take a basis for the system Hilbert space we get a matrix representation of
the density operator. We are now in the Schrédinger picture and the density matrix
elements p;; obey a set of coupled first order differential equations:

d
= 2 Mijizpuy. (19)
‘fj!'

We can therefore arrange the elements p;; in a vector, 7, and implement the problem
on a computer as a usual set of linear equations with a matriz M, [:' = Mp. Like
Hg, M may be explicitly time dependent. For many problems, however, Hy is either
constant or, in a proper frame, the equations of motion may be presented in a form

with constant coefficients. Parts of the following discussions are only applicable in this
case.

31f you consider the equation {14), integrated to second order in the interaction picture with
respect to Hs + Hpg, terms like [[4, Hsg(t)], Hsa(t")] appear naturally. Assuming that Hgp consists
of products of system and reservoir operators, the double commutator leads to terms Like in (18),
where the reservoir parts have been reduced to numerical factors, absorbed in the C; operators,

i



If one has determined the eigenvalues {n} of the matrix M, and the associated
eigenvectors, MU = #il", the time evolution is simply given by

EOED I (20)

where the ¢,’s are coefficients determined from the values of the p;;(0). Note that M
is not hermitian; this is not required to establish an equation like (20}, but in order
to determine the "coordinates” ¢, special means involving left and right eigenvectors
must be applied, see, e.g. Ref.[20]. *

For many problems, one is interested in stationary expectation values. The matrix
M is not invertible, the rows providing the evolution of populations p;; are linearly
dependent because of the constraint, Tr{p) = ¥, pi = 1. This automatically ensures
the existence of at least one stationary state, which may be found by matrix inversion.
In practice one has to replace, say, the i¢io’th row of M by the normalization condition
{zero’s for i’ # j' and some constant c for i’ = j') and apply the inverse of the resulting
matrix to a vector with the value ¢ in the totp'th position and zero elsewhere. For a
problem of reasonable size, this provides a method that may be applied for any density
matrix, and which is easy to implement in a computer program using library matrix
inversion routines as those found in e.g. Numerical Recipes {20]. We shall give an
example of this procedure below.

2.3 The Quantum Regression Theorem
2.3.1 Motivation, Correlation Functions and Spectra

Omitting constants describing solid angles, detector efficiencies, and coupling strengths,
the Wiener-Khintchine theorem gives for the spectrum emitted by a system coupled to
the quantized electromagnetic field:

F(w) Cx‘iff?”t(w)l2
« Re fu (B~ (1)E*(t + 1)) exp(iwT)dr

x Re [o “(d (Od(t+ 1) exp(ir)dr, (21)

where E’*(t} are the positive/negative frequency parts of the quantized electric field,
E*(w) their Fourier transforms, and d* are the raising/lowering parts of the dipole
operator for the system. The averages (-} in Eq.(21) are assumed to be taken in the
steady state of the system, i.e. (é*(t)cz" (t + 7)} is a function of , only. The formula
involves the expectation value of a product of operators evaluated at two different times,

‘In case of degenerate eigenvalues one further gets time dependent factors o ™", where n is
smaller than the multiplicity of the sigenvalue 5. A pair of sclutions e™, te™, with 5 < @ is met for
example in the case of critical damping of the classical harmonic oscillator.

1 4



not the product of expectation values. Such an operator product makes sense in the
Heisenberg picture of quantum mechanics in which the operators are time-dependent
and the wavefunction and the density matrix are constant, and it is the purpose of this
section to review the method for calculating this kind of expectation values.

2.3.2 The Quantum Regression Theorem

We have introduced the density matrix as a catalogue of expectation values of a certain
complete set of operators. The master equation, in the form (19), provides the time
evolution of this catalogue, but it is not allowed simply to replace p;; by |7}{i| in this set
of equations in order {o obtain the Heisenberg picture equations for all diadic products
within the system S. In contrast to Eq.(14), the damping terms are now present, and
in addition operator terms with vanishing mean values must be added on the RHS,

SN = T Moo (I + Fild) 22

Physically these terms are due to the interaction Hamiltomian and they appear as a
sum of reservoir operators, cf. Eq.(16). They are assumed to have vanishing mean
values, hence they do not appear in the density matgx equation (the expectation value
of Eq.(22)), but they must be retained in the operator equations. Fortunately they
will not play any role in the practical calculations.

To calculate two-time averages of the type (A(t)}B(t + 7)), we expand the operator
B(t+ 1) = ¥; B;u(13)5)(t + 1), and for A fixed we then need only the catalogue of

two-time expectation values
pasi(t +7) = (ARHENE+ 7)) (23)
The two-time expectation value of interest can then be writien as
(A(t)B(t+7)) = 2: {(A(®)B;(15) Dt + 7))

=2 pais(t+7)Bji = Tr(pa(t +7)B), (24)

i

where we treat p4(f+ 7) as a matrix, or an operator, the same way as we do with p{t)
in the Schrédinger picture.

Due to (22}, we have a set of coupled equations,

%(A(txmi)(tm) = (A1 + 7))
= (A1) Mijey (71N + 7)) + (AQF5(t + 7))

= 2 Moy (AR I+ 7)), (72 0). (25)
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The terms (A(t)F;(t + 1) vanish because A(t) is a system operator and F is a reservoir
operator with vanishing expectation value (see comments below}, thus

d
g;p,a,;,-(t +1) = Z Miipaip(t+7), (120} (26)
']

Eq.(26) shows that two-time expectation values can be determined from the knowledge
of the matrix M alone, without an analysis of the noise terms in Eq.(22). This is the
Quantum Regression Theorem [21] in a formulation which is very useful for numerical
applications, The procedure may be applied also when a constant operator multi-

plies (I7){(3])(t + 7) from the right, and it readily generalizes to the case of multi-time
correlation functions (A(t,)B(t2)C(ta)...).

The set of equations (26) is the same as the Master Equation for the density matrix
elemnents with a few exceptions: the initial values, for v = (, are obtained as the
expectation values (A(t)(lg)(zi)(t)) = Tr{pA(l7)(s])) = T pix(k|Alj), determined in
many applications with the steady state Schrodinger picture density matrix. Since p(t)
and pa{t) fulfil the same equations of motion, the corresponding steady state matrices
are proportional. The matrix pa(t) is observed to have trace equal to {A(t)), and since
the trace is preserved during time evolution with the Master Equation, we deduce that

oot palt+T)— (A(D)R", (27)

where p** is the steady state solution to the Master Equation. This, in particular,
implies the decorrelation of two-time averages ai large time separations,

r—00: (A)B(t+71)) — (A(NB)". (28)

Warning: properties such as p;; = p};, pi real, which may be useful in the numerical
implementation of the master equation, do not apply to the elements of ps. Apart
from this the calculation of two-time expectation values is equivalent to the calculation
of one-time averages, cf. Eq.(24).

Two comments should be made on the appearance of the Fj;-terms in {22). These
?quantum noise” terms are necessary in order to preserve relations between products
of operators such as commutators. In the product of two time-evolved operators the
Fy-terms appear twice at equal times and finite contributions may be obtained. This
also implies that the disappearance of the Fj;-terms in Eq.(25), allowing us to refrain
from going into a closer analysis of their values, is valid only for r > 0. In case of v <0
the noise term F;;{t + 7} may already have occured once in the time evolution of the
operator A(t) and the contribution from A(t}F(t 4+ 7) in Eq.(25) is now finite. For a
more precise and very illustrative discussion of this, see e.g. Sec. Crv2 of Ref.[15].

2.3.3 The QRT applied to integrails

From the values pa;;{(t + 7) we can construct the two-time averages of interest, e.g. the
one appearing in £q.(21). Instead of considering the complete time dependent solution,



and then the Fourier transform we can obtain equations for the gquantity of interest
directly. It is, at this point, useful to introduce the difference between the operator A
and its expectation value. The two-time average corresponding to {A(2)){B(t + 7)) is
just the product of two one-time averages. It is in the calculation of the second part,
((A(t) ~ (At} )B(t+ r)) that we apply the Quantum Regression Theorem, and below
we shail assume that p4(t 4 ) represents an operator product, where (A4) = 0.

Writing g4 for the vector of elements ps,; and M for the matrix with elements
M;; 5, we have from Eq.(26), dfs/dr = Mpy, and therefore the identity

oo oo . - - - .
M [T hat+ridr = [T gt 4 = Faloo) ~ Aalt) = —a(t). (29
As shown in Eq.(27) the term ga(co) vanishes since {(A) = 0, and the integral of
palt + 7) follows by a simple matrix inversion. °

To determine a Fourier transform as the one in Eq.(21) we note that
. (-] A
(M +iA) / Falt + 7)e%7dr
]

R d “A AT
= 'L (e‘A’&?EA(t + T) +iAFA(t + )T )dr
= —p(t). (30)
This set of equations is readily solved for the integral on the LHS like the one above.

If the two-time averages are multiplied by some low power of 7, as e.g. in the
calculation of the friction coefficient in semiclassical laser cooling [22], this can also be
treated in a manner similar to the examples above. Consider the equation, obtained
by partial integration

oo o . . o oo
M/; TiA(t + T)dr = .[é T"&;[)A(t +7)dr = [rga(t + 1)]5 w./;) palt +7)dr. (31)

The two-time average converges exponentially towards zero for large 7, hence only the
last term on the RHS is non-zero. This term was determined in Eq.(29) above, thus
a new inversion procedure of the same matrix yields the integral on the LHS. For an
application of these successive steps, see for example the discussion of friction and
diffusion in laser cooling in Ref.[23].

2.3.4 The spectrum as a one-time average (I)

When motivating in Section 2.3.1 the need for two-time averages, we noted thai these
averages give meaning in the Heisenberg picture of quantum mechanics. This meaning

3 As before the matrix M is not invertible, and we replace the (ioip)'th row in M by numbers 0
and c, 5o that the ¢’s multiply "population” elements py i, N e b;7j». We then get v the
(30ic)th position of the product: ¢Y i fo° paira{t+7) = ¢ T pwr Jo (ABNE N+ 1)) = 0, since
the sum 3., (I¥}{¥]){t + 7} equals the identity operator at all times, and the expectation value of A
vanishes. Thus, in the inversion, we replace the (igip)'th element of the RHS vector by sero.
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is purely formal; with the exception of Hanbury-Brown and Twiss type experiments
where the time difference 7 is due to a delay of the observation of the latter operator,
a correlation function like the one in (21) does not give much physical meaning.

In practice e.g. the spectrum of fluorescence is obtained by shining the light into
a frequency tunable Fabry-Perot resonator, and then to watch the intensity built up,
that is a one-time average ! At this point mathematics comes along, and since the rate
of change of the field amplitude in the cavity is given by the coupling to the source,
the value of the field at a time ¢ can be written as an integral of the source dipole over
all previous times t'. The rate of change of the intensity at time ¢ therefore becomes a
two-time average involving the dipole at time ¢ and at all previous times {24]. ®

Instead of the above approach we can look for the spectrum as a one-time average
directly. Let the system S denote both the atom and a single mode of the quantized
field at frequency w. The field mode is described as an harmonic oscillator, so we have
the extended set of density matrix elements

P = ({nf@ GDipll7} @ Im)), n,m=0,1,.. . (32)

The coupling, proportional to the small solid angle of the detector, is very weak (other-
wise the cavity field might act back on the atom, and we obtain a cavity QED problem),
so we may truncate the set of equations at n,m = 1. Now, the value of the spectrum at
frequency w is the average of the field number operator, i.e. T; plt, a one-time average
calculated in the stationary state of the system. With increasing n or m the elements
of p decrease by a factor proportional to the small coupling strength, and we may in
the master equation neglect contributions from p®/1? in the evolution of p*, and of
p* in the evolution of p®/° but not the other way. This implies that we may solve
the problem stepwise: an inversion of M in Eq.(19) gives p, and a subsequent inver-
sion of M £ 1A gives p°/1° (A = w — wy, appears due to the cavity field hamiltonian
Hp = h{wy, + A)a*a). One verifies that the trace of p'! can be expressed in terms of
expectation values of the raising and lowering parts of the dipole operator taken with
the density matrices p'®/%: the algebraic steps in this calculation are exactly the same
as the ones applied in the QRT calculation.

2.4 Example: the laser excited two-level atom
2.4.1 Atom coupled to the quantized electromagnetic field

Let S represent a two-level atom (states |g), e} with energy separation fiwy) which is
coupled, with Rabi frequency 1, to a classical laser field with frequency w = w, +§,

SSince the field inside the cavity evolves at the cavily resonance frequency w this quantity. also
enters as an exponential factor in the integral of the source dipole as in (21), and the decay of the field
amplitude due to the finite photon lifetime, 7;1 in the cavity, leads to an extra factor e~7#7.. This
gives the detector its finite bandwidth, yp, and it can be accounted for by a subsequent convolution
with a Lorentsian. '



so that the Hamiltonian in the rotating wave approximation and in a frame rotating
at the laser frequency reads:

1 1
Hs = Shé(lg)lgl — le}(el) — ShQ(le}{g] + lg){el). (33)
The reservoir R represents the quantized electromagnetic field,
Hag =Y hwx(afas+1/2) (34)
)
and we have the electric dipole coupling of the system and the reservoir
h ot
Y ﬁgv

where wy, is the frequency of the mode A, the different modes covering a broad range
around the atomic transition frequency. V is the quantization volume, €, is the unit
polarization vector of the mode A and ay, @} are the corresponding annihilation and
creation operators. d is the atomic dipole operator, d = D(|e){g] + |g){el), where D is
a constant vector.

2.4.2 Master Equation

One verifies that the steps discussed in Eqs.(15) through (18) in general terms can be
carried out in this explicit case. As a result of the calculation one also identifies the
coeflicients in the L cax]p]-terms. For the two-level atom coupled to the quantized field

in its vacuum state there is only a single operator (and its conjugate) appearing in the
Lindblad form (18), Ci = vTlg){el:

Lranele] =~ {1e)elp + ple) (el} + Tlg) elole) gl (36)

As in the case of Eq.(10), equations for the specific elements are obtained by taking

the (i] - |j) matrix elements on both sides of this expression. The anti-commutator

causes the decay of the excited state population with a rate 2-I'/2, and of the coher-

ences, peg, pge With a rate I'/2 in agreement with Eq.(13). The last term in Eq.{36)

represents the feeding of the ground state. With the 2 by 2 density matrix represented
as a vector with four elements 7 = {pgg, Pge, Peg, Pec )", the matrix M reads

o -2z @2 T
e -is-ri2 0 dap
M= 0 0 is-T/2 -2 | (37)
0 2 —ij2 T

This matrix provides all information about the time evolution of the system.

The eigenvalues of M read: 0, —y, £ilg—+', where v, ¥’ are on the order of I'; and
where {Ig ~ V8 + 22 (Qg = 0 for { small compared to I'). As expressed in Eq.(20),
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the non-vanishing eigenvalues of M determine the transient evolution towards steady
state, see also {16, 25|, and they also determine the positions and widths of spectral
features.

To determine the stationary operator p (in the rotating frame), we need to solve
Eq.(19) with zero’s on the LHS. The first and the last row in the matrix M, corre-
sponding to the ground and excited state populations, are linearly dependent and we
replace the first row of M in Eq.{(37) by (T' 0 0 I'), and the LHS vector is replaced by
the column vector (T, 0,0,0)". The two-level atom problem is of course not more com-
plicated than it can be solved analytically, and the results for a slightly more general
problem are presented:

The inverse of the matrix

r 0 0 T
;| —i/2 —if~T/2+iA 0 /2
Mo =1 in/2 0 i§—T/2+iA  —if))2 (38)
0 iQ/2 ~i0/2  ~T'+iA

can be written as a polynomial in the exira variable A, introduced for later convenience,
My = DY (No+ AN, + AN, + A®N3), (39)

where the determinant re;cis,
Dp = 8T + T4 +T°Q%/2 — 2A°T? —iAT(6* — A + O + 5T%/4) (40)

and where we have the four matrices

&+ 3 /4 + T34 8Q/2 4+100/4 5Q1/2 — QI /4 8 +17/4
Ne—pi —89/2~iTQ/4 —D*/2-02/24il§ -0/ —60 —4Qr/2
o= ~§8/2 +iTQ/4 -Q2/2 -1%/2 - Q%2 -6 -0 +iQr/2 |’
0%/4 —5Q/2 — QT /4 ~8Q/2 + 40T /4 ~8% - T?/4
—i(§% + 5T /4 + 0%/2) Qr/2 —Qr/2 —iI?
N = —-30T/4 +i6Q/2  T6+ 3T?/2 0 -I'0
e 3Qr/4 +169/2 0 ~T6+ 3?2 1O |’
—i0?/2 —Qr/2 Qr/2 ir?
-2’ 0 ¢ -T i 000
b2 oo o oo o0 o0
M=l a2 01 o) ™={o0 0 o (41)
6 0 0 T 00 0 0

The steady state solution to the Master Equation is given by the elements in the
first column of the matrix Ny multiplied by I'/Da_o, and from these values one can

obtain e.g. the absorption spectrum, and the polarization of a medium of two-level
atoms.
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2.4.3 Spectrum of fluorescence

According to (21) we need to calculate

F(w) = Re [ ((1eMal(t)Ig)el)t + 7) exp(~iwr)) expliwr)dr,  (42)

where the exponential factor at frequency wy, takes care of the transformation from the
rotating frame with the time independent equations of motion for the [#}{(5|{t) to the
original frame with the dipole oscillating at the laser frequency, d*(t) = |e){g|{t)e™*!.
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Figure 2: Spectrum of fluorescence emitted by a laser excited two-level atom. The
laser field is on resonance, § = 0 and §} = 10I'. The solid curve is the exact result, and
the dashed curve represents the approximation (46), (arbitrary units).

We now decompose the expectation value in (42) into two terms, one yielding

Foon(w) = Re [~ ((1e)a)(®))((lo) (el)(t + ) exp(ilw — wa)r)dr = |ppe 28w — wp).

(43)
This is the coherent part of the spectrum; the steady state average dipole oscillating
with the driving field emits monochromatic radiation at this frequency. We are now
left with the incoherent term

Fincl) = Re [~ {(1e}(g1)(t) = poeXlo}eD(t + 7)) explilw — wa)r)dr,  (44)

which is of the type considered above, with A(t) = (e){g|)(t) — pge, and what we need
is the real part of the {eg)-component of the integral in (30). The initial values, at
time ¢, of the elements of §4 are determined from the steady state expectation values:

oan\ (Ul =) a))

ge — PoePgg
Page(t) | _ <(|e)(§[ Poe 13 9|> _ | T PgePoe (45)
paes(t) | | ((ledlol — paellgdel) |~ | e —pwepr |7

P\ (ol — pallebel)) N P
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Here, all steady state density matrix elements are obtained from the first column of the
matrix Np in Eq.(41). The incoherent part of the spectrum at the frequency w = wy+A
we obtain by letting the matrix M™% act on —F4(t), given above (but with the first
component replaced by zero), and by extracting the real part of the third element of
the resulting vector. The analytical expression is quite complicated. For § = 0 and
@ > T it reduces to [26]

3 4 3
(A=) + (3T/4y * B+ 13/4 T (A5 QY § GI/a

Flwg, + A) o

(46)

showing three Lorentzians located at the laser frequency wy, and at wy, + {1, see figure.
This so-called Mollow-triplet [27] was predicted and observed a long time ago, but,
still, theoretical and experimental analyses are carried out to examine various features
of this spectrum [28, 29].




