4 Extensions of the theoretical ideas

4.1 Two-time correlation functions

In some Quantum Optics problems, one needs to calculate two time correlation func-
tions of operators A and B, such as the ones met in Section 2.3. The purpose of this
section is to indicate how one can handle such a calculation with the QMC method.

4.1.1 Approach in spirit of the quantum regression thecrem

To calculate a two-time expectation value such as (A(t)B(t + 7)) by use of the QMC
method, we first let a number of wave functions |¢) evolve from 0 to ¢ as explained in
Section 3. We let the Schrédinger and Heisenberg pictures coincide at this time i, and
for each |§(t)}, we form the four new states:

X+(0) = —=(1+ ANi4(0)

Vi
O = et sal) (84)

where py, g are normalization coefficients. We then evolve the x=(TH, () ac-
cording to the QMC procedure, and we calculate the four Schrédinger picture expec-
tation values:

() = (e (7)IBlxa(r)  ilr) = (xi(n)IBlx(7)) (85)

The correlation function is now given by

(ABB(E+7) = 7 (saer() = w e + i, T — i ). (36)

The averages, ™, in (86) are taken both over the different outcomes for the evolution

Ix£(7)}, Ix4(7)) between 0 and 7, and over the different outcomes for the evolution of
{¢) between 0 and ¢

The proof is in the spirit of our discussion of the Quantum Regression Theorem in
Section 2.3: We show the result for one of the dyads (| 7)(2])(2 + 7), hence it follows for
any operator B. Each of the four expectation values in the quantities

Kii() = i (14 QeI (D (7)) — s (= (Y (7))
+ i AN ENIG () — i G INEDIK())  (87)

and hence their sum, evolve as the density matrix elements pij, when averaged over the
evolution of the [x)-functions. It then follows from the Quantum Regression Theorem
that these one-time averages evolve as the matrix elements pagi = (AN GEDE+7)).
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We only need to show that the elements agree with ps (¢t + 7) for 7 = 0. This is
readily verified:

xi(0) = %(@(t)l(l + AN+ ADI8(1) - (#(®)I(1 - A EIA ~ ANIg()
+H{(OI(1 - A ) +iANB(E)) — i{$OI(1 +5A) )11 - iah)e(e)))
= ($()| A7) D)), i, FG(0) = pas(t). (88)

4.1.2 Example of a correlation function

The example deals with a laser driven two-level atom. We suppose that the laser is
resonant so that the Hamiltonian in the rotating wave approximation can be written:

EQ
Hs = ——(le){gl + lg)(el) (89)
where {2 is the Rabi-frequency characterizing the atom-laser coupling. We want to
calculate the dipole correlation function:

C(t, ) = ((lelgD(t)lg){e)(t + 7). (30)

This calculation is performed in steady state, so that the Fourier transform gives access
to the fluorescence spectrum. Starting at tirme ¢ = @ in the ground state, we let the
states evolve for a time sufficiently long to obtain several quantum jumps (spontaneous
emission events). Within a density matrix description, this guarantees that the steady
state has been reached. In the QMC approach, it implies that there is no memory of
initial conditions. From each |¢(¢)) obtained in this way, we generate two pairs of states
Ix+(7)} and [x(r)} as defined above, and we calculate the average of the quantities
(85,86). The results of this procedure are indicated in Fig. 8, where we show the values
of C(%, ) normalized to its value at 7 = 0 in comparison with the analytic predictions
[26]. n = 500 wavefunctions are applied in the simulation.

4.1.3 The Spectrum as a one-time average (II)

A wave function simulation of the spectrum, different from the one discussed above,
may be formulated along the ideas of Section 2.3.4. One has to simulate the situation
described in terms of density matrices, i.e. use a wave function of the type %

l‘/’) = !¢) Q IQW) + |¢w) ® Ilw); (91)

and then determine the norm of the second part of this function. This function is not
equivalent to the one in Eq.(12). With the single field mode of interest incorporated

BMollow {44] actuaily showed, in this spirit, how the spectrum can be calculated as a one-time
average.
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Figure 8: In solid lines, real part (upper curve)} and imaginary part of the dipole corre-

lation function for a two-level atom {(Je){(g])(£)(|g){el)(t +7))/{(le) (el(t)). In dotted
lines, we have indicated the exact result obtained from the Optical Bloch Equations
and the Quantum Regression theorem. The field parameters are §) = 10T,6 = 0, so
that a Fourier transform of the results should yield the spectrum in Fig.2.

in the system S, the function in (81) is rather the zero-reservoir-photon part of (12),
and our simulation scheme works by evolving such a function in time. Due to the
weak coupling the norm of the wavefunction resides mostly in the zero-cavity-photon
component of (91), hence the system jumps (caused by v/T'|g}{e] in case of the two-level
atom} are decided by this component, but they affect both. Since the coupling is weak
the component |4,) depends on |¢) but not the other way round. These ideas have
been developed further in [45, 46] to identify other spectral properiies, and to make
efficient numerical schemes.

The method is certainly more intuitive than the QRT-based approach. It is not
clear, however, if it is also more efficient from a numerical point of view: with this
method an auxiliary wave function |$,,) has to be propagated in time for each frequency
component in the spectrum, whereas the approach in Section 4.1.2 only evolves one set
of functions, and then applies a Fourier iransform. In addition, whereas the two-time
average, like in (21}, is quite standard in a number of problems, some creativity may
be required to identify the corresponding physical one-time average and to identify
equations that are not more complicated than the ones of the QRT approach. For
another example see e.g. the discussions of momentum diffusion in laser cooling [34, 35].

The most extensive calculation of a spectrum, and probably the best agreement ever
obtained in the confrontation of laser cooling theory and experiment was published
recently. In Fig.9 the measured fluorescence spectrum from a sample of Cs atoms,
cooled in one dimension to a regime where the external motion has to be described
quantum mechanically [47], is compared with a calculation by Marte et al [48]. The
lines in the spectrum indicate the Bohr-frequencies between levels of external motion
in the light-induced potential. The calculations are probably at the limit of problems
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Figure 9: Spectrum of resonance fluorescence as a function of the frequency differ-
ence to the exciting laser. The solid line is the theoretical spectrum convoluted with
a Lorentzian corresponding to the finite detector bandwidth and a residual Doppler
broadening due to the motion in the non-cooled direction perpendicular to the cooling

laser, and nearly perpendicular to the direction of observation. Crosses are experimen-
tal results.

that can be treated by density matrices.

4.2 Equivalent QMC simulations for a
given master equation

It is a general result that the Monte-Carlo evolution outhined above represents a possible
history of the system wave function in the presence of a suitable continuous detection
process (3, 6]. In order to get some physical understanding of the simulation, it may
therefore be useful, to refer to such a continuous detection process, as if it were really
performed. In general one may device several different and mutually incompatible
detection processes for the evolution of a given quantum system. This corresponds
to the application of various sets of C,,'s, each associated with a certain detection
scheme, and these sets may be related by suitable linear combinations. The relaxation
equation (56,57} must of course remain the same for every detection scheme simulated,
but the evolution of the individual Monte Carlo Wave Functions may be very sensitive
to the choice [4]. We discuss in this section the existence of several different Monte-
Carlo approaches for a given relaxation operator L, ea.x, leading on average to the same
results, but with very different physical pictures.

Here we restrict ourselves to a class of Monte-Carle approaches which are related
by an invariance property of the relaxation operator L. in Eq.(57). Suppose that
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there exists a unitary operator T, acting in the Hilbert space of the system, such that:

T ('Cn:lnx(PS)) T? = C!c]ax(TpSTt)' (92)

The operator T' can for instance be a rotation operator and (92} is then fulfilled if the
dissipation process is isotropic. Eq.(92) can be transformed into:

‘Crelnx(PS) - Tt ﬁrclax(TPSTt) T (93)

and the relaxation operator can also be written as:
1
Lrax(ps) = =5 3 (DL Dmps + psDY, D) + 3 Dmps DY, (94)

with

Dy = T'C,LT. (95)
We can therefore perform the Monte-Carlo simulation either with the set of operators
CUwm or with the set of operators D,,. The physical pictures given by these two Monte-

Carlo simulations may be very different, although their predictions concerning operator
averages are the same.

4.2.1 Spontaneocus emission with Zeeman degeneracy

We can illustrate this by spontaneous emission from a two-level atom, where we take
into account the angular momentum of the ground {J,) and excited {J,) levels. In order
to give the relaxation operator a simple form, we write it in the |J,, m,),, | J., m.), basis,
referred to a quantization axis z,

F - g I - &
Erciax(PS} = WE(P:F’S + PSPB) + r Z(eﬂl S )ps(eg.S"}) (96)
q

Here, P, is the projection operator on the excited state manifold, P. = ¥, |Je, m}{Je, m.|.
€, is the standard spherical basis associated with the zaxis: €, = 2{:5}5(6, + i), € =

i,, and §* and 5§~ are raising and lowering operators proportional to the atomic dipole
operator:

€- 'iﬂ‘fmmy)z = (Jg mg 1 qlJe m. = my + g} Lo, m. = mg + Q)
& - S, m.), = {1 (97)
&' § = (&.5%)

A Clebsch-Gordan coefficient enters in the coupling of the ground and excited state
sublevels. The QMC procedure involves three operators:

Co=vVT(6,"-§7) ¢=0,41, (98)



and we note that the relation

1
Y. ¢le,=r§*.§ =TP (99)
g=-1
ensures that the relaxation operator (96) indeed has the same structure as (57). From
the measurement point of view presented in Section 3.2, the branching corresponds to
a simulation where not only the number of photons emitted during &t is detected, but
also the angular momentum of those photons along a given axis z.

Mm,=-1 : mo={ m,=1
Y0 UL Q- z A S
g, J=1
b)
Mmy=-1 m, =0 m,=1
e, dut ———t— L /—
gzl e e S
s my=-1 my=0 my=1
Figure 10: Level scheme of a J, =1 — J, = 1 atomic transition, induced by two

waves with 0% and o~ polarization with respect to the z axis. (a) A certain linear
combination of the two ground states with m, = +1 will be non-absorbing, (b) if they
axis is used for quantization in a point in space where the total electric field vector is
in the y direction, the non-absorbing ground state is simply the m, = 0 state {(because
the Clebsch-Gordan coefficient {1010{10) vanishes).

4.2.2 Example: evolution towards a dark state

It is in principle straightforward to write the master equation with the spherical com-
ponents defined with respect to any axis, and to perform the simulation with the corre-
sponding transformed operators [);. We give an example of two equivalent Monte-Carlo
simulations for the same physical process. Consider a J, = 1 «» J; = 1 transition in-
duced by two resonant laser fields with the same intensity and polarizations o, and o_
with respect to the z axis (Fig. 10a). It is known from the analysis by Optical Bloch
'Equations that the atomic population is eventually trapped in a ground state which
is not coupled to the laser field. This is related to the “dark resonance” phenomenon
[49]. If the two waves are in phase, this “dark” state is:

I$nc) = (lg.ma = ~1) + |g,m. = 1))/V2 (100)

The first QMC analysis can be performed using the operators C, defined in (98).
Suppose that the atom staris in |g,m, = —1). The atom-laser coupling leads first to

AT



an increase of the population of the excited state je,m, = 0). A spontaneous photon
may then be emitted (Fig.11a) and, depending on its angular momentum g = %1,
this process puts the atom into |g,m, = F1) (the transition le,m, = 0} — lg,m, =
0) is forbidden due to the vanishing Clebsch-Gordan coefficient). But, it may also
happen that, even after a very long time, no spontaneous photon has been detected; the
successive steps “evolution due to the non-hermitian Hamiltonian H , Tenormalization
of the resulting wavefunction” cause a continuous rotation from lg,m; = +1) into
{#nc), and trapping in this state has occured (last part of the time sequence of Fig.
11a). Note that the continuous rotation, which is the only possible way for the system
to enter the trapping state, is of the same type as the one met in Section 3.2 for the
spontaneous decay of a two-level atom in a superposition of the ground and excited
state.
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Figure 11: Simulations of evolution towards the dark state with two different measure-
ment schemes, single trajectories are shown in part a) and b), and averages over 100
MCWF’s are shown in part c) and d) of the figure.

Now, we replace the set of operators C, by a different set obtained by choosing a
different quantization axis. For instance, suppose that we choose this new quantization
axis y parallel to the resulting linear polarization of the laser light at the atom position.
Because of the “x polarization” of the laser light along that axis (see Fig.10b), we now
identify the trapping state as

[évc) = lg,my = 0) (101)

and we perform the Monte-Carlo simulation using the set of operators D, analogous
to those given in (98), but defined now with respect to the y axis. In Fig. 11b we
have illustrated such a simulation involving two quanturn jumps. We start again in
the state |g,m, = —1) which we now expand in the |g, mn,) basis. During the first



part of the evolution, a continuous rotation towards |g,m, = 0} takes place. Then a
first photon with g, = 0 is detected; this detection projects the wave function onto a
superposition of |g,m, = %1} and the population of the trapping state |g,m, = 0) i 0.
The atom then cycles between |g,m, = %1} and |e,m, = +1}, and the population of
the trapping state remains zero until one detects a second photon with a polarization
g, = 1. This detection projects the wave function into the trapping state. The way
the system enters the dark state is here discontinuous, and it may be more readily
understood as a kind of optical pumping.

We check in Figs.llc and 11d that the two simulations lead to the same average
results. We observe smaller fluctuations in the results obtained with the quantization
along the z axis; the reason for this difference in the “quality” of the simulation is that
lonc}{dnc! is “more local” (in the sense of Eq.(74)) in the y basis than in the z basis.

4.3 QMC and continuous stochastic equations
4.3.1 “Homodyne and heterodyne jumps”

Carmichael has shown that for the particular case of homodyne detection of the flu-
orescence light, the quantum jump formalism can be transformed into a continuous
stochastic equation [6]. Actually his proof can be extended to the most general case
{5, 50]: The first step is to write the relaxation operator Lrax as:

1
Lraax(ps) = —3 3 (Dl Dme ps + ps DY, Do)+ D ps DI, (102)
me me

where ¢ = &1 and where the D,,, are defined as:

1 m
Do, = g_%?__ (103)

One easily shows that Leix in (102) is identical with the one in (57). The coefficient g
is arbitrary at this stage; u® has the dimension of inverse time, and we just require in
the following u? >> |n|, where iy is a typical eigenvalue of Hg (for the two-level atom
case, n ~ I',Q2,6). We now perform a Monte-Carlo evolution of the wave function,
using the set of operators D,, .. Because of the large magnitude of u®, this simulation
with the D,, . operators involves a much larger number of quantum jumps in a given
time interval Af than a simulation with the C,,’s. But the change of the wave function
in a given quantum jump:
) Dneld

1Dl
is correspondingly much smaller since Dy, . is nearly proportional to the identity op-
erator 1. In the limit of very large p, the Monte-Carlo evolution of the wave function
therefore tends towards a continuous stochastic evolution. In Carmichael’s homodyne
detection problem, the form (103) for the D,,, has a clear interpretation. These jump

(104)
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operators correspond to the detection of a photon after one has mixed the light emit-
ted by the system with a local oscillator field. The parts in 1 and G, correspond
to the field originating from the local oscillator and the field emitted by the atom,
respectively, see Fig 12. The condition x? >> |n| ensures that the intensity of the local
oscillator is much higher than the intensity of the light emitted by the atom, as always
in homodyne detection.

Figure 12: Homodyne detection of ﬂuorescence‘[}izight. The radiation, emitted by the
source S, is mixed on a beam splitter with a classical local oscillator field and detected
by the two photon detectors D)y and D,

We now choose a time interval At such that
v < At <yt (108)

This implies that the number of jumps N, occurring with a given operator D,, "
during At will be large compared to I since u? At > 1, but at the same time we
obtain only a small change in the system wave function since |5]Af < 1. The operator
O describing the action of all the jumps occuring during At is a product of the various
Dyn. and, to first order in /At |n|, it can be approximated to

7

N 1
O ~ (—\/—2:) (2 + p ;(NM ~ Nin,) Cim) (106)

where N = 3., . N is the total number of jumps occurring during At. The wave
function at time t + Atf can now be written before normalization:

6t + At)) = (1 + fgﬁgm - %mzo;cm +3 j'f’--'?-"““;'-»--m-—--"‘—’r'i:c’,,;)|¢»(t)} (167)

where we have taken into account both the non-hermitian evolution during At and
the effect of the multiple quantum jumps. The numbers N . are Poissonian random
variables, and based on expressions analogous to Eq.(62), we obtain for the average
values and standard deviations:

1A
Noe = B2 (z (Ot c.‘;))




ANp, =~ -%v’m, (108)

where the average value (C, + Cl) is taken in |¢(t)). In the Limit of large N, we

can then approximate the random variable N,, , — N, _ appearing in (107) by:
Ny s ~ N _
~——'—f-;m-—'- = At(Cm + CL) + B (109)

where A(,, is a real gaussian random variable with zero mean and a standard deviation
equal to v/Af. Finally we normalize the wave function (107) and we obtain:

Ad)=  ZHslg(t)) At

+ %; ((c;,. +CHYCn - CLC, — if(c,,. + C,L)’) [$(t))At
+ -i-z (2Cm — (Cm + CL)) 16(£)) AGm (110)

In (110), we have kept terms linear in A(, and At, and we have replaced all the
quadratic terms A(, Al by their mean At 6. In the limit g~ +oo, At - 0,
this equation can be interpreted as an Ité stochastic equation.

Another class of stochastic equations for system wave functions, which is also equ.iv-
alent to the master equation, has been introduced in quantum optics by Gisin and
Percival {11, 12]. Their complex Ité stochastic process is given by:

188) = ZHsl$)AL + X ((0h)Cm — LCLOm — L(CLNC) b

+ 2 (Cn— )0 2 (1)

where (Crm) = ($|Crn]¢), and where the A, are independent complex Wiener processes
[51].

In Fig.13 is shown an example of a simulation of continuous stochastic {ype for
a driven damped harmonic oscillator, which may represent a cavity field mode [12].
In the simulation all 5 wave functions are taken initially in the n = 8 number state,
and via different trajectories they approach the stationary solution, which is a pure,
coherent, state of the oscillator. The figure shows the mean value of n for each of the
5 wave functions.

The evolution given by Eq.(111) corresponds to a simulation of a heterodyne de-
tection of the fluorescence signal from an atom. The set-up for such a detection is like
in Fig.12, but the frequency of the local oscillator is different from that of the lager
driving the atomic transition |g) — |e). Imagine that the coefficient  in (105) rotates
in the complex plane as a function of time, corresponding to a time dependent phase
between the local oscillator and the system dipole. This leads to a complex process
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Figure 13: Mean photon number in five different field states, evolved according to
(111). The system is a driven and damped cavily field mode, converging from the
initial n = 8 photon number state towards a pure coherent state.

as the one in Eq.(111). The heterodyne simulation seems more "unique” than the
homodyne simulation since one has to specify the oscillator/dipole phase difference in
the latter case. This uniqueness property is shared with the jump evolution of Section
3, but it is not evident that it is physically meaningful to focus on ithis property. The
wavefunctions given by (63,64),(110) or (111) are all as much, or as little, meaningful
if no detection is made.

4,.3.2 Geometric pictures

In case of the two-level atom, the density matrix can be represented geometrically by
the Bloch vector. With the notation of [50]
~i{(le)gl — lg)el)) | =r | sinsin$

( {(le)el - la)(gl)) cos §

For a pure state, r* = 2% + y* + 27 equals unity, but for the more general density
matrices, the vector is always inside the unit sphere. The simulation schemes can now
be viewed as ways of obtaining the evolution of this vector inside the unit sphere as the
average of pure states, i.e. vectors on the surface of the sphere. In Fig.14 are shown
the positions {i.e. the values of cos# and ¢ in (112)) for 20.000 state vectors. The three
plots from [50] correspond to a) homodyne detection with a local oscillator in phase
with the driving laser field b) homodyne detection with a phase difference of /2 and
¢) heterodyne detection. All calculations are made with a vanishing laser detuning,
§ = 0 and with € = 7+/2I". For these parameters the stationary state Bloch vector has
r =~ 0.1,cos 8 ~ —0.2 (below the equator) and ¢ = x/2, which should be the average
of the 20.000 points shown in each figure. A fourth plot, corresponding to the jump

Hl

(112)

) {(le)(g! + lg)(el)) (sgnemw)
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evolution described in Sec. 3.2.1 would have all points spread out on the ¢ = £x/2
great circle, with more than half of the points on the ¢ = +x/2-side, since after each
jump, or complete oscillation, the atom is in the ground state, i.e. the Bloch vector is
on the south pole, and the evolution proceeds this way around the Bloch sphere.
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Figure 14: Stationary probability distributions of the state vector of an atom whoge
fluorescence is subject to a} homodyne detection where the local oscillator field is in
phase with the driving field, b} homodyne detection with a local oscillator x/2 out
of phase wiih the driving field, and c) heterodyne detection. The distributions are
approximated by 20.000 points on the Bloch sphere.

It 1s possible to associate with the stochastic equations a probability distribution of
wave function amplitudes P({;}), P(6, #) in this case, and sometimes {50] to identify
its equation of motion. The easiest way to obtain the distribution is by means of the
Quantum Monte Carlo simulations, and in Fig.14 are shown the results of such simu-
lations, obtained by Wiseman and Milburn [50]. The distributions look very different
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for different detection schemes. However, all statements about the system are related
to quantum expectation values, which are given by the quantities E,-ng, and they are
identical. Note that these quantities are in fact the veriances and covariances of the
distributions P({c¢;}). The additional information in Fig.14 is not accessible experi-
mentally, and since the master equation is a closed set of equations for these variances
and covariances, it is not really needed in calculations either. It may, however, just
like the details in the evolution of a single QMC, give us a picture of the dynamics of
a system.
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