
Physics 581: Quantum Optics II 
Problem Set #1 

Due Tuesday Feb. 4, 2014 
 
Problem 1:  Boson Algebra (25 points) 
This problem is to give you some practice manipulating the boson algebra.  A great 
source is the classic “Quantum Statistical Properties of Radiation”, by W. H. Louisell, 
reprinted by “Wiley Classics Library”, ISBN 0-471-52365-8. 
 
(a) Gaussian integrals in phase-space are used all the time.  Show that 

� 

d2β
π∫ e−A β 2

eαβ
*−βα* = 1

A
e− α 2 /A . 

 
(b) Prove the completeness integral for coherent states 

� 

d2α
π∫ α α = ˆ 1  (Hint:  Expand in number states). 

 

(c) The “quadrature” operators in optics are the analogs of X and P, â = X̂ + iP̂
2

.  Show  

Û †(θ )X̂Û(θ ) = cosθ X̂ + sinθ P̂

Û †(θ )P̂Û(θ ) = cosθ P̂ − sinθ X̂
,   where   

� 

ˆ U (θ) = e− iθ ˆ a † ˆ a . 

Interpret in phase space. 
 

(d) Prove the group property of the displacement operator 

� 

ˆ D (α) ˆ D (β) = ˆ D (α + β)exp iIm(αβ*){ } 

 
(e) Show that the displacement operators has the following matrix elements 
 

 

Vacuum: 0 D̂(α ) 0 = e− α 2 /2

Coherent states: α1 D̂(α ) α2 = e− α +α2 −α1
2 /2ei Im αα2

* −α1α
* −α1α2

*( )

Fock states: n D̂(α ) n = e− α 2 /2Ln α 2( ), where Ln  is the Laguerre polynomial of order n

 



  
Problem 2:  Thermal Light (20 points) 
 
Consider a single mode field in thermal equilibrium at temperature T, Boltzmann factor 

� 

β =1/kBT .  The state of the field is described by the “canonical ensemble”, 

� 

ˆ ρ = 1
Z

e−β ˆ H ,   

� 

ˆ H = !ωˆ a † ˆ a  is the Hamiltonian and 

� 

Z = Tr e−β ˆ H ( )  is the partition function. 

 
(a)  Remind yourself of the basic properties by deriving the following: 

• 
  

� 

n = 1
eβ!ω −1

 (the Planck spectrum) 

• 

� 

Pn =
n n

1+ n( )n+1   (the Bose-Einstein distribution).   

 
(b) Make a list-plot of Pn for both the thermal state and the coherent state on the same 
graph as a function of n, for each of the following: n = 0.1, 1, 10, 100 . 

 
(c) Using the number-state representation, show that 

• 

� 

Δn2 = n + n 2 .  How does this compare to a coherent state? 
• 

  

� 

ˆ a = 0 ⇒
! 
E = 0 . How does this compare to a coherent state? 

 

(d) Show that the Glauber-Sudharshan distribution of this state, P(α ) = 1
π n

e−|α |
2 / n , 

satisfies d 2α P(α )∫ α α =
n n

1+ n( )n+1n
∑ n n .   Sketch P(α )  in the phase plane.  

 
 
 
Problem 3:  Twin beams and two-mode squeezed states.  (15 points) 
Considering the Hamiltonian  
 

  

� 

ˆ H = i!G ˆ a +
† ˆ a −

†e− iφ − ˆ a + ˆ a −e
iφ( ) , 

 
where â±  are annihilation operators for two modes with frequencies ω ± .  We will see in 

class how this arises in nonlinear optics through the process of parametric down-



conversion.  This leads to correlated twin “signal” and “idler” beams as long as the phase 
matching conditions are satisfied, 
 

� 

ω p = ωs + ω i, k p = k s + k i. 

 
Here G is the coupling constant depending on the nonlinearity, pump amplitude, and 
vacuum mode strength.  The state produced is known as a “two-mode squeezed vacuum 
state”,  

� 

ˆ S ± (ξ) 0 + ⊗ 0 − = exp ξ ˆ a + ˆ a − − ξ
* ˆ a +

† ˆ a −
†[ ] 0 + ⊗ 0 − , where 

� 

ξ = reiφ  is the complex 

squeezing parameter for an interaction time t, 

� 

r = Gt . 
 
(a)  Show that the generalized Bogoliubov transformations is 
 

  

� 

ˆ S ±
† (ξ) ˆ a ± ˆ S ± (ξ) = cosh(r) ˆ a ± − e− iφ sinh(r) ˆ a ∓

† . 
 

(b)  Show that the individual modes, 

� 

ˆ a ± , show no squeezing, but that squeezing exists in 
the correlation between the modes.  Hint:  consider quadratures,  
 

� 

ˆ X ± (θ) ≡
ˆ a ±eiθ + ˆ a ±

†e−iθ

2
 and then 

� 

ˆ Y (θ, ′ θ ) ≡ ˆ X + (θ) − ˆ X −( ′ θ )( ) / 2 . 

 
For the remaining parts, take ξ real. 
 
(c)  The two-mode squeezed state is an entangled state between the signal and idler as we 
know from the perturbative limit of twin photons.  Show that in the Fock basis 
 

� 

ˆ S ± (r) 0 + ⊗ 0 − = cosh(r)( )−1 tanh(r)( )n n +
n= 0

∞

∑ ⊗ n − . 

Hint:  Use the “disentangling theorem” (D. R. Traux, Phys. Rev. D 31, 1988 (1985) ): 
 

� 

er ˆ a +
† ˆ a −

†− ˆ a + ˆ a −( ) = eΓ ˆ a +
† ˆ a −

†

e−g ˆ a +
† ˆ a + + ˆ a −

† ˆ a − +1( )e−Γ ˆ a + ˆ a − . 
where 

� 

Γ = tanh(r), g = ln cosh(r)( ) 

 
The photons are produced with perfect correlations between the modes.  This is known as 
“number squeezing” in “twin beams. 
 



Problem 4:  Shot-noise and vacuum fluctuations (25 Points) 
 
Squeezed states are not robust because of photon absorption (loss).  There are many ways 
to understand this.  Squeezing is associated with photon pair-correlations.  Loss will 
randomly remove a photon, and not both in the correlated pair.  The remaining photon 
will then just add shot noise.   Another way to understand this is from the perspective of 
the continuous variables.   
 
Classically, linear loss results in attenuation of the field amplitude E→ e−κE =ηE , 
where η  is the loss coefficient.  We can model this attenuation by a partial transmitting 
beam splitter, with transmission amplitude η .  Quantumly, we cannot make the 
transformation, â→ηâ , because the commutation relations are not preserved.  Stated in 
another way, we cannot attenuate the vacuum fluctuations. 
 
(a) Consider a linear transformation between two modes at a beam splitter with 
transmission amplitude η 
 

 
 
Show that if the vacuum enters in mode-b, the output quadrature fluctuations in mode-a 
are 

ΔXΘ,out
2 = η 2 ΔXΘ,in

2 + 1− η 2( ) 12 . 

 
Interpret this result and show how squeezing is degraded by photon loss. 
 
(b) Consider now a Mach-Zender interferometer 
 

 

âin

b̂in

âout φ

b̂out

 

 

 

 
-‐ Iout = n̂out

a − n̂out
b

âin âout

b̂in



Show that output photocurrent operator corresponding to the difference of the 
photocounts at the two output ports is 
  

Îout = cosφ n̂in
a − n̂in

b( )− sinφ âin
† b̂in + b̂in

† âin( ) . 

 
(c) If the input signal enters through port-a and vacuum in port-b, then the show the mean 
output signal and fluctuations are 
 

Îout = cosφ n̂in
a , ΔÎ 2out = cos2φ (Δn̂in

a )2 + sin2φ n̂in
a  

 
 
 
(d) The mean output signal is what we know as the interference “fringes.”  The 
fluctuations determine the noise.  The term cosφ Δn̂in

a 2  in ΔÎ 2out  is the contribution of 

the noise from the input signal.  Show that the term sinφ n̂in
a  arises solely do to the 

vacuum fluctuations entering from the unused port-b. 
 
(e) In an application such as LIGO, which measures a tiny effect such as a gravity wave, 
we typically operate near a node of the fringe so that we are measuring an effect away 
from zero.  Thus we set φ = π / 2 +δφ , where δφ <<1  depends on the strength of the 
gravity wave.  In that case, show that the signal-to-noise ratio (SNR) is 
  

SNR =
Îout

ΔÎ 2out
≈ δφ n̂in

a . 

 
This is known as the “standard quantum limit” and is limited solely by the vacuum noise 
vacuum noise entering port-b. 
 
(f) The seminal work on C. M. Caves, Phys. Rev. D 23, 1693 (1981), showed that we 
could improve the SNR by injecting squeezed vacuum into the unused port.  Show that 
that in this case, the SNR is 

SNR =
Îout

ΔÎ 2out
≈ erδφ n̂in

a , 

 
where r is the squeezing parameter.  This is currently be implemented in the latest 
generation of LIGO. 
 
http://www.nature.com/nphoton/journal/v7/n8/full/nphoton.2013.177.html  


