
Physics 581, Quantum Optics II 
Problem Set #3 

Due: Thursday March 13, 2014 
 
 
Problem 1:  Properties of the Wigner function (10 Points) 
 
(a) Show that the Wigner function we derived based on the operator ordered representation of the 
Weyl operator take standard form originally given by Wigner, 
 

W (X,P) = dY
2π

e− iPY X −Y / 2∫ ρ̂ X +Y / 2 = dY
2π

e− iPYψ (X −Y / 2)ψ *(X +Y / 2)∫ , 

where the last form applies only for a pure state. 
 

(b) In standard statistics, given a joint probability distribution on many random variables, one 
defines the “marginal distributions” by integrating out the others. 

 P(X) = dP W (X,P) P(P) =∫ dX W (X,P)∫ . 
Show that these marginal are in fact the correct true marginals predicted by quantum mechanics 
(here QM gives true probability distributions). 
 
(c) Suppose we have operators which are functions only of the quadratures 
f̂1 = f1(X̂), f̂2 = f2 (P̂) .  Show that 

 

 

f̂1 = dX dPW (X,P)∫ f1(X) = dX P(X)∫ f1(X),

f̂2 = dX dPW (X,P)∫ f2 (X) = dX P(P)∫ f2 (P),
 

 
and thus show, for example, the quantum uncertaintiesΔX  and ΔP  are the respective rms widths 
of the Wigner function. 
 
(d) Generalize (b) and (c) to the case of the rotated quadratures, 
 

X̂θ = cosθ X̂ + sinθ P̂,

P̂θ = cosθ P̂ − sinθ X̂.
. 

 
  



Problem 2:  Calculation of some quasiprobability functions (25 points) 
 
(a) Find the P. Q, and W distributions for a thermal state  

 
ρ̂ = e

−!ω â†â/kBT

Z
, Z = Tr(e−!ω â

†â/kBT )= partition function 

 and show they are Gaussian functions.  For example, you should find 

� 

P(α) = 1
π n

exp −
α 2

n

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . 

Show that these three distributions give the proper functions in the limit, 

� 

n → 0 , i.e. the 

vacuum. 
 
(b) Find the P. Q, and W distributions squeezed state ψ = D̂(α )Ŝ(ζ ) 0 .  In what sense is this 
state nonclassical? 
 
(c) Find the Glauber-Sudharshan P-representation for a Fock state ψ = n .  Comment. 
  
(d) Consider a superposition state of two “macroscopically” distinguishable coherent states, 

� 

ψ = N α1 + α2( ), 

� 

α1 −α2 >>1, where 

� 

N = 2 1+ exp{−α1 −α2
2}( )[ ]−1/ 2 is normalization. 

This state is often referred to as a “Schrodinger cat”, and is very nonclassical.  Calculate the 
Wigner function, for the case  

� 

ψ = N α + −α( ), with α real, and plot it for different values of

� 

α1 −α2 = 2α .  Comment please.  
 
(e) Calculate the marginals of the Schrödinger-cat Wigner function in X and P and show they are 
what you expect. 



Problem 3:  An Alternative Representation of the Wigner Function. (15 points) 
 
We have shown that Wigner function could be expressed as 
 

W (α ) = 1
π
Tr ρ̂T̂ (α )( ) = 1π T̂ (α ) , where T̂ (α ) = d 2β

π
D̂(β )eαβ

*−β*α∫   

 
(a) Show that T̂ (α ) = D̂(α )T̂ (0)D̂†(α ) . 
 
(b) Show that T̂ (0) = 2(−1)â

†â .  (This is a tough problem.  You may assume the answer and work 
backwards or try to find a direct proof). 
 
Note: the operator (−1)â

†â = (−1)n n
n
∑ n = dX −X X∫  is the “parity operator” (+1 for even 

parity, -1 for odd parity).  Thus we see that the Wigner function at the origin is given by the 
expected value of the parity. 
 

W (0) = 2
π
Tr ρ̂(−1)â

†â⎡⎣ ⎤⎦ =
2
π

(−1)n
n
∑ n ρ̂ n . 

 
(c) Show that general expression 
 

T̂ (α ) = 2D̂(α )(−1)â
†â D̂†(α ) = 2 (−1)n D̂(α ) n

n
∑ n D̂†(α ) , 

 

and thus W (α ) = 2
π

(−1)n
n
∑ n D̂†(α )ρ̂D̂(α ) n . 

 
This expression provides a way to “measure” the Wigner function.  One displaces the state to the 
point of interest, D̂†(α )ρ̂D̂(α ) , one then measures the photon statistics 
pnα = n D̂†(α )ρ̂D̂(α ) n .  Putting this in the parity sum gives W (α )  at that point! 

 
This is a form a quantum-state reconstruction, also know as “quantum tomography,” which we 
will study in the next problem. 
 
The measurement of displaced number states in quantum optics is not easy.  However, it is much 
more straightforward in the context of measurements the vibrational state of trapped ions, as was 
performed in the group of Dave Wineland in one of the first demonstrations of a negative Wigner 
function when the ion was prepared in an n=1 Fock state (see Leibfreid et al., PRL 77, 4281 
(1996)).



Problem 4:  Quantum Tomography (10 points) 
 
Form Wikipedia: “Tomography refers to imaging by sections or sectioning.”  The idea is to 
reconstruct a three dimensional object by a series of projections onto different planes. 
 

 
The term “quantum tomography,” was coined by the group of Raymer (Smithey et al., PRL 70, 
1244 (1993)) in the context of reconstructing the Wigner function of a light mode.  This was 
based on the work of Vogel and Risken (PRA 40, 2847 (1989)) who showed that the Wigner 
function was related to the measurements of the marginals – the projections of the Wigner 
function onto a plane. 
 

 
 

We learned that a homodyne detector measures a quadrature of the field with the plane 
determined by the phase of the local oscillator.  Thus, the measurement outcome sampled from 
the probability distribution, pr(Xθ ) = Xθ ρ̂ Xθ ,  where Xθ   are the eigenstates of 

X̂θ = (âe
− iθ + â†eiθ ) / 2 = X̂ cosθ + P̂sinθ   

 
The goal of quantum tomography is to invert and determine ρ̂   (or equivalently W (α ) ) given 
pr(Xθ ), ∀θ{ } .   



(a) Prove the following Lemma. 
 

Given δ (x)δ (y) =
dkxdky
2π( )2

e− ikxx e− ikyy∫ , show that by transforming the polar coordinates in the 

Fourier plane, 

δ (X − ′X )δ (P − ′P ) = 1
2π( )2

k dk
0

∞

∫ dθ e− ik (Xθ − ′Xθ )

0

2π

∫ = 1
2π( )2

k dk
−∞

∞

∫ dθ e− ik (Xθ − ′Xθ )

0

π

∫ . 

 
(b) Starting with the trivial identity, 
 

W (X,P) = d ′X d ′P δ (X − ′X )δ (P − ′P )W ( ′X , ′P )∫ , 
 

and the result of part (a), show that the Wigner function can be obtained form the marginals by, 
 

W (X,P) = dθ
0

π

∫ d ′Xθ pr( ′Xθ )K(Xθ − ′Xθ )
−∞

∞

∫ ,  

where the integral kernel  
 

K(X) = 1
4π 2 dk

−∞

∞

∫ k e− ikX  . 

 
This is known as the “Radon transformation,” originally written in the context of classical 
tomographic image processing. 
 
We see immediately that integral kernel is not well defined and blows up.  This means that the 
Radon transformation is numerically unstable.  In addition, it is not robust to the physical case 
that we have only a discrete set of measurements of pr(Xθ ){ } , and the detection is not perfect. 
 
In the intervening decades since the original experiments in quantum tomography, the 
reconstruction process has been refined with more sophisticated estimation schemes based on 
statistical interference.  This has spurred a new line of research in quantum information science 
regarding the question of what is required to reconstruct a quantum state given finite 
measurement resources and noise.  
 
(c) Extra credit (5 points).  Show that  

 
W (X,P) = − 1

2
dθ P

0

π

∫ d ′Xθ
1

Xθ − ′Xθ

⎛
⎝⎜

⎞
⎠⎟
d
d ′Xθ

pr( ′Xθ )
−∞

∞

∫ . 

 
where P is the Cauchy Principal Value.  This expression shows how finite knowledge of 
pr(Xθ ){ }  limits the Radon transform, since we do not know the derivative of pr(Xθ ) , and need 

to interpolate if we only have finite points. 



Problem 5: Entanglement and the Jaynes-Cummings Model (30 points) 
 
One the most fundamental paradigms in quantum optics is the coupling of a two-level atom to a 
single mode of the quantized electromagnetic field.  In the rotating wave approximation, this is 
governed by the Jaynes-Cummings model (JCM), 
 

 
Ĥ = !ω câ

†â + !ω 0
σ̂ z

2
+ !g σ̂ +â + â

†σ̂ −( ) . 

 
This is a bipartite system with tensor product Hilbert space for the atom and field,  H AF=hA ⊗hF , 
where  hA  is the two-dimensional Hilbert space of the two-level atom, and  hF  is the infinite 
dimensional Hilbert space of the harmonic oscillator that describes the mode.  The goal of this 
problem is to understand the entanglement between the atom and mode, generated by the JCM. 

 
Last semester, we studied how this leads to collapse and revival of Rabi oscillation that follows 
from an initial product state with the field in a coherent state and the atom in, e.g., the ground 
state Ψ(0) AF = g A ⊗ α F .  The probability to find the atom in the excited state oscillates as 

shown (here for n = α 2 = 49 ) 
 

 
 
The collapse is due to the variation of the quantum Rabi oscillations with different number; the 
revival is uniquely a quantum effect arising from the discreteness of the quantized field, 
occurring at a time gtr ≈ 2π n  for large n . 
 
(a) Show that the state at time t the joint state takes the form 
 

Ψ(t) AF = C(t) F ⊗ g A + S(t) F ⊗ e A  

where C(t) F = cn cos( ngt)
n=0

∞

∑ n , S(t) F = −i cn+1 sin( n +1gt)
n=0

∞

∑ n , cn = (α
n / n!)e−α

2 /2  . 

Note C(t) F , S(t) F  are not normalized, nor are they orthogonal. 
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(b) Show that the marginal state of the atom in the g , e{ }  basis is 
 

 

ρ̂A(t) =
C(t) C(t) C(t) S(t)
S(t) C(t) S(t) S(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
2
1̂+
!
Q(t) ⋅ !̂σ( ) . 

 
Write an expression for Bloch vector  

!
Q(t) . 

 
(c) Write the purity of the marginal (a measure of the entanglement between the atom and field), 
in terms of the Bloch vector.  Numerically calculate this and plot as a function of time for 
n = α 2 = 49 .  Your graph should look like 

 

 
 
This plots shows a few surprising features.   During the collapse the atom and field become 
highly entangled, as indicated by the rapid degree in the atomic purity.  However, at half the 
revival time, gtr / 2 ≈ π n , when the inversion looks to be flat, the purity returns to near unity, 
indicating that the atom and field become separable.  The atom and field then become re-
entangled.  When the Rabi oscillations once again revive, the purity again increases, but nowhere 
near to unity.  Our goal now is to use the Schmidt decomposition to understand this. 
 
(d) Given the initial pure state of the joint system and the unitary evolution according to the JCM, 
we know that at all times we can express the state in terms of Schmidt decomposition. 
 

Ψ(t) AF = pu (t) uµ (t) A
⊗

µ=1

2

∑ vµ (t) A
. 

Note, even though the field mode is infinite dimensional, the maximum Schmidt number is 2.   
 
Express the two values of pµ (t)  in terms of the Bloch vector  

!
Q(t) .  Calculate numerically at plot 

as function of time.  Your graphs should look like the following: 
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Comment on this and what it means for the entanglement. 
 
(e) We can find the Schmidt vectors by the following procedure.   
- Find the atomic Schmidt vectors uµ (t) A{ }  as the eigenvectors of the marginal state ρ̂A(t)  in 

the standard basis g , e{ } .  

- Using Ψ(t) AF = C(t) F ⊗ g A + S(t) F ⊗ e A = pu (t) uµ (t) A
⊗

µ=1

2

∑ vµ (t) A
, find an expres-

sion for the two Schmidt vectors of the field vµ (t) F{ }  in terms of C(t) F , S(t) F , pu (t) .  

 
(f) We can see the (approximate) separation between atom and field at half the revival time for 
large n  as follows.  Show that in this limit, 
 

g n +1tr / 2 ≈ g ntr / 2 +π / 2, cn+1 ≈ e
− iφcn , where cn = (α

n / n!)e−α
2 /2  and α = n eiφ  . 

 
Using this, show that 

Ψ(tr / 2) AF ≈ g A − ie
− iφ e A( )⊗ C(tr / 2) F  . 

 
Thus we see that the system is separable, with the atom in an equal superposition depending on 
the phase of the coherence state.   
(g) Extra credit (5 points):  More generally show that if Ψ(0) AF = a g A + b e A( )⊗ α F  
 

Ψ(tr / 2) AF ≈ g A − ie
− iφ e A( )⊗ a C(tr / 2) F + b S(tr / 2) F( )  

 
This result shows that regardless of the atomic initial state, at half the revival time, the atom 
goes to the same state.  The information about the initial atomic superposition is transferred to 
the field in a kind of “swap gate.”  For large α , the two field states are macroscopically 
distinguishable.  This is kind of “Schrödinger cat”. 
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Problem 6: Gaussian States in Quantum Optics (35 points) 
 
The set of states whose quadrature fluctuations are Gaussian distributed about a mean value is an 
important class in quantum optics.  These states have Gaussian Wigner functions.  In this 
problem, we explore Gaussian states, their relationship to squeezing, and the canonical algebra of 
phase space. 
 
Consider a field of n-modes, with quadrature defined by an ordered vector: 
 

Z = (X1,P1,X2 ,P2 ,...,Xn ,Pn ) . 
 

The operators associated with these quadratures satisfy a set of canonical commutators relations 
that can be written compactly as, 
 

Ẑi , Ẑ j⎡⎣ ⎤⎦ =
i
2
Σij , where Σ = ⊕

k=1

n 0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥  is a skew-symmetric matrix.   

We define an “inner product” in phase space as Z Q( ) = ZiΣijQj   (summed over repeated indices 
through this problem). 
 
(a) Show that the phase space displacement operator can be written 
 

D̂(Z) = exp −i Z Ẑ( ){ }  

 
A Gaussian state is one whose Wigner function is a Gaussian function on phase space.  Recall 
the characteristic function of a quantum state is defined χ(Z) = Tr ρ̂D̂(Z)( ) .   
The general form of the characteristic function for a Gaussian state with is: 
 

χ(Z) = exp − 1
2
Z C Z( ) + i d Z( )⎧

⎨
⎩

⎫
⎬
⎭

. 

 
Where Cij  is known as the covariance matrix, and di  is a real vector. 
 

(b) Show that: Ẑi = di , and 
1
2

ΔẐiΔẐ j + ΔẐ jΔẐi = Cij , where ΔẐi ≡ Ẑi − Ẑi . 

Hint:  Recall how moments are found from the characteristic function. 
 
The Gaussian state is thus determined by the mean position in phase space and the covariance of 
all the fluctuations. 
 
(c) Find the Wigner function for a state with the general form of the characteristic function. 
 



Let us restrict our attention to Gaussian states with zero mean (the mean is irrelevant to the 
statistics and can always be removed via a displacement operation).   Consider now unitary 
transformations on the state.  A particular class of transformations is the set that act as linear 
canonical transformations, i.e. 
 

Û †ẐiÛ = Sij Ẑ j , where Sij  is a symplectic matrix, defined by STΣS = Σ . 
 

 
A unitary map on the state transforms the state according to  
 

χ(Z)⇒ ′χ (Z) = Tr Û ρ̂Û †D̂(Z)( ) = Tr ρ̂Û †D̂(Z)Û( ) . 
 

(d) Show that for a symplectic transformation, the characteristic function transforms as 
 

χ(Z)⇒ χ(SZ)  
 
and thus the action of the unitary is to preserve the Gaussian statistics, by transforming 
covariance matrix as C⇒ STCS . 
 
(e) Show that the following operations preserve Gaussian statistics: 

• Linear optics: Û = exp −iθij â
†
iâ j( )  

• Squeezing: Û = exp ζ ij
*âiâ j −ζ ij â

†
iâ j
†( )  

 
(f) For each of these, show how the covariance matrix of the Gaussian transforms. 
 
(g) Starting with the vacuum (a Gaussian state) we apply the squeezing operator above.  Show 
that the symplectic transformation on the covariant matrix leads to the expected result. 
 
 
 


