
Physics 581:  Quantum Optics Extra Credit 
Distributed: Apr 24, 2014, Due: May 8, 2014 

 
In this project you will explore the ideas and tools of quantum trajectories through the 
Quantum Monte Carlo Wave Function (QMCWF) simulations discussed in class and the 
notes entitled “Density Matrices and the Quantum Monte-Carlo Method in Quantum 
Optics” by Klaus Mølmer.  Other references include: 
 

• Class Lectures 11-13. 
• R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A 45, 4879 (1992). 
• K. Mølmer, Y. Castin, and J. Dalibard J. Opt. Soc. Am B, 10, 524 (1993). 
• M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998). 

 
The project involves numerical simulations.  You are free to use any computer 
language/package you feel comfortable with.  If you do not have access to such a 
package, I can direct you to sources here at UNM. 
In addition to written answers and figures, please submit all of your computer code. 
 
 
Problem 1:  Damped Rabi Flopping of a Two-Level Atom (30 points) 
Consider a two-level atom driven on resonance, Δ = 0 , with Rabi frequency Ω = 3Γ .  
The master equation in Lindblad form is  
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(a) Write a computer program to implement the QMCWF algorithm as detailed by 
Mølmer.  Use your algorithm to reproduce Fig. 3 in his notes.  Include the error bars as 
discussed in Sec. 3.3. 
(b) Modify your code so that instead of checking for a “jump/no-jump” condition at each 
interval δt , you simulate the wait-time to the next jump, as discussed in Lecture #12 and 
by Dum et al in the PRA referenced above.  Reproduce the results from (a). 
(c) Extra Credit --  Follow Mølmer’s prescription to calculation the spectrum of 
resonance fluorescence  and reproduce the Mollow triplet shown in Fig. 9 of his notes. 
 
 
Problem 2: Coherent Population Trapping (30 points) 
 
Consider an atom with degenerate Zeeman sublevels in its ground and excited manifold.  
Take both the ground and excited states to have total angular momentum Jg = Je = 1  so 
that each manifold has three sublevels M = −1,0,1 .  The atom is driven by laser light on 
resonance, propagating in the z-direction, and linearly polarized in the y-direction.  The 
master equation describing the evolution of the atom including spontaneous emission is 
as given in class, 
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where the Lindblad operators are:  Dq
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The effective Hamiltonian is 
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As discussed in Mølmer Sec. 4.2, there are two very different pictures of evolution 
depending upon whether we choose the basis states J,M  for M with respect to the 
quantization axis along z or along y. 
 

           
 
(a) Find the dark state as the zero-eigenvalue eigenvector of H.   
     Express the state in terms of the two bases mz  and my . 
 
(b) Explicitly write out Heff  and Dq

†  in the two bases.  
 
(c) Write a QMCWF algorithm to simulate the decay of the system to the dark state 
starting in the initial state g;mz = −1 .  Do this for both bases and corresponding jump-
operators.  Reproduce Fig. 11 in Mølmer. 
 
Note: The ratio the Rabi frequency to the spontaneous emission rate is not given. You’ll 
need to experiment with that to reproduce the figure. 


