Physics 581: Quantum Optics II Problem Set #1 Due Tuesday Feb. 1, 2022

Problem 1: Boson Algebra (25 points)

This problem is to give you some practice manipulating the boson algebra. A great source is the classic "Quantum Statistical Properties of Radiation", by W. H. Louisell, reprinted by "Wiley Classics Library", ISBN 0-471-52365-8.

(a) Gaussian integrals in phase-space are used all the time. Show that

$$\int\!\frac{d^2\beta}{\pi}\,e^{-\gamma|\beta|^2}e^{\alpha\beta^*-\beta\alpha^*}=\frac{1}{\gamma}\,e^{-|\alpha|^2/\gamma}\;.$$

(b) Prove the (over) completeness integral for coherent states

$$\int \frac{d^2\alpha}{\pi} |\alpha\rangle\langle\alpha| = \hat{1} \text{ (Hint: Expand in number states)}.$$

This basis is over-complete since as the coherent states are not orthonormal (see next part).

(c) Prove the group property of the displacement operator

$$\hat{D}(\alpha)\hat{D}(\beta) = \hat{D}(\alpha + \beta) \exp\{i\operatorname{Im}(\alpha\beta^*)\}$$

and thus
$$\langle\alpha|\beta\rangle=e^{-\frac{|\alpha-\beta|^2}{2}}e^{-i\mathrm{Im}(\alpha\beta^*)}$$

(d) Show that the displacement operator has the following matrix elements

Vacuum: $\langle 0|\hat{D}(\alpha)|0\rangle = e^{-|\alpha|^2/2}$

Coherent states: $\langle \alpha_1 | \hat{D}(\alpha) | \alpha_2 \rangle = e^{-|\alpha + \alpha_2 - \alpha_1|^2/2} e^{i \operatorname{Im} \left(\alpha \alpha_2^* - \alpha_1 \alpha^* - \alpha_1 \alpha_2^* \right)}$

Fock states: $\langle n|\hat{D}(\alpha)|n\rangle = e^{-|\alpha|^2/2} \mathsf{L}_n(|\alpha|^2)$, where L_n is the Laguerre polynomial of order n

$$L_n(x) = \sum_{m=0}^{n} {n \choose m} \frac{(-1)^m}{m!} x^m$$

Problem 2: Thermal Light (25 points)

Consider a single mode field in thermal equilibrium at temperature T, Boltzmann factor $\beta = 1/k_B T$. The state of the field is described by the "canonical ensemble",

$$\hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}}, \ \hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a}$$
 is the Hamiltonian and $Z = Tr(e^{-\beta \hat{H}})$ is the partition function.

- (a) Remind yourself of the basic properties by deriving the following:
 - $\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} 1}$ (the Planck spectrum)
 - $P_n = \frac{\langle n \rangle^n}{(1 + \langle n \rangle)^{n+1}}$ (the Bose-Einstein distribution).
- (b) Make a list-plot of P_n for both the thermal state and the coherent state on the same graph as a function of n, for each of the following: $\langle n \rangle = 0.1, 1, 10, 100$.
- (c) Show that the Glauber-Sudharshan distribution of this state, $P(\alpha) = \frac{1}{\pi \langle n \rangle} e^{-|\alpha|^2/\langle n \rangle}$,

satisfies
$$\int d^2 \alpha P(\alpha) |\alpha\rangle\langle\alpha| = \sum_n \frac{\langle n\rangle^n}{\left(1+\langle n\rangle\right)^{n+1}} |n\rangle\langle n|$$
. Sketch $P(\alpha)$ in the phase plane.

(d) In class, we studied the m^{th} -order correlation function that gives the average number of m-photon coincident counts in a given time interval. For the thermal state we showed that that this could be written for $\langle n \rangle \ll 1$, as

$$G^{(m)}(0) = \langle : \hat{n}^m : \rangle = m! \langle \hat{n} \rangle^m$$

Using the Bose-Einstein distribution, show that this expression is exact, for any value of $\langle \hat{n} \rangle$. Repeat the calculation and confirm this using the Glauber-P representation.