Physics 581: Quantum Optics 1T
Problem Set #1
Due Tuesday Feb. 1, 2022

Problem 1: Boson Algebra (25 points)

This problem is to give you some practice manipulating the boson algebra. A great
source is the classic “Quantum Statistical Properties of Radiation”, by W. H. Louisell,
reprinted by “Wiley Classics Library”, ISBN 0-471-52365-8.

(a) Gaussian integrals in phase-space are used all the time. Show that
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(b) Prove the (over) completeness integral for coherent states
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This basis is over-complete since as the coherent states are not orthonormal (see next part).

(c) Prove the group property of the displacement operator
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(d) Show that the displacement operator has the following matrix elements

Vacuum: <O| ﬁ(a)|0> - e—\a\zn
Coherent states: (¢, | f)(a)| a,)= Jlovenaf'itm{oc-ane e
Fock states: (n| D(e|n)=¢ "L, (|0‘|2)’ where L, is the Laguerre polynomial of order n
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Problem 2: Thermal Light (25 points)

Consider a single mode field in thermal equilibrium at temperature 7, Boltzmann factor
B=1/k,T. The state of the field is described by the “canonical ensemble”,
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(a) Remind yourself of the basic properties by deriving the following:
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o (the Bose-Einstein distribution).

(b) Make a list-plot of P, for both the thermal state and the coherent state on the same
graph as a function of n, for each of the following: <n> =0.1,1,10,100.
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n><n| . Sketch P(c) in the phase plane.

(c) Show that the Glauber-Sudharshan distribution of this state, P(o)=

satisfies szaP(a)|a><a| :2 (n)
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(d) In class, we studied the m'™-order correlation function that gives the average number
of m-photon coincident counts in a given time interval. For the thermal state we showed
that that this could be written for (7)) < 1 ag
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Using the Bose-Einstein distribution, show that this expression is exact, for any value of

(n), Repeat the calculation and confirm this using the Glauber-P representation.



