
Physics 581: Open Quantum Systems 
Problem Set #1 

Due Tuesday Feb. 9, 2023 
 
Problem 1:  Different ensemble decompositions  - example, spin ½ (15 points) 
(a)  Suppose we have a statistical mixture of spin 1/2 particles that consists of the state  

mixture with probability  and the state  with probability . 

 
Find the matrix of the density operator in the basis { , }, and in the basis of eigenstates of 

, .  What is the Bloch vector that describes this state? 
 
(b)  Now suppose we have a mixed state with 1/2 probability to have spin along 

 and 1/2 probability to have spin along .  Is this a completely 

mixed state?  Write the density operator in the basis { , }.  Compare to part (b).  Please 
comment on your result. 
 
(c)  Show that two statistical mixtures of pure states,   with probabilities pn , and  

with probabilities qm, describe the same density operator  if  
 

, 

 
where Q is the Bloch vector of .  Check this with your results of parts (b) and (c). 
 

Problem 2:  Ambiguity of ensemble decompositions of density operators (15 points) 
      We saw in Problem 1 that a density operator does not decompose uniquely into a statistical 
mixture of pure states.  This has profound implications for both practical calculations of the 
density matrix (as we will see later in the semester) as well as for foundational descriptions of 
states in quantum mechanics.   What different ensemble are possible to yield a given density 
operator?  In this problem we prove the following. 
 
Schrödinger- Hughston-Jozsa-Wootters (HJW) theorem:   
 
The two density operators 
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are equal if and only if the two ensembles are related by, 
 

 
where Uji  are elements of an isometry matrix (their rows and columns are orthogonal). 
 
(a)  Assume the relation between the ensembles is true.  Prove that . 
(b)  Assume .  Show . 

(Hint:  Show first that , where  are the eigenvalues of  and  its 

orthonormal eigenvectors and  are elements of a unitary matrix.  The same thus holds for 

.  The proof will follow). 

Historical note:   “The theorem was originally proven by Schrödinger in 1936. He commented that this 
theorem was one ‘for which I claim no priority but the permission of deducing it in the following section, 
for it is certainly not well known.’ His comment was amusingly prescient: The theorem was rediscovered 
by Jaynes in 1957 (whose work was extended by Hadjisavvas (1981)), rediscovered by Hughston, Jozsa, 
and Wootters (HJW) in 1993 (this last an expansion of a 1989 partial rediscovery by Gisin); in 1999, 
Mermin simplified a portion of HJW’s proof - and it would appear none of these were aware of 
Schrödinger’s work. Furthering the irony, Mermin commented that this is ‘a pertinent theorem which 
deserves to be more widely known.’ ” 

Problem 3:  Inhomogeneous broadening (25 Points) 
Rabi oscillations will decay because the two-level system is an open quantum system; 
coherence decays on a time scale we denote T2.  The oscillations can also decay because of 
uncertainty in the parameters of Hamiltonian.  In modern parlance, we might call these 
“coherent errors.”  In particular, when we are measuring an expectation value, we must 
average over a large ensemble of measurement outcomes.  If the value of the Rabi frequency 
and/or detuning are different for different members of ensemble, this is known 
“inhomogeneous broadening.”  This can be true because we have an extended ensemble in 
space and the fields that define the Hamiltonian are spatially inhomogeneous across the 
ensemble, or for a single system reprepared and measured, the field varies from shot-to-shot.  
We study in this problem the dephasing of oscillations on a time scale known as , and 

explore the difference from true decay due to decoherence. 
 
(a) Consider an ensemble of spins undergoing Rabi oscillations (spin magnetic resonance) in a 
bias static magnetic field B, giving a resonance frequency w0 =gB and driven by an rf-magnetic 
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field transversely oscillating at frequency w.  The cloud is extended so that spins see an 
inhomogeneous distribution of bias B-fields, which we will take to be  Gaussian distributed.  
Because of this, the detuning from resonance, D = w - w0, will be inhomogeneous according to 
a probability distribution 

 
where D0 is the average detuning and d2 is the variance.  The measured Rabi oscillation is the 
average across the ensemble is 

 
 
where    is the probability of finding spin-up for a fixed Rabi frequency and 
detuning (assume initially spin down).   Show that for very small inhomogeneity, d<<W,|D0|  
 

, where . 
 

  is the inhomogeneous linewidth, resulting from dephasing on the 
timescale of T2*.   What is this linewidth in the limiting cases, |D0|/W<<1 and |D0|/W>>1? 

 
(c)  Plot this solution for different ratios of d/W,  taking |D0|/W=1. 
 
(d) Spin echo:  Though inhomogeneous broadening will cause a decay of the ensemble 
averaged coherence; it is not a truly irreversible process.  A way  to see this is through the 
phenomenon of “spin echo”. Consider an ensemble of spins sitting in the inhomogeneous bias 
B-field, as in part (a).  Now consider the following pulse sequence. 
 
 
 
 
 
 
The -pulse about the x-axis to bring all spins onto the y-axis of the Bloch sphere.  For a time 

, the spins randomly precess about the z-axis and the ensemble dephases.  The -pulse about 
the x-axis acts to time reverse the process.  An “echo” signal will be seen at a time  later when 
the spins “refocus” and returns to its initial.  Explain this process using this Bloch sphere.   
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Problem 4:  Ramsey fringes and the measurement of T2 times (25 Points) 
 
(a) We seek to measure the coherence of between the computational basis states of a qubit 

.  Consider a two-pulse Ramsey sequence: A fast  pulse around x-axis with detuning 

D, free evolution for a time T, a second fast  pulse around x-axis at the same detuning D.   
  

w  
 

During the free evolution, in the absence of decay, the qubit will precess around the z-axis of 
the Bloch sphere.  In the rotating frame, it precess at the frequency  w0-w=-D, where w is the 
frequency of the driving pulse, and w0 is the qubit resonance frequency.  In reality, the 
coherence  decays exponentially with rate .  Show that, given the qubit initially in , 
the probability to find  after the sequence is 
 

  

 

Explain this using the evolution on the Bloch sphere.  Plot this for MHz and T2=25 µs, 
for T=0 to 25 µs. 
 
(b) Suppose now that in addition to homogeneous decay, there is inhomogeneous decay .  
Suppose that if the pulses are tuned to frequency , the probability the detuning seen by the 

qubit is Gaussian distributed,  , where  is the mean detuning and 
  is the spread in detunings.  Calculate the probability  in the same two-pulse 

Ramsey sequence of part (a) for  µs. Comment on the result. 
 
(c) Now consider a three-pulse Hahn spin-echo Ramsey sequence:  
Consider the following pulse sequence: a fast p/2 pulse around y-axis with detuning D, free 
evolution for a time  a “time reverse” fast pulse around x, free evolution for a time , and 
then a second fast pulse around y-axis at the same detuning D.   The initial state is |1>. 
 

 
 

Show,   ,  and plot for , 
as a function of TB=0 to 25 µs. 

0 , 1{ } π / 2

π / 2
Fortschr. Phys. 51, No. 4–5 (2003) 467

 
 

 

∆t

t1

π/2π

τ

π/2

 
 

 
 

 
 

0.0 0.2 0.4 0.6 0.8

32

34

36

p 
(%

)
p 

(%
)

p 
(%

)
p 

(%
)

p 
(%

)
p 

(%
)

Ramsey

∆t (µs)

33

34

35

 

 

 

∆t = 0.39 µs

33

34

35

 

 

∆t = 0.59 µs

33

34

35

 

 

∆t = 0.79 µs

33

34

35

 

 

∆t = 0.99 µs

0.0 0.2 0.4 0.6 0.8

33

34

35

 

 

∆t = 1.19 µs

t  (µs)1

α = 2π ∆ν. t  1α

 α
ε

 

 

x

y

z

 

 

ε

t2

 

∆t

π/2π/2

ε = 2π ∆ν. ( t  - t  ) 12

Fig. 7 Ramsey fringes measured at Ng = 0.52, φ = 0 and ∆ν = 41 MHz. The decay time constant of the fringes
is here Tϕ ∼ 30 ns. Lower panels : echo signals obtained with the pulse sequence schematically described on the right
side, for various sequence durations ∆t. A first π/2 pulse brings the spin $s on the −y axis. Follows a free precession by
an angle α = 2π∆ν t1 during a time t1. A subsequent π pulse brings the spin in the symmetric position with respect to
x axis. Follows a second free precession during time t2, which brings the spin at an angle ε = 2π∆ν(t2 − t1) with the
y axis. The last π/2 pulse results in a final z component of the spin equal to cos ε. The average switching probability
p = (1 − 〈cos ε〉)/2, obtained by repeating the sequence, is an oscillating function of t2 − t1. The amplitude of the
oscillations is damped away from t1 = t2 (thick tick in each panel) due to fluctuations of ∆ν.

the echo signal varies as (1−〈cos [2π∆ν(t2 − t1)]〉)/2 and is therefore less sensitive to fluctuations of ∆ν
from sequence to sequence when t1 ∼ t2. In the experiment, we have recorded the switching probability
at fixed values of ∆t, as a function of the delay t1 (left panels of Fig. 7). Up to ∆t % 1 µs, fringes emerge
around t1 = t2 = (∆t − τ)/2 (here, τ ∼ 15 ns), indicating that during pulse sequences of this duration,
coherence was at least partly conserved. As expected, the period of the oscillations is twice as short in the
echo experiment than in the Ramsey experiment. The observation of spin echoes at time scales much larger
than the decay time of the Ramsey fringes indicates that in this situation decoherence was essentially due to
charge fluctuations at frequencies lower than 1/∆t ≈ 1 MHz. No echo was seen in experiments performed
at φ '= 0, suggesting that the relevant phase noise was at higher frequencies.

In all our time domain experiments, the oscillation period of the switching probability closely agrees
with theory, meaning a precise control of the preparation of %s and of its evolution. However, the amplitude
of the oscillations is smaller than expected by a factor of three to four. This loss of contrast is likely to be
due to a relaxation of the level population during the measurement itself. In principle the current pulse,
whose rise time is 50 ns, is sufficiently adiabatic not to induce transitions directly between the two levels.
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Fig. 7 Ramsey fringes measured at Ng = 0.52, φ = 0 and ∆ν = 41 MHz. The decay time constant of the fringes
is here Tϕ ∼ 30 ns. Lower panels : echo signals obtained with the pulse sequence schematically described on the right
side, for various sequence durations ∆t. A first π/2 pulse brings the spin $s on the −y axis. Follows a free precession by
an angle α = 2π∆ν t1 during a time t1. A subsequent π pulse brings the spin in the symmetric position with respect to
x axis. Follows a second free precession during time t2, which brings the spin at an angle ε = 2π∆ν(t2 − t1) with the
y axis. The last π/2 pulse results in a final z component of the spin equal to cos ε. The average switching probability
p = (1 − 〈cos ε〉)/2, obtained by repeating the sequence, is an oscillating function of t2 − t1. The amplitude of the
oscillations is damped away from t1 = t2 (thick tick in each panel) due to fluctuations of ∆ν.

the echo signal varies as (1−〈cos [2π∆ν(t2 − t1)]〉)/2 and is therefore less sensitive to fluctuations of ∆ν
from sequence to sequence when t1 ∼ t2. In the experiment, we have recorded the switching probability
at fixed values of ∆t, as a function of the delay t1 (left panels of Fig. 7). Up to ∆t % 1 µs, fringes emerge
around t1 = t2 = (∆t − τ)/2 (here, τ ∼ 15 ns), indicating that during pulse sequences of this duration,
coherence was at least partly conserved. As expected, the period of the oscillations is twice as short in the
echo experiment than in the Ramsey experiment. The observation of spin echoes at time scales much larger
than the decay time of the Ramsey fringes indicates that in this situation decoherence was essentially due to
charge fluctuations at frequencies lower than 1/∆t ≈ 1 MHz. No echo was seen in experiments performed
at φ '= 0, suggesting that the relevant phase noise was at higher frequencies.

In all our time domain experiments, the oscillation period of the switching probability closely agrees
with theory, meaning a precise control of the preparation of %s and of its evolution. However, the amplitude
of the oscillations is smaller than expected by a factor of three to four. This loss of contrast is likely to be
due to a relaxation of the level population during the measurement itself. In principle the current pulse,
whose rise time is 50 ns, is sufficiently adiabatic not to induce transitions directly between the two levels.
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