Physics 581, Open Quantum Systems

Problem Set #5
Due: Thursday April 6, 2023

Problem 1: Dark states (25 points)
Let us consider a three level ‘“lambda system”
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The two ground states are resonantly coupled to the excited state, each with a
different

Rabi frequency. Taking the two ground states as the zero of energy, then in the
RWA (and in the rotating frame) the Hamiltonian is
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(a) Find the “dressed states” of this system (i.e. the eigenstates and eigenvalues of the
total atom laser system). You should find that one of these states has a zero eigenvalue,
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This particular superposition is called a “dark state” or uncoupled state because the laser
field does not couple it to the excited state.

(b) Adiabatic transfer through the “nonintuitive” pulse sequence. Suppose we want to
transfer population from |gl> to |g2>. A robust method is to use adiabatic passage, always

staying in the local dark state. This can then be on resonance. If we apply a slowly
varying pulse €,(#) overlapped, but followed by €2,(#) shown below, we accomplish this

transfer
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Sketch the dressed state eigenvalues a function of time. Explain the conditions necessary



to achieve the adiabatic transfer.

(c) When including spontaneous emission of the excited state, the atom will “relax” to the
dark state. This is known as coherent population trapping (CPT). Consider, for
simplicity, the case that € =€, =€, and the atom decays with equal rates to the two

ground sublevels:
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|D) is the dark-state and | B) is the bright-state. Argue that the master equation is

Write the master equation in the basis {| D
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(d) Show that the equations of motion for the density matrix in this basis are
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and the steady state solution is p** =|D)(D| ,i.., the system relaxes to the dark-state.
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Epilogue: The relaxation to the dark state is somewhat mysterious from the equations of
motion since a spontaneous decay of along one of the two paths sketched above
CANNOT land us in the dark state — we land in |g,) or |g,). Actually, we relax to the

dark state when we DO NOT see a spontaneous decay. Not seeing spontaneous emission
is information too. We’ll return to this later when we study “quantum trajectories.”






Problem 2: The transfer of coherences in the decay of an oscillator (20 points)

In the simple harmonic oscillator, the decay rate of population in a Fock state [n> is
proportion to n. This makes sense physically, e.g., for a bosonic modes, as the
probability of losing a photon will depend on the number of photons in the mode.
However, for a coherent state, the rate of decay is independent of the amplitude! We
understand this through the “transfer of coherence.” Because of the equal spacing of the
energy levels, coherence fed in the master equation. This transfer of coherences explains
the way in which the mean amplitude decays. Let’s examine this more closely.

(a) Consider the damped simple harmonic oscillator at finite temperature. Find the
equation of motion of the off-diagonal elements (coherences) Pn+1,n,
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(b) Given show that
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, independent of the temperature of the bath.

(c) Now consider the nonlinear Kerr oscillator, with Hamiltonian
H = hwa'ta + hral?a?

Including the same Lindbladian for the damped SHO at zero temperature, find the
equation of motion of Pn+1,n, and from this show by the same procedure in (b)

(d) Repeat this calculation by directly finding d(a)/dt from the commutators.

Thus, for the nonlinear oscillator the transfer of coherences is not perfect as the spacing
between levels is not equal. Thus, the decay of the oscillator depends on its amplitude.

(e) But wait a minute! How did we get away with the same Lindbladian? Why are any
transfer of coherences included in the first place, since the spacing between levels is not
equal. Why didn’t we need to include the Kerr Hamiltonian in the derivation of the
Lindbladian?



Problem 3: Decoherence and cat states (25 points)

Consider the damped simple harmonic oscillator governed by the master equation
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(a) Suppose we prepare an initial pure coherent state, p(0) = |a)(a| From the master
equation,
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Show that A(dt) = |ae \
df). From this argue that for finite time A(t) = |a(t)){a(t)] where a(t) = ae” e It/2 ,
1.e., the state remains a pure coherent state for all times, with a complex amplitude that

follows the classical trajectory.

(b) Now consider and initial pure state which is a superposition of coherent states
9(0)) = N (|} +18)) , where N~ = 2(1 + Re(@|B)) is the normalization. Consider the
different map generated by the master equation. Show that,
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(c) From this show that for an initial superposition of coherent states, the solution to the
master equation is
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(d) Given the result (c) write the Wigner function for the state as a function time.

(e) For a Schrédinger cat state with B = —a and |a[>>1, qualitatively describe the time
evolution of the state.

(f) (Extra credit 10 points). Make a move of the time evolution of the cat state evolving
according to master equation for three cases: a=1,4,10. For simplicity, go into the
rotating frame and by setting ®=0. Comment on your results.



