


THE THEORY OF OPEN QUANTUM SYSTEMS 



THE THEORY OF OPEN 
QUANTUM SYSTEMS 

Heinz-Peter Breuer and Francesco Petruccione 
.,  Albert-Ludwigs-Universitdt Freiburg, Fakultdt fiir Physik 

and 
Istituto Italiano per gli Studi Filosofici 

OXFORD 
UNIVERSITY PRESS 



OXFORD 
UNIVERSITY PRESS 

Great Clarendon Street, Oxford 0 x2 6Dp 
Oxford University Press is a department of the University of Oxford. 

It furthers the University's objective of excellence in research, scholarship, 
and education by publishing worldwide in 

Oxford New York 
Auckland Bangkok Buenos Aires Cape Town Chennai 

Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata 
Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi 

Sao Paulo Shanghai Taipei Tokyo Toronto 
Oxford is a registered trade mark of Oxford University Press 

in the UK and in certain other countries 
Published in the United States 

by Oxford University Press Inc., New York 
0 Oxford University Press 2002 

The moral rights of the authors have been asserted 
Database right Oxford University Press (maker) 

First published 2002 
Reprinted 2002,2003 

All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 

without the prior permission in writing of Oxford University Press, 
or as expressly permitted by law, or under terms agreed with the appropriate 

reprographics rights organization. Enquiries concerning reproduction 
outside the scope of the above should be sent to the Rights Department, 

Oxford University Press, at the address above 
You must not circulate this book in any other binding or cover 

and you must impose this same condition on any acquirer 
A catalogue record for this book is available from the British Library 

Library of Congress Cataloging in Publication Data 
(Data available) 

ISBN 0 19 852063 8 

3 5 7 9 10 8 6 4 

Printed in Great Britain 
on acid-free paper by 

T.J. International Ltd., Padstow 





A Gerardo Marotta 
Presidente dell' Istituto Italiano per gli Studi Filosofici 

per avere promosso e sostenuto questa ricerca 

Fiir Heike und Valeria 
fiir unendliche Geduld, Verstdndnis und Hilfe 





PREFACE 

Quantum mechanics is at the core of our present understanding of the laws of 
physics. It is the most fundamental physical theory, and it is inherently prob-
abilistic. This means that all predictions derived from quantum mechanics are 
of a probabilistic character and that there is, as far as we know, no underlying 
deterministic theory from which the quantum probabilities could be deduced. 
The statistical interpretation of quantum mechanics ultimately implies that pre-
dictions are being made about the behaviour of ensembles, i.e. about collections 
of a large number of independent, individual systems, and that the statements 
of quantum theory are tested by carrying out measurements on large samples of 
such systems. 

Quantum mechanical-systems must be regarded as open systems. On the one 
hand, this is due to the fact that, like in classical physics, any realistic system 
is subjected to a coupling to an uncontrollable environment which influences 
it in a non-negligible way. The theory of open quantum systems thus plays a 
major rôle in many applications of quantum physics since perfect isolation of 
quantum systems is not possible and since a complete microscopic description or 
control of the environmental degrees of freedom is not feasible or only partially so. 
Most interesting systems are much too complicated to be describable in practice 
by the underlying microscopic laws of physics. One can say even more: Not 
only is such a microscopic approach impossible in practice, it also does not 
provide what one really wants to know about the problem. Even if a solution of 
the microscopic evolution equations were possible, it would give an intractable 
amount of information, the overwhelming part of which is useless for a reasonable 
description. 

Practical considerations therefore force one to seek for a simpler, effectively 
probabilistic description in terms of an open system's dynamics. The use of 
probability theory allows the treatment of complex systems which involve a huge 
or even an infinite number of degrees of freedom. This is achieved by restricting 
the mathematical formulation to an appropriate set of a small number of relevant 
variables. Experience shows that under quite general physical conditions the time 
evolution of the relevant variables is governed by simple dynamical laws which 
can be formulated in terms of a set of effective equations of motion. The latter 
take into account the coupling to the remaining, irrelevant degrees of freedom in 
an approximate way through the inclusion of dissipative and stochastic terms. 

There is another reason for invoking the notion of an open system in quan-
tum theory which is of more fundamental origin. Quantum theory introduces 
a deterministic law, the Schrödinger equation, which governs the dynamics of 
the probability distributions. This equation describes the evolution of chance, 
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that is the dynamics of ensembles of isolated systems. However, as a probabilis-
tic theory quantum mechanics must also encompass the random occurrence of 
definite events which are the realizations of the underlying probability distri-
butions. In order to effect the occurrence of chance events a quantum system 
must be subjected to interactions with its surroundings. Any empirical test of 
the statistical predictions on a quantum system requires one to couple it to a 
measuring apparatus which generally leads to non-negligible influences on the 
quantum object being measured. Thus, quantum mechanics in itself involves an 
intimate relationship to the notion of an open system through the action of the 
measurement process. 

This book treats the central physical concepts and mathematical techniques 
used to study the dynamics of open quantum systems. The general approach 
followed in the book is to derive the open system's dynamics either from an 
underlying microscopic theory by the elimination of the environmental degrees 
of freedom, or else through the formulation of specific measurement schemes 
in terms of a quantum operation. There is a close physical and mathematical 
connection between the evolution of an open system, the state changes induced 
by quantum measurements, and the classical notion of a stochastic process. The 
book provides a detailed account of these interrelations and discusses a series of 
physical examples to illustrate the mathematical structure of the theory. 

To provide a self-contained presentation Part I contains a survey of the classi-
cal theory of probability and stochastic processes (Chapter 1), and an introduc-
tion to the foundations of quantum mechanics (Chapter 2). In addition to the 
standard concepts, such as probability space, random variables and the definition 
of stochastic processes, Chapter 1 treats two topics, which are important for the 
further development of the theory. These are piecewise deterministic processes 
and Levy processes. In Chapter 2 the emphasis lies on the statistical interpre-
tation of quantum mechanics and its relationship to classical probability theory. 
As a preparation for later chapters, we also discuss composite quantum systems, 
the notion of entangled states, and quantum entropies. A detailed account of the 
quantum theory of measurement within the framework of quantum operations 
and effects is also included. 

The fundamentals of the description of the quantum dynamics of open sys-
tems in terms of quantum master equations are introduced in Part II, together 
with its most important applications. In Chapter 3, special emphasis is laid 
on the theory of quantum dynamical semigroups which leads to the concept of 
a quantum Markov process. The relaxation to equilibrium and the multi-time 
structure of quantum Markov processes are discussed, as well as their irreversible 
nature which is characterized with the help of an appropriate entropy functional. 
Microscopic derivations for various quantum master equations are presented, 
such as the quantum optical master equation and the master equation for quan-
tum Brownian motion. The influence functional technique is investigated in the 
context of the Caldeira—Leggett model. As a further application, we derive the 
master equation which describes the continuous monitoring of a quantum ob- 
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ject and study its relation to the quantum Zeno effect. Chapter 3 also contains 
a treatment of non-linear, mean field quantum master equations together with 
some applications to laser theory and super-radiance. 

In Chapter 4 we study the important field of environment-induced decoher-
ence and the transition to the classical behaviour of open quantum systems. A 
number of techniques for the determination of decoherence times is developed. 
As specific examples we discuss experiments on the decoherence of Schrödinger 
cat-type states of the electromagnetic field, the destruction of quantum coher-
ence in the Caldeira—Leggett model, and the environment-induced selection of a 
pointer basis in the quantum theory of measurement. 

While Parts I and II mainly deal with the standard aspects of the theory, 
Parts III—V provide an overview of more advanced techniques and of new devel-
opments in the field of open quantum systems. Part III introduces the notion 
of an ensemble of ensembles and the concept of stochastic wave functions and 
stochastic density matrices. The underlying mathematical structure of probabil-
ity distributions on Hilbert or Liouville space and of the corresponding random 
state vectors is introduced in Chapter 5. These concepts are used to describe the 
dynamics of continuous measurements performed on an open system in Chap-
ter 6. It is shown that the time -evolution of the state vector, conditioned on 
the measurement record, is given by a piecewise deterministic process involv-
ing continuous evolution periods broken by randomly occurring, sudden quan-
tum jumps. This so-called unravelling of the quantum master equation in the 
form of a stochastic process is based on a close relation between quantum dy-
namical semigroups and piecewise deterministic processes. The general theory 
is illustrated by means of a number of examples, such as direct, homodyne and 
heterodyne photodetection. 

The general formulation in terms of a quantum operation is given in Chapter 
8, where we also investigate further examples from atomic physics and quantum 
optics, e.g. dark state resonances and laser cooling of atoms. In particular, the 
example of the sub-recoil cooling dynamics of atoms nicely illustrates the inter-
play between incoherent processes and quantum interference effects which leads 
to the emergence of long-tail Lévy distributions for the atomic waiting time. 

The numerical simulation of stochastic processes on high-performance com-
puters provides an efficient tool for the predictions of the dynamical behaviour 
in physical processes. The formulation of the open system's dynamics in terms of 
piecewise deterministic processes or stochastic differential equations in Hilbert 
space leads to efficient numerical simulation techniques which are introduced and 
examined in detail in Chapter 7. 

Part IV is devoted to the basic features of the more involved non-Markovian 
quantum behaviour of open systems. Chapter 9 gives a general survey of the 
Nakajima—Zwanzig projection operator methods with the help of which one de-
rives so-called generalized master equations for the reduced system dynamics. In 
the non-Markovian regime, these master equations involve a retarded memory 
kernel, that is a time-convolution integral taken over the history of the reduced 
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FIG. 0.1. Possible pathways through the book for a first reading. The heavy dots 
indicate those chapters in which the basic information on central concepts of 
the book my be found. 

system. In general, one is thus confronted with the difficult task of treating an 
integro-differential equation for the open system's density matrix. We therefore 
develop in Chapter 9 a method of particular relevance based on an equation of 
motion which is local in time and which is known as the time-convolutionless pro-
jection operator method. This method serves as a starting point for a systematic 
perturbation expansion around the Markovian limit and for a numerical treat-
ment. A number of applications to non-Markovian dynamics in physical systems 
is investigated in Chapter 10, such as the Jaynes—Cummings model, quantum 
Brownian motion and the spin-boson model. 

The final Part V is concerned with the relativistic formulation of the dy-
namics of open quantum systems and of quantum measurement theory. Chapter 
11 deals with the relativistic formulation of the state reduction postulate in 
quantum measurement theory. This postulate is used to study a number of ap-
plications to local and non-local measurements and to the restrictions on the 
measurability of non-local quantities imposed by the causality principle. The 
relativistic formulation allows us to discuss several important experiments from 
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a unified perspective, such as EPR-type experiments, measurements of Bell state 
operators, exchange measurements, and quantum teleportation. The relativistic 
density matrix theory of quantum electrodynamics is developed in Chapter 12 
using functional methods from field theory, path integral methods, and the in-
fluence functional formulation. As an important example a detailed theory of 
decoherence in quantum electrodynamics is presented. 

The cross-disciplinary nature of the field of open quantum systems necessarily 
requires the treatment of various different aspects of quantum theory and of 
diverse applications in many fields of physics. We sketch in Fig. 0.1 various 
possible pathways through the book which may be followed in a first reading. 

The book addresses undergraduate and graduate students in physics, theo-
retical physics and applied mathematics. As prior knowledges only a basic under-
standing of quantum mechanics and of the underlying mathematics, as well as 
an elementary knowledge of probability theory is assumed. The chapters of the 
book are largely written as self-contained texts and can be employed by lecturers 
as independent material for lectures and special courses. Each chapter ends with 
a short bibliography. Since most chapters deal with a rapidly evolving field it 
was sometimes impossible to give a complete account of the literature. Instead 
we have tried to give some important examples of original papers and introduc-
tory review articles that cover the subjects treated; personal preferences strongly 
influenced the lists of references and we apologize to those authors whose work 
is not cited properly. A number of excellent general textbooks and monographs 
from which we learned a great deal is listed in the following bibliography. 
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Part I 

Probability in classical and 
quantum physics 





1 

CLASSICAL PROBABILITY THEORY AND STOCHASTIC 
PROCESSES 

This chapter contains a brief survey of classical probability theory and stochastic 
processes. Our aim is to provide a self-contained and concise presentation of the 
theory. We concentrate on those subjects which will be important for the devel-
opments of the following chapters. More details and many interesting examples 
and applications of classical probability theory may be found, e.g. in the excellent 
textbooks by Feller (1968, 1971) and Doob (1953) for the more mathematically 
oriented readers, and by Gardiner (1985), van Kampen (1992) and Reichl (1998) 
for readers who are more interested in physical applications. 

1.1 The probability space 

The fundamental concept of probability theory is the probability space. It con-
sists of three basic ingredients, namely a sample space of elementary events, 
a a-algebra of events, and a probability measure on the a-algebra. These no-
tions will be introduced and explained below. We shall follow here the axiomatic 
approach to probability which is mainly due to Kolmogorov (1956). 

1.1.1 The a-algebra of events 
The formal objects to which we want to attribute probabilities are called events. 
Mathematically, these events are subsets of some basic set St, the sample space, 
or space of events. The subsets of SI containing just one element w E SI are 
referred to as elementary events. 

Given some sample space S2 one is usually not interested in all possible subsets 
of SI (this may happen, for example, if SI is infinite and non-countable), tht is, 
we need to specify which kind of subsets A C It we would like to include in our 
theory. An important requirement is that the events form a so-called a- algebra, 
which is a system A of subsets of SI with the following three properties. 

1. The sample space itself and the empty set belong to the system of events, 
that is 1E  A and  0E  A. 

2. If A 1  E A and A2 C A, then also the union A 1  U A2, the intersection 
A 1  n A2, and the difference A 1  \ A2 belong to the system A. 

3. If we have a countable collection of events A 1 , A2, ... , An , ... E A, then 
also their union UncxL I  A, belongs to A. 

We shall always write A E A to express that the subset A C fl is an event of 
our theory. The above requirements ensure that the total sample space SI and the 
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empty set  O are events, and that all events of A can be subjected to the logical 
operations 'AND', 'OR' and 'NOT' without leaving the system of events. This 
is why A is called an algebra. The third condition is what makes A a o--algebra. 
It tells us that any countable union of events is again an event. 

1.1.2 Probability measures and Kolmogorov axioms 

The construction of the probability space is completed by introducing a probabil-
ity measure on the a-algebra. A probability measure is simply a map p :  A —4 IR 
which assigns to each event A of the o--algebra a real number p(A), 

A 1-4 p(A) E  (1.1) 

The number p(A) is interpreted as the probability of the event A. The probability 
measure p is thus required to satisfy the following Kolmogorov axioms: 

1. For all events A E A we have 

0 < p,(A)  <1.  (1.2) 

2. Probability is normalized as 

p(Q) =  1.  (1.3) 

3. If we have a countable collection of disjoint events 

, d42,  An ,  E A, with Ai  n Ai  = 0 for i j,  (1.4) 

then the probability of their union is equal to the sum of their probabilities, 

00 
p (U,T=1  An ) = E p(An ).  (1.5) 

n=1 

On the basis of these axioms one can build up a consistent probability theory. 
In particular, the Kolmogorov axioms enable one to determine the probabilities 
for all events which arise from logical operations on other events. For example, 
one finds 

P(Ai u A2) = it(Ai) + p(A2) - it(Ai n A2).  (1.6) 

Summarizing, a probability space consists of a sample space S-2, a a-algebra 
A of events, and a probability measure p on A. This concept of a probability 
space constitutes the axiomatic basis of classical probability theory. Of course, 
from a physical viewpoint one has to relate these abstract notions to experience 
and to specific theoretical models of reality, which may be a non-trivial task. 
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1.1.3 Conditional probabilities and independence 

An important concept of probability theory is the notion of statistical indepen-
dence. This concept is often formulated by introducing the conditional probability 
p(Ai 1A2 ) of an event A1  under the condition that an event A2 occurred, 

ft(Ai n A2)  
POI IA2) = p(A2) 

(1.7) 

Of course, both events A1  and A2 are taken from the a-algebra and it is assumed 
that p(A2) > 0. These events are said to be statistically independent if 

P(Ai1A2) = P (AI),  (1.8) 

or, equivalently, if 

p,(A i  n A2 ) = ti(Ai) • p(A2)•  (1.9) 

This means that the probability of the mutual occurrence of the events A 1  and 
A2  is just equal to the product of the probabilities of A 1  and A2. 

If we have several events A1 , A2, . . . A, the condition of statistical inde-
pendence is the following: For any subset (i 1 ,  j 2 ,...  , ik) of the set of indices 
(1, 2, ... , n) we must have 

(Air  n Ai2  n  n Aik) = p(Ati )p4'122) ...p(241k),  (1.1 0) 

which means that the joint occurrence of any subset of the events Ai  factorizes. 
As simple examples show (Gardiner, 1985), it is not sufficient to check statistical 
independence by just considering all possible pairs Ai , Ai  of events. 

An immediate consequence of definition (1.7) is the relation 

POI 1 A2) = P(A2 ) P(A1)  
P(A2) 

which is known as Bayes's theorem. 

1.2 Random variables 

The elements w of the sample space SI can be rather abstract objects. In practice 
one often wishes to deal with simple numbers (integer, real or complex numbers) 
instead of these abstract objects. For example, one would like to add and multiply 
these numbers, and also to consider arbitrary functions of them. The aim is thus 
to associate numbers with the elements of the sample space. This idea leads to 
the concept of a random variable. 
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I  X ?t )  I 
B = X (A)I 

Px  (13) = it(X -1  (B)) 

FIG. 1.1. Illustration of the definition of a random variable. A random variable 
X is a map from the sample space to the set of real numbers. The probability 
that the random number falls into some Borel set B is equal to the probability 
measure p(A) of the event A = X -1  (B) given by the pre-image of B. 

1.2.1 Definition of random variables 
A random variable X is defined to be a map 

 

X : Il 1-÷ R,  (1.12) 

which assigns to each elementary event w E 0 a real number X(w). Given some 
w the value 

 

x = X(w)  (1.13) 

is called a realization of X. In the following we use the usual convention to denote 
random numbers by capital letters, whereas their realizations are denoted by the 
corresponding lower case. 

Our definition of a random variable X is not yet complete. We have to impose 
a certain condition on the function X. To formulate this condition we introduce 
the a-algebra of Borel sets' of R which will be denoted by B. The condition on 
the function X is then that it must be a measurable function, which means that 
for any Borel set B E B the pre-image A = X -1  (B) belongs to the a-algebra A 
of events. This condition ensures that the probability of X -1  (B) is well defined 
and that we can define the probability distribution of X by means of the formula 

 

Px  (B) = p (X -1  (B)) .  (1.14) 

A random variable X thus gives rise to a probability distribution Px  (B) on the 
Borel sets B of the real axis (see Fig. 1.1). 

1 The a-algebra of Borel sets of R is the smallest a-algebra which contains all subsets of the 
form (—oc, x), x E R. In particular, it contains all open and closed intervals of the real axis. 
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Particular Borel sets are the sets (—oc,  x] with x E IR. Consider the pre-images 
of these set, that is the sets 

A x  E {r.,) E 1X(w) _< x} .  (1.15) 

By the condition on X these sets are measurable for any x E Et which enables 
one to introduce the function 

 

Fx  (x) E p(A x ) = p ({w E (-V(w) < x}) .  (1.16) 

For a given x this function yields the probability that the random number X 
takes on a value in the interval (—co, xj. Fx (x) is referred to as the cumulative 
distribution function of X. One often employs the following shorthand notation, 

Fx (x ) E p (x < z ). (1.17) 

As is easily demonstrated, the cumulative distribution function has the following 
properties: 

1. Fx  (x) increases monotonically, 

Fx (x i ) < Fx (x2), for z 1  < X2.  (1.18) 

2. Fx  (x) is continuous from the right, 

lim Fx  (x + E) = Fx  (x).  (1.19) 
E-H-0 

3. Fx (x) has the following limits, 

lim Fx  (x) = 0,  lim Fx  (x) = 1.  (1.20) x—H-0.0 

The random variable X is said to have a probability density  Px  (x) if the 
cumulative distribution function can be represented as 

x 
Fx (x) = f dx p x  (x). 

_co 

If Fx  (x) is absolutely continuous we get the formula 

dF y  (x)  
Pv(x)  = dx 

(1.21) 

(1.22) 

In the following we often represent distribution functions by their densities px (x) 
in this way, as is common in the physics literature. This is permissible if we 
allow  Px  (x) to involve a sum of  ES-functions  and if we exclude certain singular 

X-Y-00 
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distribution functions (Feller, 1971). In terms of the density of X we may also 
write eqn (1.14) as 

Px  (B) = f dx px (x),  (1.23) 
B 

where the integral is extended over the Borel set  B. 
We have just considered a single random variable. One can, of course, study 

also an arbitrary collection 

X = (Xi • X2, • • • , Xci)  (1.24) 

of random variables which are defined on the same probability space. The vector-
valued function X : S../ H÷ Rd  is called a multivariate random variable or a random 
vector, which simply means that each component Xi  is a real-valued random 
variable. For a given ci.) E 52 the quantity z = X (w) = (X1 GO , ... , X d(w)) is 
a realization of the multivariate random variable. The joint probability density 
of a multivariate random variable is denoted by px  (x). The probability for the 
variable to fall into a Borel set B C Rd  is then given by 

.13x  (B) = ft (X -1  (B)) = f dd  x Ay (x).  (1.25) 
B 

In accordance with our former definition, two random variables X 1  and X2 
on the same probability space are said to be statistically independent if 

xi , X2 < x2) = P(X 1 < xi) • P(X2 5 z2)  (1.26) 

for all x l , x2 . Here, the left-hand side is the shorthand notation for the probability 

p(Xi  < x i  , X2 < z2) E p ({ w E 121X1(w) < xi  and X2 (w) < x2 }) .  (1.27) 

The joint statistical independence of several random variables is defined analo-
gously to definition (1.10). 

1.2.2 Transformation of random variables 
Given a d-dimensional random variable X we can generate new random variables 
by using appropriate transformations. To introduce these we consider a Borel-
measurable function 

g : Rd  —4 le .  (1.28) 

Such a function is defined to have the property that the pre-image g -1 (B) of 
any Borel set B C Rf is again a Borel set in Rd  . Thus, the equation 

Y = g (X)  (1.29) 
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defines a new f-dimensional random variable Y. If Px is the probability distri-
bution of X, then the probability distribution of Y is obtained by means of the 
formula 

Py (B) = Px (g -1  (B)).  (1.30) 

The corresponding probability densities are connected by the relation 

py (y) = f ddx (5 ( f )  (y - g(x))p x  (x),  (1.31) 

where 6(f) denotes the f-dimensional 6-function. This formula enables the de-
termination of the density of Y = g(X). For example, the sum Y = X1  + X2 of 
two random variables is found by taking g(x i  , x 2 ) = xl  + x2 . If X1  and X2 are 
independent we get the formula 

py (y) = f dxi px i  (xi )px2  (y - xi),  (1.32) 

which shows that the density of Y is the convolution of the densities of X1  and 
of X2. 

1.2.3 Expectation values and characteristic function 
An important way of characterizing probability distributions is to investigate 
their expectation values. The expectation value or mean of a real-valued random 
variable X is defined as 2  

+00  +Do 
E(X) _= f xdFx  (x) = f dx xp x  (x).  (1.33) 

Here, the quantity dFx (x) is defined as 

dFx (x) E Fx (x + dx) - Fx  (x) = ti(x  <X <z  + dx).  (1.34) 

Correspondingly, the integrals in (1.33) are regarded as Lebesgue-Stieltjes inte-
grals (Feller, 1971). More generally, the expectation value of some measurable 
function g(X) of X is defined to be 

+Da  +Da 

E(g(X)) = f g(x)dFx (x) = f dxg(x)px (x).  (1.35) 
-...  -0.0 

Particularly important expectation values are the moments of order m: 

2 We follow the usual convention of mathematical probability theory and denote the expec-
tation value of a classical random variable by the symbol E, in order to distinguish it from the 
quantum mechanical expectation value which will be denoted by angular brackets. 
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E(Xm) = f xmc/Fx  (x) = f dx xmpx(x).  (1.36) 

The variance of a random variable X is defined by 

= E(x2) E(X) 2 .Var(X) E  — E(X)r) 
 

(1.37) 

The significance of the variance stems from its property to be a measure for 
the fluctuations of the random variable X, that is, for the extent of deviations 
of the realizations of X from the mean value E(X). This fact is expressed, for 
example, by the Chebyshev inequality which states that the variance controls 
the probability for such deviations, namely for all E > 0 we have 

PDX — E(X)1 > e) < -j1  Var(X).  (1.38) 

In particular, if the variance vanishes then the random number X is, in fact, 
deterministic, i.e. it takes on the single value x = E(X) with probability 1. The 
variance plays an important rôle in the statistical analysis of experimental data 
(Honerkamp, 1998), where it is used, for example, to estimate the standard error 
of the mean for a sample of realizations obtained in an experiment. 

For a multivariate random variable X = (X1 7  X2,...  Xd) one defines the 
matrix elements of the covariance matrix by 

Cov(Xi, Xi ) E ([Xi  E(X)] [Xi  — E(Xi )]).  (1.39) 

The d x d matrix with these coefficients is symmetric and positive semidefinite. 
As is well known, the statistical independence of two random variables X1 , X2 
implies that the off-diagonal element Cov(XI, X2) vanishes, but the converse is 
not true. However, the off-diagonal elements are a measure of the linear depen-
dence of X1  and X2. To see this we consider, for any two random variables with 
non-vanishing variances, the correlation coefficient 

which satisfies 1Cor(Xi , X2 )1 < 1. If the absolute value of the correlation coeffi-
cient is equal to one, 1Cor(X1, X2)1 = 1, then there are constants a and b such 
that X2 = aXi  + b with unit probability, i.e. X2 depends linearly on X1 . 

Let us finally introduce a further important expectation value which may 
serve to characterize completely a random variable. This is the characteristic 
function which is defined as the Fourier transform of the probability density, 

G(k) = E (exp [ikX]) = f dx px(x)exp (ikx) .  (1.41) 
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It can be shown that the characteristic function G(k) uniquely determines the 
corresponding probability distribution of  X.  Under the condition that the mo-
ments of X exist the derivatives of G(k) evaluated at k = 0 yield the moments 
of  X,  

1 dm  E(Xm) = im  dkm 
G(k). 

k=0 
(1.42) 

  

For this reason G(k) is also called the generating function. For a multivariate 
random variable the above expression for the characteristic function is readily 
generalized as follows, 

d 

G(k1,k2, . . . , kd)  = E  ( exp 
[ 
i E kjxj  (1.43) 

 

An important property of the characteristic function is the following. As we 
have already remarked, if X and Y are two independent random variables the 
probability density of their sum Z = X + Y is the convolution of the densities 
of X and Y. Consequently, the characteristic function of Z is the product of the 
characteristic functions of X and Y. 

1.3 Stochastic processes 

Up to now we have dealt with random variables on a probability space without 
explicit time dependence of their statistical properties. In order to describe the 
dynamics of a physical process one needs the concept of a stochastic process 
which is, essentially, a random variable whose statistical properties change in 
time. The notion of a stochastic process generalizes the idea of deterministic 
time evolution. The latter can be given, for example, in terms of a differential 
equation which describes the deterministic change in time of some variable. In 
a stochastic process, however, such a deterministic evolution is replaced by a 
probabilistic law for the time development of the variable. 

This section gives a brief introduction to the theory of stochastic processes. 
After a formal definition of a stochastic process we introduce the family of joint 
probability distributions which characterizes a stochastic process in a way that 
is fully sufficient for practical purposes. In a certain sense, the differential equa-
tion of a deterministic theory is replaced by such a family of joint probability 
distributions when one deals with stochastic processes. This is made clear by a 
theorem of Kolmogorov which is also explained in this section. 

1.3.1 Formal definition of a stochastic process 
In mathematical terms, a stochastic process is a family of random variables X (t) 
on a common probability space depending on a parameter t E  T.  In most physical 
applications the parameter t plays the rôle of the time variable. The parameter 
space T is therefore usually an interval of the real time axis. 
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Corresponding to this definition, for each fixed t the quantity X(t) is a map 
from the sample space St into R. A stochastic process can therefore be regarded 
as a map 

X:ftxT—+R,  (1.44) 

which associates with each co E Il and with each tETa real number X(co, t). 
Keeping co fixed, we call the mapping 

t F--+ X (c.o , t), t E T ,  (1.45) 

a realization, trajectory, or sample path of the stochastic process. 
In the above definition the map (1.44) can be quite general. Because of this 

the notion of a stochastic process is a very general concept. We need, however, 
one condition to be satisfied in order for X (t) to represent a random variable 
for each fixed t. Namely, for each fixed t the function X(t) which maps 12 into R 
must be measurable in the sense that the pre-images of any Borel set in 111 must 
belong to the algebra of events of our probability space. 

A multivariate stochastic process X(t) is defined similarly: It is a vector-
valued stochastic process X(t) = (Xi  (t), X2(t), ... , Xd(t)), each component 
Xi(t), i = 1,2, ... , d, being a real-valued stochastic process. Thus, formally 
a multivariate stochastic process can be regarded as a map 

X:0><T-4 Rd .  (1.46) 

1.3.2 The hierarchy of joint probability distributions 
What characterizes a stochastic process is the way in which the random variables 
X (t) for different times t are related to each other, that is, the degree of statistical 
dependencies between the random variables of the family. 

According to the definition given above, a stochastic process is, formally 
speaking, nothing but a time-dependent random variable. It can therefore be 
characterized uniquely if one constructs a probability space and a map of the 
form (1.46) on it. This is however not the way one characterizes a stochastic 
process in practice. In most applications one tries to construct an appropriate 
process by the observation of the statistical correlations between the random 
variables  X(t) at a finite set of discrete times tv . This is done on the basis of 
experimental data, employing some phenomenological model, or with the help 
of some underlying microscopic physical theory. 

Thus, the physical theory usually provides a so-called family of finite joint 
probability distributions which is defined as follows (see Fig. 1.2). We take a set 
t1 , t 2 , ... , tni  of discrete times and Borel sets B1 , B2, . .. ,13„ in Rd , and consider 
for a multivariate stochastic process X(t) the quantity 

P(Bi ,ti; B2, t2; ... ; B, , t ni ) E p (X(ti) E B1, X(t2) E B2, ... , X(t m ) E  B in )  • 
(1.47) 

This quantity is a joint probability distribution of order m. It gives the probabil- 
ity that the process X(t) takes on some value in B1  at time t 1 , some value in B2 
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trn  

trn_i 

• 
• 

B2 

 I  [   
B1 

FIG. 1.2. A sample path X(t, co) of a stochastic process which passes at 
times t i , t 2 , ... , tm _ i , tm  the sets B 1 , B2, ... , Bni _i, B m , respectively. 
The probability for such a path to occur is given by the joint probability 
P(Bi, t1; ... ;  B, t 7 ).  

at time t 2 , ..., and some value in B m  at time tm . The set of all joint probability 
distributions for all m = 1, 2, ... , all discrete times t u , and all Borel sets B y  is 
called the family of finite joint probability distributions of the stochastic process. 

Each stochastic process gives rise to such a family of joint probabilities. It 
follows immediately from the above definition that the joint probabilities satisfy 
the Kolmogorov consistency conditions: 

 

P(Rd  , t) = 1,  (1.48) 

 

P(Bi ,t i ;... ;B, t) > 0,  (1.49) 
P(Bi, t1;  ;Bm_1,tm_i; Rd , tm) = P(Bi, t1; ... ;  B7 _ 1 , t 7 _ 1 ), (1.50) 

.N.B7r (i), t 7r (i); . .. ; Ar ern y, t 7r ( m)) — P(B1,t 1 ; . . . ; Bm , tm ).  (1.51) 

The first two conditions state that the distributions must be non-negative and 
that the probability for the sure event X(t) E Rd is normalized to 1. The third 
condition asserts that for I/ > 1 the sure event  X(t) E Rd  can always be omitted 
from the set of arguments, whereas the fourth condition means that the joint 
probability distribution is invariant under all permutations 7 of its arguments. 

Of course, for a given stochastic process X(t) the consistency conditions 
(1.48)-(1.51) are a trivial consequence of the definition (1.47). The important 
point to note is that the following non-trivial theorem is also true: Suppose 
that a family of functions is given which satisfy conditions (1.48)-(1.51). Then 
there exists a probability space and a stochastic process X(t) on this space such 
that the family of joint probabilities pertaining to X(t) coincides with the given 
family. 

t2  1 
t l 
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This is the theorem of Kolmogorov. It ensures that for any consistent family 
of joint probabilities there exists a stochastic process X(t) on some probability 
space. It should be noted, however, that the process X(t) is not unique; for a 
given family of joint probability distributions there may exist different stochastic 
processes, where the term different means that these processes may be different 
on events with non-zero measure. 

In practice, the non-uniqueness of X(t) usually does not cause any difficulty 
since the family of finite-dimensional joint probabilities uniquely determines the 
probabilities of all events which can be characterized by any finite number of 
random variables. Thus, if we assess, for example, some stochastic model by 
comparison with a set of experimental data, which is always finite, no problem 
due to the non-uniqueness of the process will ever be encountered. 

1.4 Markov processes 

Markov processes play an important rôle in physics and the natural sciences. 
One reason for this fact is that many important processes, as for example the 
processes arising in equilibrium statistical mechanics, are Markovian provided 
one chooses an appropriate set of variables. Another reason is that many types of 
stochastic processes become Markovian by an appropriate extension of the state 
space. Finally, Markov processes are relatively easy to describe mathematically. 
In this section we define and classify the most important Markov processes and 
briefly review their properties. 

1.4.1 The Chapman—Kolmogorov  equation 

Essentially, a Markov process is a stochastic process X(t) with a short mem-
ory, that is a process which rapidly forgets its past history. This property is 
what makes a Markov process so easy to deal with, since it ensures that the 
whole hierarchy of joint probabilities introduced in the preceding section can be 
reconstructed from just two distribution functions. 

The condition for the rapid decrease of memory effects can be formulated in 
terms of the conditional joint probabilities as follows, 

ti(X(t) E BA(t 7 ) = x,„... ,X(ti) = x1 ) = p(X(t) E B1X(t 7i ) = x ni ). 
(1.52) 

This is the Markov condition. It is assumed to hold for all m = 1, 2, 3, ... , for 
all ordered sets of times, 

t1  < t2  < ... < tin  < t,  (1.53) 

for all Borel sets B and all x 1 ,  x2 , ... , x,,,,, E Rd . The Markov condition states 
that the probability for the event X(t) E B, conditioned on m previous events 
X(4) = x i , ... , X(t ni ) = x m , only depends on the latest event  X(t 1 ) = xni. 
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In the following we shall discuss the consequences of the Markov condition 
by introducing the joint probability densities 

P(B,„ tffi ;... ; Bi,ti) = f dx 7r, ... f dx 1  pm (x,,,t ra ; ... ;xi,ti)  (1.54) 
B n,  Bi 

and the corresponding conditional probability densities 

pk± i(xk+1,44-1; • • • ;xl • t1)  
;Xi,t1) = 

Pk(Xkjk; • . . ;xi ,t i ) 
(1.55) 

in terms of which the Markov condition takes the form 

Piini(x, tIx Tri, trn ; .. . ; xl, ti) = 23 111 (z, tlxm, tm ).  (1.56) 

This equation demonstrates that the quantity pi l l  (x, tlx', t') plays a crucial rôle 
in the theory of Markov processes. 

For any stochastic process (not necessarily Markovian) p i l l  (x, t  z',  t') is equal 
to the probability density that the process takes on the value x at time t under 
the condition that the process took the value x' at some prior time t'. This condi-
tional probability is therefore referred to as the conditional transition probability 
or simply as the propagator. We introduce the notation 

T(x, t x i , t i ) E Pili(x,tlx i ,e)  (1.57) 

for the propagator. As follows directly from the definition, the propagator fulfils 
the relations, 

f dx T(z,t x' ,t') = 1, 

lim T(x,t x' ,t') = S(x — x'). 
t—q ,  

(1.58) 

(1.59) 

The first equation expresses the fact that the probability for the process to take 
any value at any fixed time is equal to 1, and the second equation states that 
with probability 1 the process does not change for vanishing time increment. 

The probability density p i  (x, t), which is simply the density for the uncondi-
tioned probability that the process takes on the value x at time t, will be denoted 
by 

p(x , t) -_-E pi  (x , t).  (1.60) 

The density p(x,t) is connected to the initial density at some time t o  by the 
obvious relation 

Plik(Xk+1,4+1; • • • ;Xk4-1•4+11X1c,tki • • • 

P(x,t) = f dx' T (x, tlx' , to)P(x' , to) • 
 (1.61) 
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A stochastic process is called stationary if all joint probability densities are 
invariant under time translations, that is if for all 7-  

Pm(Xm,tm ±  r; — ;z1,t1+ 7) = Prri(Xmltm;... ;Xl,t1). 
 (1.62) 

In particular, stationarity implies that the probability density p is independent 
of time, p(x , t) = p(x), and that the propagator T (x , tlx' , t') depends only on the 
difference t - t' of its time arguments. With the help of stationary processes one 
describes, for example, equilibrium fluctuations in statistical mechanics. 

A process is called homogeneous in time if the propagator depends only on the 
difference of its time arguments. Thus, a stationary process is homogeneous in 
time, but there are homogeneous processes which are not stationary. An example 
is provided by the Wiener process (see below). 

The great simplification achieved by invoking the Markov condition derives 
from the fact that the total hierarchy of the joint probabilities can be recon-
structed from an initial density p(x , to) and an appropriate propagator. Accord-
ing to eqn (1.61) the density p(x , t) for later times t > to  is obtained from the 
initial density and from the propagator. Thus, also the joint probability distri-
bution p2 (x, t;  z',  t') is known, of course. By virtue of the Markov condition all 
higher-order distribution functions can then be constructed, provided the prop-
agator fulfils a certain integral equation which will now be derived. 

To this end, we consider three times t i  < t2 < t3 and the third-order distribu-
tion p3 and invoke the definition of the conditional probability and the Markov 
condition to obtain 

P3(x3,t3;x2,t2;xi,ti) =P112(x3,t31x2,t2;xi,t0p2(x2,t2;xi,ti)  (1.63) 

=Pi1i(x3, t31x2,t2)Pi1l(x2,t2lxi, ti)pi(xi,t1)• 

We integrate this equation over x2 , 

P2(x3, t3; xi, ti.) = pi (x i , t i), , , dx 2pi i i (x3 t 3 42 t2 )pi i i (x 2 t2 lxi ,t i ), f  (1.64) 

and divide by p i  (xi , ti), 

 

P111 (X3 7 6411 tl) = f dX2P1 li (X3, t3 X2,t2)P111(X2,t21X11t1)• 
 (1.65) 

On using our notation (1.57) for the propagator we thus have 

 

T(X3, 641, ti) – f dX2 T(X3, t3 42, t2)T(X2, t21X1, t1),  (1.66) 

which is the Chapman-Kolmogorov equation. 
The Chapman-Kolmogorov equation admits a simple intuitive interpretation, 

which is illustrated in Fig. 1.3: Starting at the point x i  at time ti , the process 
reaches the point x3  at a later time t3 . At some fixed intermediate time t2 
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time 

t3   

t1 
Xi 

space 

FIG. 1.3. Illustration of the Chapman-Kolmogorov equation (1.66). 

the process takes on some value x2. The probability for the transition from 
(xi, t i ) to (x3 , t3 ) is obtained by multiplying the probabilities for the transitions 
(x i , t i ) —+ (x2, t2) and (x 2 , t2) —+ (x 3 , t3 ) and by summing over all possible 
intermediate positions x2. 

Once we have a propagator T (x,t x' ,t') and some initial density p(x,t o ) we 
can construct the whole hierarchy of joint probability distributions. As we have 
already seen, the propagator and the initial density yield the time-dependent 
density p(x,t). It is easy to verify that with these quantities all m-th order joint 
probability densities are determined through the relation 

rrt-1 

Prn (Xrn 7  trn; Xrn-1 7  trn-1 ; . • . ; X1 , tl) = H T(x„,,,tv±ilxv,t0p(xi,ti), (1.67) 

where to  < t i  < t2  < ... 
In summary, to define a stochastic Markov process we need to specify a 

propagator T (x , tx' , t') which obeys the Chapman-Kolmogorov equation (1.66), 
and an initial  density  p(x,t0). The classification of Markov processes therefore 
amounts, essentially, to classifying the solutions of the Chapman-Kolmogorov 
equation. 

1.4.2 Differential Chapman-Kolmogorov equation 
The Chapman-Kolmogorov equation (1.66) is an integral equation for the con-
ditional transition probability. In order to find its solutions it is often useful 
to consider the corresponding differential form of this equation, the differential 
Chapman-Kolmogorov equation. 

We suppose that the propagator T(x,tlx' ,e) is differentiable with respect 
to time. Differentiating eqn (1.66) we get the differential Chapman-Kolmogorov 
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equation, 

a  , t') = A(t)T (x ,  ,  t').  (1.68) 

Here, A is a linear operator which generates infinitesimal time translations. It is 
defined by the action on some density p(x) , 

1 
A(t) p(x)  . 1.!121KI Kt. f dx' [T (x , t +  xi, t) 6(x — xi)] p(x' ) 

= 211,0  [f dx' T (x t + tV t) p(x' ) —  (x)].  (1.69) 

In the general case the operator A may depend on  t.  However, for a homogeneous 
Markov process the propagator T (x , t + Atlx' ,t) for the time interval from t to 
t + At does not depend on t and, thus, the generator is time independent in this 
case. 

For a homogeneous Markov process we can write the propagator as Ty  (xIx' ) 
where T = t - t' > 0 denotes the difference of its time arguments. The Chapman-
Kolmogorov equation can then be rewritten as 

T 7- +7- , (xIx' ) = fdx" T r (xlx" )T, 7- i (x" Ix' ) , T
, 

T I  > 0. _ (1.70) 

Once the generator A is known, the solution of the Chapman-Kolmogorov equa-
tion for a homogeneous Markov process can be written formally as 

TT (XIX ' ) = exp (TA) (5(x -  r> 0.  (1.71) 

These equations express the fact that the one-parameter family { TT  7-  > 0} of 
conditional transition probabilities represents a dynamical semigroup. The term 
semi-group serves to indicate that the family {TT IT > 0} is, in general, not a full 
group since the parameter T is restricted to non-negative values. 

From a physical viewpoint the semigroup property derives from the irre-
versible nature of stochastic processes: Suppose that at time to an initial density 
P(x, to) is given. The above family of conditional transition probabilities then 
allows us to propagate uniquely this initial density to times t = to  + r  > to. 
With the help of eqns (1.61) and (1.71) we get 

P(x, t) = exp (TA)P(x, to). 
 (1.72) 

However, the resulting process is, in general, not invariant with respect to time 
inversions, which means that it is not possible to find for each p(x , t o ) a prob-
ability density p(x , t) at some earlier time t < to  which evolves into p(x , t o ). 
Mathematically, this means that the range of the operator exp (TA) is contract-
ing for increasing 7- , that is, this operator is not invertible in the total space of 
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t  t + T  t + 27-  

FIG. 1.4. Schematic picture of the irreversible nature of a dynamical semigroup. 
The figure indicates the contraction of the range of the propagators TT  for 
increasing 'T. 

all probability distributions (Fig. 1.4). This is why irreversible processes enable 
one to distinguish the future from the past. 

The above situation occurs, for example, if the process relaxes to a unique 
stationary state p, (z)  in the limit of long times, 

lim p(x,t) = p.(x).  (1.73) 
t—H-00 

Such processes arise in statistical mechanics, for example, when one studies the 
relaxation of closed physical systems to an equilibrium state. Then, clearly, the 
stationary density p.(x) must be a zero mode of the generator, 

Ap(x) = 0.  (1.74) 

Consequently, also backward propagation leaves  p(z) invariant, and there is no 
way of obtaining any specific distribution other than p,, (z)  at any prior time. 

In the following sections we shall introduce three basic types of Markov pro-
cesses which can be distinguished by the form of their generator or, equivalently, 
by the short-time behaviour of their propagator. 

1.4.3 Deterministic processes and Lionville equation 
The simplest example of a Markov process is provided by a deterministic process. 
It is defined by some initial density p(x,t 0 ) and by a propagator which describes 
a deterministic time evolution corresponding to a system of ordinary differential 
equations 

d 
—
dt

x(t) = g(x(t)), x(t) E Rd . (1.75) 
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Here, g(x) denotes a d-dimensional vector field. For simplicity we assume this 
system to be autonomous, i.e. that the vector field g(x) does not depend explic-
itly on time, such that the resulting process becomes homogeneous (see below). 
The most prominent examples of this type of process are the processes that 
arise in equilibrium statistical mechanics, in which case eqn (1.75) represents the 
Hamiltonian equations of motion in phase space. 

To such an ordinary differential equation there corresponds the phase flow 
which is denoted by (D t (x). This means that for fixed x the phase curve 

t  cD t (x)  (1.76) 

represents the solution of eqn (1.75) corresponding to the initial value 4) 0  (x) =  z. 
The sample paths of the deterministic process are given by the phase curves 

(1.76). Thus, the propagator for such a process is simply 

 

T (x,  , t') = (x 4)t-t,  (4) •  (1.77) 

This equation tells us that the probability density for the process to reach the 
point x at time t, under the condition that it was in x' at time t', is different 
from zero if and only if the phase flow carries x' to x in the time interval from 
t' to t, that is, if and only if x = t _ t ,  (x`). 

As is easily verified the propagator (1.77) fulfils the relations (1.58) and (1.59). 
On using the group property of the phase flow, which may be expressed by 

= (1t+8(x), (1.78) 

one can also show that (1.77) satisfies the Chapman-Kolmogorov equation. Thus 
we have constructed a solution of the Chapman-Kolmogorov equation and de-
fined a simple Markov process. 

In order to find the infinitesimal generator A for a deterministic process we 
insert expression (1.77) into definition (1.69): 

Ap(x) = lim  f dx' [6(x - (DAt (XI )) - (5 (z - x')] p(x 1 ) 
At-kJ At 

—
d  

f dx' 6(x - (D t (x'))p(x') = f dx' g t (x')[  3 , 5(z  - x')] p(x 1 ) 
dt t=o  axi  

a  

 

[gi (x)p(x)] .  (1.79) axi  

Here, the gt (x) denote the components of the vector field g(x), and summation 
over the index i is understood. Thus, the generator of the deterministic process 
reads 

D  
= -  gi (x), 

axi  

and the differential Chapman-Kolmogorov equation takes the form 

(1.80) 
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a 
—

at

T(x,tlx` ,e) = - —,,a  [gi (x)T(x,tlx' ,e)]. 
axi 

(1.81) 

This is the Liouville equation for a deterministic Markov process corresponding 
to the differential equation (1.75). Of course, the density p(x , t) fulfils an equation 
which is formally identical to eqn (1.81). 

1.4.4 Jump processes and the master equation 

The deterministic process of the preceding subsection is rather simple in that it 
represents a process whose sample paths are solutions of a deterministic equation 
of motion; only the initial conditions have been taken to be random. Now we con-
sider processes with discontinuous sample paths which follow true probabilistic 
dynamics. 

1.4.4.1 Differential Chapman-Kolmogorov equation We require that the sam-
ple paths of X(t), instead of being smooth solutions of a differential equation, 
perform instantaneous jumps. To formulate a differential Chapman-Kolmogorov 
equation for such a jump process we have to construct an appropriate short-time 
behaviour for its propagator. 

To this end we introduce the transition rates W(xix', t) for the jumps which 
are defined as follows. The quantity W(xix', t)At is equal to the probability 
density for an instantaneous jump from the state x' into the state x within the 
infinitesimal time interval [t,  t + st], under the condition that the process is in x' 
at time t. Given that X(t) = x', the total rate for a jump at time t is therefore 

r(x i , t) = f dxW(xlx`, t),  (1.82) 

which means that F(x', t)At is the conditional probability that the process leaves 
the state x' at time t by a jump to some other state. 

An appropriate short-time behaviour for the propagator can now be formu-
lated as 

T (x,t + Atlx' ,t) = W (xix' ,t)At + (1 - F(x' ,t)At) 6(x - x') + 0(At 2 ). (1.83) 

The first term on the right-hand side gives the probability for a jump from x' to 
x during the time interval from t to t+ At. The prefactor of the delta function of 
the second term is just the probability that no jump occurs and that, therefore, 
the process is still in x' at time t+ At. As it should do, for At .- 0 the propagator 
approaches the delta function 6(x - x') (see eqn (1.59)). In view of (1.82) the 
propagator also satisfies the normalization condition (1.58). 

It is now an easy task to derive the differential Chapman-Kolmogorov (1.68) 
equation for the jump process. Inserting (1.83) into (1.69) we find for the gener-
ator of a jump process 
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1 
A(t)p(x) = urn f dx' [T (x ,t + AO' , t) - ( 5 (x - 41 p(x` ) 

At->0 At 

=  u  a---t-1  f dx' [W (xlx` , t) At - F (x` , t) AtS (x -  x')]  p(x' ) 

= f dxi  W (xix' ,t)p(xl) - F (x ,t)p(x) 

= f dxi  [W (xix' , t) p (x i  ) - W (x i  ix , t)P(x)] •  (1.84) 

In the last step we have used definition (1.82) for the total transition rate. This 
immediately leads to the equation of motion for the propagator, 

a tlx' , t') = A(t)T (x , tlx' , t')  (1.85) 

= f dx" [W (xix i  ' 1 0 7 7  (x" , tix' , t') - W (x" lx , t)T (x , tlx' , t')] . 

This is the differential Chapman-Kolmogorov equation for the jump process. It 
is also called the master equation. The same equation holds, of course, for the 
density p(x , t) , 

a 
—
at

p(x , t) = A(t)p(x , t) 

---- f dx' [W (xl x i  , t)p(x l  , t) - W (x l  Ix , t)p(x , t)] .  (1.86) 

This equation is also referred to as the master equation. It must be kept in mind, 
however, that the master equation is really an equation for the conditional transi-
tion probability of the process. This is an important point since a time-evolution 
equation for the first-order density p(x , t) is not sufficient for the definition of a 
stochastic Markov process. 

The master equation (1.86) has an intuitive physical interpretation as a bal-
ance equation for the rate of change of the probability density at x.  The first 
term on its right-hand side describes the rate of increase of the probability den-
sity at x which is due to jumps from other states x' into x.  The second term is 
the rate for the loss of probability due to jumps out of the state x.  

Note that in the above derivation we have not assumed that the process is 
homogeneous in time. In the homogeneous case the transition rates must be time 
independent,  W (x Ix' , t) = W(xix'). Then also the total transition rate F(x 1 ) is 
time independent, of course. 

For the case of an integer-valued process, which may be univariate or multi-
variate, we write X(t) = N(t). The first-order probability distribution for such 
a discrete process is defined by 

P (n , t) = ti (N (t) = n) ,  (1.87) 

whereas the propagator takes the form 
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T(n,tin',e) = pt(N(t)= niN(e) = n').  (1.88) 

The corresponding master equation for the probability distribution then takes 
the form 

a  +co 
—
at

P(n
'
t) = E [W(nini, t)P(ni , t) — W(ni  In, t)P(n,t)1, 

n'= —co 

with a similar equation for the propagator. 

(1.89) 

1.4.4.2 The homogeneous and the non-homogeneous Poisson process Let us 
discuss two simple examples for an integer-valued jump process, namely the 
homogeneous and the non-homogeneous Poisson process. These examples will 
be important later on. 

As a physical example we consider a classical charged matter current de-
scribed by some current density j(i, t) of the form 

3  (
-0 x , t) = (I)e —iw ° t  + RI)* e iw° t  (1.90) 

The current density is assumed to be transverse, that is V-4  • = 0. As is known 
from quantum electrodynamics (Bjorken and Drell, 1965) such a current cre-
ates a radiation field, emitting photons of frequency wo  at a certain rate ry. An 
explicit expression for this rate can be derived with the help of the interaction 
Hamiltonian 

II (t) = — f d3  x  t) • ,44(Y)  (1.91) 

which governs the coupling between the classical matter current j(i, t) and the 
quantized radiation field  A(x). Treating HI(t) as a time-dependent interaction 
and applying Fermi's golden rule one obtains an explicit expression for the rate 
of photon emissions 

== e2w°3  E 14k,A). j(k)1 2  27rhe A=1,2 

where j(k4) denotes the Fourier transform of the current density, 

= f d3 x34(i)e -ii;i. 

(1.92) 

(1.93) 

Obviously, the relation (1.92) involves an integral over the solid angle at into the 
direction k of the emitted photons and a sum over the two transverse polarization 
vectors  (k, À).  

The rate ry describes the probability per unit of time for a single photon 
emission. We are interested in determining the number N(t) of photon emissions 
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over a finite time interval from 0 to t. To this end we assume that the current, 
acting as a fixed classical source of the radiation field, is not changed during the 
emission processes. We then have a constant rate ry for all photon emissions and 
each emission process occurs under identical conditions and independently from 
all the previous ones. The number N(t) then becomes a stochastic Markov pro-
cess, known as a (homogeneous) Poisson process. It is governed by the following 
master equation for the propagator, 

tin', t') = ryT(n — 1, tin', t') — ryT (n,  t' ) .  (1.94) 

In the following we study the deterministic initial condition N(0) = 0, that is 

P (n , 0) = 15n,O•  (1.95) 

The Poisson process provides an example for a one-step process for which, 
given that N (t) = n, only jumps to neighbouring states n ± 1 are possible. The 
Poisson process is even simpler for only jumps from n to n + 1 are possible and 
the jump rate is a constant Fy which does not depend on n. It should thus be no 
surprise that the master equation for the Poisson process can easily be solved 
exactly. This may be done by investigating the characteristic function 

+00 
G (k , t) = E eike" ) T (n ,  tin',  t') , 

n=re 

(1.96) 

with n' and t' held fixed. We have extended here the summation from n = n' to 
infinity to take into account that 

T (n ,  tin',  t') =  0 for n < n'.  (1.97) 

This is a direct consequence of the fact that the jumps only increase the number 
N(t). Inserting the characteristic function (1.96) into the master equation (1.94) 
we obtain 

a N G (k , t) = [e  1] G (k t), 

which is immediately solved to yield 

G (k , t) = exp [-y(t — t') (eik  1 )] , 

(1.98) 

(1.99) 

where we have used the initial condition G (k t = t') = 1 which, in turn, follows 
from T (n, in', t') = 8nni . On comparing the Taylor expansion of the character-
istic function, 

+00 
G (k , t) = E ean [-y(t  e -  (t - t' 

n! 

+.0 E eik ( T,  [y(t — ti )]71 - 11  e t)  
(n  n')! 

n=n' 

a 

(1.100) 

n=0 
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FIG. 1.5. Sample path of the Poisson process which was obtained from a nu-
merical simulation of the process. 

with definition (1.96) we obtain for the propagator of the Poisson process 

[7(t — t1)]n—ri --y(t—e)  n > n' T(n,tin',e) = 

 

 e  ,  — ' (n — n')! 
(1.101) 

As should have been expected the process is homogeneous in time. It is also 
homogeneous in space in the sense that T (n, tin', t') only depends on the differ-
ence n — n'. The corresponding distribution P(n,t) becomes 

(21) n  P(n,t) = > e -11t  n 0 ,  _ ,  (1.102) 
n! 

which represents a Poisson distribution with mean and variance given by 

E(N(t)) = Var(N(t)) = ryt.  (1.103) 

Figure 1.5 shows a realization of the Poisson process. 
The homogeneous Poisson process describes the number N(t) of independent 

events in the time interval from 0 to t, where each event occurs with a constant 
rate  'y.  Let us assume that for some reason this rate may change in time, that 
is -y = -y(t). The resulting process is called a non-homogeneous Poisson process, 
since it is no longer homogeneous in time. As one can check by insertion into the 
master equation, 

a 
, T(n,tin' ,e) = -y(t)T (n — 1,tin' ,e) — -y(t)T (n,tin' ,e), 

the propagator of the non-homogeneous Poisson process is given by 

(1.104) 
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[12(t  ti  
e - ti(t ' t1)  n > T (n,  tin',  t') =   _  7 (n - n')! 

and by T (n, tin' , ti) = 0 for n < n!. Here, we have set 

p(t , t')  

(1.105) 

(1.106) 

The probability P (n, t) is accordingly found to be 

[p(t, 0)]n  _ P (n, t) =  711   e 1-4")  , n  0. (1.107) 

By means of the above explicit expressions we immediately get the general-
ization of the relations (1.103) for the non-homogeneous Poisson process, 

E(N(t)) = Var(N(t)) = p(t , 0).  (1.108) 

Let us also determine the two-time correlation function which is defined by 

E(N (ON (s)) = E(N (s)N (t)) 

= E n2 n i T(n 2 ,tin i ,$)T(n i ,s10,0),  (1.109) 
ni ,n2 

where in the second line we have assumed, without restriction, that t >  s.  Dif-
ferentiating with respect to t and invoking the master equation we find 

a 
E(N (t)N (s)) 

= 'y (t) E [n2T(n2 —  1, tini,$) - n2T(n2, 4,4) s )] 11 1 T  (n1, 8 1 0  
ni  ,n2 

ry(t) E n i T(n2 ,tin i ,$)T(n i ,s10,0) 
ni ,n2 

'y(t) E n177 (74,810,0) = ry(t)E(N(s)) 

= ''y(t)pc(s, 0) . 

In the second step we have performed the shift n2  n2  + 1 of the summation 
variable n2  in the gain term of the master equation. Hence, on using the initial 
condition E(N (s)N (s)) = p(s , 0) 2  + p(s , 0) we find the following expression for 
the two-time correlation function of the non-homogeneous Poisson process, 

E(N (ON (s)) = p(t, p(s 0) + p(s , 0).  (1.111) 



MARKOV PROCESSES  27 

1.4.4.3 Increments of the Poisson process It will be of interest for later appli-
cations to derive the properties of the increment dN(t) of the non-homogeneous 
Poisson process. For any time increment dt > 0 the corresponding increment of 
the Poisson process is defined by 

dN(t) N(t + dt) — N(t), dt > O.  (1.112) 

Note that we do not assume at this point that dt is infinitesimally small. The 
probability distribution of the increment dN(t) may be found from the relation 

CO 

p(dN(t) = dn)  ET(rt + drt,t + dtin,t)P(n,t).  (1.113) 
n=0 

Since the process is homogeneous in space the sum over n can immediately be 
carried out and using eqn (1.105) we find 

[p(t + dt,t)rin e -ii(t± dt,t)  (1.114) p(dN(t) dn) = T (dn,t + dtiO,t) dn! 

where dn = 0,1, 2, .... The first and second moments of the Poisson increment 
are therefore given by 

E(dN(t)) = tt(t + dt,t),  (1.115) 
E(dN(t) 2 ) = ti(t + dt,t) + ti(t + dt,t)2 .  (1.116) 

If we now take dt to be infinitesimally small we see that, apart from terms of 
order 0(dt2 ), 

E(dN(t) 2 ) =E(dN(t)) = -y(t)dt.  (1.117) 

In addition, we also observe that this last relation becomes a deterministic re-
lation in the limit dt 0. Namely, according to eqn (1.114) the probability for 
the event dN(t) > 2 is a term of order dt2 , and, consequently 

p [dN(t) = dN(0] — 1 + 0(dt2 ).  (1.118) 

Thus, apart from terms of order dt2 , the equation 

dN(t) 2  = dN(t)  (1.119) 

holds with probability 1 and can be regarded as a deterministic relation in that 
limit 

These results are easily generalized to the case of a multivariate Poisson pro-
cess N(t) = (N1 (t), N2 (t),... ,Nd (t)). We take the components Ni (t) to be sta-
tistically independent, non-homogeneous Poisson processes with corresponding 
rates ryi (t). It follows that the relations 
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E(dNi (t)) = -yi(t)dt, 
dNi(t)dNi(t) =Si i dNi(t), 

hold in the limit dt  0, where terms of order 0(dt2 ) have been neglected. 
These important results will be useful later on when we construct the stochastic 
differential equation governing a piecewise deterministic process. 

1.4.5 Diffusion processes and Fokker-Planck equation 

Up to now we have considered two types of stochastic Markov processes whose 
sample paths are either smooth solutions of a differential equation or else discon-
tinuous paths which are broken by instantaneous jumps. It can be shown that 
the realizations of a Markov process are continuous with probability one if 

1 lim  f dx 7 -1 (x,t + Atlx i  ,t) = 0 
At—>t3 At 

(1.122) 

for any E > 0. This equation implies that the probability for a transition during 
At whose size is larger than E decreases more rapidly than At as At goes to zero. 

Of course, deterministic processes must fulfil this continuity condition. In 
fact, we have for a deterministic process (0 denotes the unit step function) 

1 f 
hm — 

At—A) At 
dxT(x,t + Atlx` ,t) 

= llin  f 
At—r0 At dx6(x - it'At (X 1 )) 

11111 --9(1X 1  — 4) pt (X 1 )1 — E) 
At—H) At 

= 0.  (1.123) 

In the case of a jump process the continuity condition is clearly violated if the 
jump rate W(xlxi, t) allows jumps of size larger than some E > 0, 

B.111 —
1 

At—A) At 
jx- x' >6 

dxT(x,t + Atlx` ,t) = f W (XIX /  ,t)  >0.  

Ix — x'1>e 

(1.124) 

There exists, however, a further class of stochastic Markov processes, the 
diffusion processes, which are not deterministic processes but also satisfy the 
continuity condition. We derive the differential Chapman-Kolmgorov equation 
for a multivariate diffusion process X (t) = (Xi (t),X2(t),... ,Xd(t)) by investi-
gating a certain limit of a jump process which is described by the master equation 
(1.86). To this end, we write the transition rate as 

W (xix' , t) = f (x` ,y,t),  (1.125) 
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where y = x - , that is as a function f of the starting point  x',  of the jump 
increment y, and of time t. Inserting (1.125) into the master equation (1.89) we 
find 

a 

 

—
at

p(x , t) = f dy f (x - y, y, t)p(x - y t) - p(x, t) f dy f (x, y, t).  (1.126) 

The fundamental assumption is now that f (xi ,  y,  t) varies smoothly with x',  but 
that it is a function of y which is sharply peaked around y O. In addition it is 
assumed that p(x ,t) varies only slowly with x on scales of the order of the width 
of  f.  This enables one to expand the gain term f (x -  y,  y, t)p(x - y, t) to second 
order in y, 

a 

 

— p(x,t) =f dy f (x, y, t)p(x, t) - f dy y a  [f (x, y, t)p(x t)]  (1.127) 
axi  a2 f dy -1  yiy 3 •   [f (x, y, t)p(x, t)] - p(x , t) f dy f (x, y, t) 

2  OXiaXi 

The indices i, j label the different components of the multivariate process and 
a summation over repeated indices is understood. Taking fully into account the 
strong dependence of f (x' , y, t) on y, we have not expanded with respect to the 
y-dependence of the second argument of f (x -  y, y,  t). We see that the first term 
on the right-hand side cancels the loss term. Thus, introducing the first and the 
second moment of the jump distribution as 

gi (x , t)  f dy yif (x , y t), D ii  (x, t)  f dy yiyi  f (x , y, t),  (1.128) 

we finally arrive at the differential Chapman-Kolmgorov equation for a diffusion 
process, 

a  a p(x ,t) =  [g(x , t)p(x , —  -  i  
a2 
  [Dii (x,t)p(x,t)j.  (1.129) at  oxi  

+ 2 OXiaXi 

This is the famous Fokker-Planck equation for a diffusion process. A formally 
identical equation holds for the propagator of the process. 

Again, this equation admits an obvious interpretation as a continuity equa-
tion for the probability density if we rewrite it as 

42p(x, t) + — Ji (x,t) o, at  ax, 

where we have introduced the probability current density 

Ji(X,t)  gi (x , t)p(x,  - -1  [Dii  (x , t)p(x ,t)] . 
2 ax3  

(1.130) 

( 1. 131) 
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FIG. 1.6. Sample path of the Wiener process. 

As we already know, the first term on the right-hand side of the Fokker-Planck 
equation describes a deterministic drift which corresponds to the differential 
equation with vector field g, 

dt x (t) =--- g(x(t),t).  (1.132) 

The second term on the right-hand side of the Fokker-Planck equation describes 
the diffusion of the stochastic variable X(t). According to its definition the matrix 
D(x, t), known as the diffusion matrix, is symmetric and positive semidefinite. 

The most prominent example of a diffusion process is obtained by considering 
a one-dimensional diffusion process, setting the drift equal to zero, g(x, t) E. 0, 
and by taking D(x,t) =7, 1. This leads to the Gaussian propagator 

1  (x  - 4 2 ) T(x,tlx` ,t I ) =  exp  (1.133) 
V27r(t -  

showing that the process is both homogeneous in time and in space. This process 
is often referred to as a Brownian motion process. If we further take the initial 
density 

p(x,t = 0) = 8(x)  (1.134) 

the process X(t) becomes the famous Wiener process W (t). 
Another important example of a diffusion process is obtained by adding to 

a Brownian motion process with constant diffusion coefficient D a deterministic 
drift corresponding to the differential equation dxidt = -kx with a constant 
coefficient  k>  O. The corresponding propagator then takes the form 
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FIG. 1.7. Sample path of the Ornstein—Uhlenbeck process. 

 exp 
k(x  — 42)  

(1.135) T(x,tlx' ,t') D [1 _ e-2k(t—t,)]  D [1 _ e -2k(t—til 

and the stationary first-order distribution is given by 

p(x) =  exp ( kx2--) . 7r  D  D 
(1.136) 

This defines the Ornstein— Uhlenbeck process. Its physical significance is due to 
the fact that, up to trivial linear transformations, it is essentially the only process 
which is stationary, Gaussian and Markovian. This assertion is known as Doob's 
theorem. A Gaussian process is defined to be a process whose joint probability 
distributions are Gaussian functions. The only other process with the above three 
properties is the so-called completely random process, for which all m-th order 
joint probability distributions are products of first-order Gaussian distributions. 
We show in Figs. 1.6 and 1.7 realizations of the Wiener and of the Ornstein—
Uhlenbeck process. 

With the help of the explicit expression (1.133) for the conditional transition 
probability of the Wiener process we can calculate all relevant quantities of 
interest. For example we find for the mean and the variance of the Wiener process 

 

E(W (t)) = f dw wT(w,t10,0) = 0,  (1.137) 

 

E(W (0 2 ) =f dw w 2 T(w,t10,0) t.  (1.138) 

The second relation shows the well-known linear increase of the variance with 
time t. The two-time correlation function of the Wiener process will also be of 
interest. It is defined by 
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E(W(t)W(s) ) = E(W (s)W(t))  (1.139) 

f dw2  f dwi w2wiT(w2, tlwi,$)T(wi,s10, 0), 

where the second equation presupposed that t > s. The integrals can easily be 
evaluated with the help of (1.133). The result is 

E(W (t)W (s)) = min(t, s),  (1.140) 

which holds for  t>  s and for t < s. 
On using these results we can also study the properties of the increment 

dW(t) of the Wiener process which is defined for any dt > 0 by 

dW (t) W (t + dt) — W (t).  (1.141) 

From eqns (1.137) and (1.140) we get 

E [dW (0] = 0,  (1.142) 
E [dW(t) 2 ] = dt.  (1.143) 

For a multivariate Wiener process with statistically independent components 
W 1  (t)  we have the important formulae: 

E [dWi (t)] --- 0,  (1.144) 
E [dWi(t)dWi (t)] = 6 1 dt,  (1.145) 

E [(dW1.(t)) 2/1 = 0(dtk ),  (1.146) 

E RdW1.(t)) 2k +1 1 = 0.  (1.147) 

The last two relations hold for all positive integers k, and may be shown directly 
using the Gaussian propagator for the Wiener process. 

1.5 Piecewise deterministic processes 

We are now in a position to introduce a certain type of stochastic process which 
plays an important rôle in this book, namely the so-called piecewise determin-
istic processes (PDPs). Essentially, such a process is obtained by combining a 
deterministic time-evolution with a jump process. 

Piecewise deterministic processes have a large variety of applications in the 
natural sciences and technology. A number of examples and a mathematically 
rigorous treatment of PDPs may be found in the book by Davis (1993). In the 
theory of open quantum systems PDPs provide the appropriate mathematical 
concept to describe the evolution of the state of a continuously monitored system 
(see Chapter 6). We shall present in this section three different mathematical 
formulations of a piecewise deterministic process, namely the Liouville master 
equation for its propagator, the path integral representation, and the stochastic 
differential equation for the random variable. 
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1.5.1. The Liouville master equation 
The sample paths of a PDP consist of smooth deterministic pieces which are 
given by the solution of some differential equation and which are interrupted by 
instantaneous jumps. On the basis of our previous results it is now easy to write 
down an appropriate expression for the short-time behaviour of the propagator 
of a PDP, 

T (x,t + Atlx' ,t) = (1 -1 1 (x' ) At) 6 (x - x' - g(x')At) 

 

+W(xix')At + 0(At 2 ).  (1.148) 

The 6-function represents the short-time behaviour which is characteristic of a 
deterministic process and which is obtained by expanding the flow of the deter-
ministic differential equation (1.75), 

 

4'At(x 1 ) = x' + g(x l )At + 0(At 2 ).  (1.149) 

The prefactor of the 6-function involves the total rate F(x1 ) = f dxW(x1x 1 ) for 
jumps out of the state x'. The factor (1 — F(x')At) is therefore the probability 
that no jump occurs in the interval At. 

The second term on the right-hand side of eqn (1.148) is the probability for 
a jump from x' to x within time At. Note that the conditions (1.58) and (1.59) 
are satisfied. Note further that we consider here, for simplicity, only processes 
which are homogeneous in time since the generalization to the inhomogeneous 
case is obvious. 

On account of the above short-time behaviour we can immediately write down 
a differential Chapman-Kolmogorov equation for the propagator, 

0 0 
—
Ot

T(x, tlx`, t i ) = - — [gi(x)T (x , tix 1  , t')]  (1.150) 
axi 

+ f dx" [W(xlx")T(x",tlx' ,e) - W(x 11 1x)T(x,tlx` ,e)]. 

The first term on the right describes the deterministic drift, whereas the sec-
ond part leads to the jumps x' .- x with rate W(x1x 1 ). Accordingly, we call 
eqn (1.150) the Liouville master equation. 

1.5.2 Waiting time distribution and sample paths 
Let us determine a central quantity for the description of PDPs, i.e. the waiting 
time distribution F(T Ix', t'). This quantity is defined to be the probability for 
the next jump to occur during the time interval [t',  t` + T]  under the condition 
that we are in the state x' at time t'.  To find this quantity we observe that 

Fer ± &Ix', t') - F (rix' , t')=-_-.-  dF erix' , t') (1.151) 

is just the probability for the next jump to occur in the time interval [t` +  r,  tl  ±  
T ±  dri. If we divide this probability by the probability 1 — F(7-lx', t') that no 



1—  F(rixi, V) 
dF(rixi, t') = F(IbT (x 1 ))dr. (1.152) 
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jump occurred in the previous interval from t' to t' + T, we get the conditional 
probability for a jump over the interval dr. The latter quantity must be equal 
to dr times the total rate F(C-(x')) for a jump out of the state we are presently 
in, namely 4. 7 (x') (since, if the jump occurs at time t 1  + T, the deterministic 
evolution has carried us from the state x' to C-(x')). Hence we have 

This equation shows that F(rix', t') does not, in fact, depend on the time t' and 
we shall omit this argument in the following (note however that for a PDP which 
is not homogeneous in time, e.g. for a non-autonomous differential equation, it 
does depend on t'). 

The above relation leads to the differential equation 

( 1.152) 

F(rlx`)] --,-- —1-1 ( 41 -r(x 1 )) 
d 

di-  ar 

which is easily solved to yield 

(1.153) 

F(rIx') = 1 — exp [ — j.  ds r(bs (x')) ,  (1.154) 

where we have used the initial condition F(r ---- Olx i ) = O. Given that we are in 
the state x', expression (1.154) is the cumulative distribution function for the 
random waiting time T of the PDP. 

For a pure jump process (g = 0) we simply have 

F(rix') = 1 — exp [—F(x l )r] ,  (1.155) 

demonstrating that for F(x') > 0 pure jump processes have an exponentially 
distributed waiting time. For F(x') = 0 we have F:--_-_--. 0 which means that the 
waiting time is infinite: The process never leaves the state x' which is called a 
trapping state of the process. 

For a true PDP (g 0) the waiting time distribution is, in general, not an 
exponential function. As eqn (1.154) shows this is a direct consequence of the 
deterministic time evolution between the jumps as a result of which the total 
transition rate can change in a non-trivial way. Since F(x') is non-negative the 
function 

T 

I(TIX I ) =--- f ds Fe I.,(4) 
o 

(1.156) 

increases monotonically with T. Thus, we can basically distinguish two cases: 
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1. If the function /(-7- Ix') is not bounded it follows that 

lirn /(7- 1x 1 ) = +co,  (1.157) 
7--)00 

and, therefore, we have 

lirn F(7- Ix i ) = 1.  (1.158) 
T ->00 

This implies that the process jumps with certainty after some time. One 
can obtain a realization of the waiting time T for example by making use 
of the inversion method. To this end, one first draws a random number r/ 
which is uniformly distributed over the interval [0, 1]. The random waiting 
time may then be determined by solving the implicit equation 

F(7-1x 1 ) = n 
 (1.159) 

for T (see Fig. 1.8). 
2. If, on the other hand, the function /(7- 1x 1 ) is bounded it follows that the 

limit 

liln /(TIX 1 ) = /(001X 1 ) < OC 
T-}00 

exists. In this case we find 

(1.160) 

lim F(rixi ) = 1 — exp [—/(Doix i )] 2 1 — q < 1.  (1.161) 
7- 00 

This means that with a finite probability q, where 0 < q < 1, the process no 
longer jumps. The quantity q is called the defect. Formally, this situation 
can be dealt with by defining the state space of the random waiting time 
to be 14 U  {oc}.  Then q is the probability for the event T -77-- co. Again a 
realization of T can be obtained with the help of the inversion method (see 
Fig. 1.8). Having drawn a uniformly distributed random number 17 E [0,1] 
one first decides whether 7) > 1 — q or 7) < 1 — q. In the former case one 
sets T z--- co, in the latter case T is to be determined by eqn (1.159). 

We have just described how to determine a realization of the random time 
intervals T between the jumps of a PDP. The above procedure allows us to design 
a simple algorithm for the generation of a sample path x(t) of the PDP: 

1. Assume that at some time t o  the realization has reached the state xo  
through the preceding jump. In the case that t o  is the initial time, xo  
must be drawn from the initial probability density p(x o , to ). In any case 
we have 

x(to) = zo.  (1.162) 



Q(z1x(to ± T)) = F(x(t o  + T)) • 
(1.164) W(z1x (to  + T)) 
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FIG. 1.8. The figure shows a typical waiting-time distribution F(Tlx`) with de-
fect q and illustrates how a realization of 7 is obtained by the inversion 
method. ri i  and ri 2  are realizations of a uniform random number 77 E [0, 1]. 
For ni  the corresponding realization of the waiting time is infinite, T1  = +co, 
while for 772  the realization of the waiting time is equal to T2.  

2. Draw a random waiting time T from the distribution function F(rIxo ) by 
employing the procedure described above. In the time interval from t o  to 
to  + T the realization x(t) then follows the solution of the deterministic 
equation, that is, 

x (to  + s) = 4, 3 (xo )  (1.163) 

for 0 < s < T . 

3. At time to  + T the sample path performs an instantaneous jump into some 
state z which is a random variable to be drawn from the probability density 

Note that Q(z1x) is just the conditional probability density for a jump into 
the state z, given that we already know that a jump takes place out of the 
state x. Note further that Q(z1x) is correctly normalized as 

f dzQ(z 1x)  = 1.  (1.165) 

Finally, we set 
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X(to ± T) = Z 
 (1.166) 

and proceed with the first step above. 
This algorithm can easily be translated into a numerical computer program. 
Using such a program we can generate a sample of realizations of the process 
and then estimate all quantities of interest as sample averages. This is the essence 
of the stochastic simulation technique, which will be illustrated with the help of 
a number of examples in Chapters 6, 7 and 8. 

1.5.3 Path integral representation of PDPs 
The above algorithm for the generation of the sample paths of a PDP yields 
the structure of the possible paths of the process and the probability of their 
occurrence. In mathematical terms this means that the propagator T(x, tlx', t') 
of the PDP may be represented in terms of those sample paths that start in x' 
at time t' and end in x at time t. Each of these paths contributes with a certain 
probability, and summing over all paths with an appropriate weighting we get 
the propagator. This path integral representation of PDPs will be derived in the 
present section. 

Up to now we have characterized a PDP by its differential Chapman—Kolmo-
gorov equation (1.150), that is by its short-time asymptotics. There is, however, 
an equivalent integral representation for the propagtor of a PDP which is given 
by 

T( x, tlx ', t') =--- T (°)  (x, tlx' , t')  (1.167) 
t 

+ f ds f dy f dz TO )  (x, tly,  , s)W (yiz)T (z , six' ,e). 
t ,  

Here, we have introduced the quantity 

T °  (x,  tix', t') = [1 — F(t — t i lx 1 )] 8 (x — (Dt—ti (x')) 
 

(1.168) 

which is the conditional probability density for the process to reach the state 
x at time t without any jump, given that it was in x' at time t'. As is easily 
checked, the solutions of (1.167) fulfil eqns (1.58) and (1.59). We may also verify 
by an explicit calculation that the solutions of (1.167) satisfy the differential 
Chapman—Kolmogorov equation (1.150). 

We will not go into the details of these calculations since (1.167) allows a 
simple interpretation (see Fig. 1.9). The propagator is written as a sum of two 
terms, corresponding to two possibilities for the process to proceed from (z',  t') 
to (z,  t): The first possibility is that no jump occurs in the time interval from t' 
to t. The corresponding conditional probability density is given by the quantity 
T(°)(x, tlx`, t') introduced above. The second possibility is that at least one jump 
occurs. The corresponding contribution is the second term on the right-hand 
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FIG. 1.9. Graphical representation of the Kolmogorov forward equation (1.167). 

side of eqn (1.167). The variable s denotes the instant of the last jump. 3  Then 
T(z, six` ,e) is the probability to be in some state z immediately before the jump, 
and W (yiz)ds is the probability for a jump from z to y during ds. Multiplying 
this by 70) (x,tly,$) we get the probability that the process reaches the state z 
at time s, that it then jumps into the state y, and that it reaches the state x in 
the remaining time interval without any further jumps. The total contribution 
to T(x, tlxi,e) is found by integrating over all possible jump times s and over 
all intermediate states z and y. 

Equation (1.167) is the Kolmogorov forward equation. It is an integral rep-
resentation for the propagator of a PDP which directly leads to the path in-
tegral representation. Our above interpretation makes it natural to decompose 
the propagator of the process into separate terms T (N) (x, tlxi, t'), each of which 
represents the contribution from those paths with exactly N jumps: 

00 

T(x,tlx' ,e) = E ENT(N) (x,tixi,e).  (1.169) 
N=0 

The first term in this sum has already been defined above. We have introduced 
a formal expansion parameter E which will be set equal to 1 afterwards. We 
introduce this parameter also into the integral equation by regarding the rates 
W(Y1z) formally as quantities of order E. In this way the decomposition (1.169) 
becomes a perturbative expansion in powers of the transition rates. 

If we insert eqn (1.169) into eqn (1.167) and collect terms of the same order 
in E we find the following recursion relation which is valid for N > 1, 

3 We exclude the possibility that an infinite number of jumps accumulates at a point of the 
time interval. 
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t 
T (N)  (x , tlx' , t') = f ds f dy f dz TO )  (x , tly,  , s)W (y1z)T (N —1)  (z , six' ,t`). 

t ,  
(1.170) 

On iterating this equation one obtains T( N) (x, ti xi, t') for all N.  Substituting the 
result into (1.169) and setting E = 1 we finally get the path integral representation 
of the propagator, 

T (x ,tlx i  ,e) = T(°)  (x ,tix t ,t 1 )  (1.171) 

 

t  SN CO 

+ E f ds, f ds,_, ... Si de5 1 f dyNdzN f dyN—idzN—i• • f dyidzi 

 

N=1 t,  ti  ti 

TM (x,  tlyN,sN)W(YNIzN)T M (zN,sNlYN-1,sN-1) 
xW(yN_1izN_..1)7 0) (zN_1,sN—ilYN-2,sN_2)... W(yi Izi)T (Nzi,si Ix', t'). 

We see that the sum over paths involves a sum over the number N of jumps, 
a multiple integral over all intermediate jump times 81 < s2 < ... < sN, and 
a multiple integral over the intermediate states yi , zi , y2, z2, ... , yN, zN. Here, 
zu  is the state just before the v-th jump, whereas y u  is the state immediately 
after the v-th jump. Finally, the integrand in eqn (1.171) is the corresponding 
probability for a specific path given by the number N,  the 8, and the yu , zu . 

1.5.4 Stochastic calculus for PDPs 
In the preceding sections we have formulated the dynamics of a stochastic Markov 
process X(t) with the help of appropriate time evolution equations for the condi-
tional propagator of the process. Alternatively, one can also describe the process 
in terms of an evolution equation for the random variables itself. Of course, such 
an equation is, in general, not a deterministic differential equation, but must be 
an equation of motion involving random coefficients, that is, a stochastic differ-
ential equation. This way of describing a stochastic process is well known for the 
case of diffusion processes. We first review briefly this case as a motivation for 
our discussion of piecewise deterministic processes. 

1.5.4A Itei calculus for diffusion processes Consider a multivariate diffusion 
process X(t) = (Xl  (t) ,  X2  (t) , . . . , X d (t)) which is governed by the Fokker—
Planck equation (1.129). Taking an arbitrary differentiable scalar function f 
one finds for the expectation value of f(X(t)) by employing the Fokker—Planck 
equation 

0 
2̀E [f(X(t))] = f dx f (x) —

at
p(x , t) at 

1  a2 f 
= E [

0 f gi (X (t)) ±  
OXi  2 OX iDX i 

D j3 (X (t))1 .  (1.172) 
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By use of the increment dX(t) = X (t + dt) X(t) of the process we may rewrite 
this as follows, 

E [f (X (t) + dX (t)) — f ((X (t))]  (1.173) 
82 f  

E [ af g (X (t)) +  13,3  (X (t))] dt + 0 (dt2 ). 
axi  2 aXiaXi 

Now, let us take f to be one of the coordinate functions, f(x) = x i . This 
yields 

E [dXi (t)] E [gi  (X (0)] dt + 0 (dt2 )  (1.174) 

To leading order the expectation value of the increment dXi(t) is proportional to 
dt, where the coefficient is given by the expectation value of gi (X (t)) describing 
the deterministic drift. Next, we take f (x) to be the function f (x) = x,xj  for a 
fixed pair of indices (i, j). The result is then 

E [dXi (t)dX i  (0] = E [Dii  (X (t))] dt + 0 (dt2 ).  (1.175) 

For small dt the covariance matrix of the increments dX i(t) is given by dt times 
the expectation of the diffusion matrix. 

The important point to notice is that the behaviour of the process expressed 
by eqns (1.174) and (1.175) can be reproduced by means of an appropriate linear 
combination of Wiener increments dWi (t),  j  = 1, 2, , d. These increments are 
supposed to be mutually independent and independent of X (t) . If we set 

dX- i (t) 7,-  gi (X (t))dt + (X (t))dW i  (t), (1.176) 

with an appropriate matrix Bii (x), we find with the help of eqns (1.144) and 
(1.145) that 

and 

E [dX-  JO] = E [gi (X (0)] dt, 

E [dk-  (t)d± i (t)] = E [Do (X (t) )] dt + 0 (dt2 ). 

The last equation holds provided the matrix Bii (x) is related to the diffusion 
matrix D 1  (x) by (remember that the summation convention is in force) 

Rik (X)Bik (X)  (x).  (1.179) 

This shows that the mean and the covariance of the increments dX i (t) and 
dX i (t) coincide to order dt. Therefore we see that on small time scales the in-
crements dX i (t) of the diffusion process behave as the increments dX- i (t) which 
are obtained by adding an appropriate linear combination of Wiener increments 
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to the deterministic drift. Thus, one expects that the increments dX i (t) obey a 
stochastic differential equation of the form 

dX i(t) = gi (X (t))dt + Bi i  (X (t))dWi (t).  (1.180) 

It can be shown that the diffusion process X(t), which was defined originally 
in terms of the Fokker—Planck equation for its conditional propagator, is indeed 
equivalent to the stochastic differential equation (1.180). A rigorous mathemati-
cal treatment of stochastic differential equations requires the introduction of the 
concept of stochastic integration which enables the development of a stochastic 
calculus for diffusion processes, known as Itô calculus. Equation (1.180) is then 
to be interpreted as a stochastic differential equation in Itô form. We do not en-
ter here into a detailed discussion of the stochastic calculus, which is the subject 
of several excellent textbooks (Gardiner, 1985; Doob, 1953; Kloeden and Platen, 
1992; Arnold, 1974). 

Let us, however, demonstrate that the increments dX-  i(t) defined by eqn 
(1.176) reproduce correctly, within the desired order, all expectation values of 
the form (1.173) as they are determined through the Fokker—Planck equation. 
To show this we have to determine the expectation value 

E [f(X(t) +  (t)) — f (X (0)1 

= E [f (Xi(t) + gi  (X (t))dt + Bii (X (t))dW (t)) — f (X (0)] . (1.181) 

On using eqns (1.144)—(1.147) we get by expanding f around X(t) and disre-
garding terms of order dt2 , 

E [f(X(t) +  (t)) — f (X (0)] 

E 

= E 

[ (92 f  
B idWkdWi 

dt + 0 (dt2  ). 

+ 0 (dt2 ) 

(1.182) f 

Bii  dWi)  B (gidt +  +  ik 
2 Ox i Oxi  

1  02 f 
D 

[ (X (t)) +  z3  (X (0) 
2 aXiaXi 

This is seen to coincide within order dt with the expectation value (1.173) de-
termined by the Fokker—Planck equation, which proves our statement. 

A similar calculation leads to the following formula for the increment of an 
arbitrary function 0(X(t)) of the stochastic variable, known as the Itô formula, 

00  1 02  0  00 ,d0(X (t)) =  g i(X (t)) + aXiaXi 
 D (X (t))1 dt +  Bi  • (X (t))dW i  (t). 

°xi  2  aXi 3  
(1.183) 

We observe that this expression for the increment of 0 may be obtained directly 
by expanding the difference d0(X(t)) = «X(t) + dX (t)) — «X (t)) in powers of 
dX(t) and by employing the following rules of the Itô calculus: 
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dWi(t)dWi (t) = ciiidt, (1.184) 
dWi (t)dt = 0, 
[dWi(t)] k  = 0,  for k > 2. 

(1.185) 

(1.186) 

In summary, these rules can be stated as follows: (i) Pick up all terms of order 
dt 1 /2 , and dt, whereby dWi(t) is treated as a quantity of order dt 1 / 2 , and (ii) 
discard all terms of order dt312  and higher. 

1.5.4.2 Itô calculus for PDPs Let us now develop an analogous calculus for 
piecewise deterministic processes. To this end, we first consider a real-valued 
PDP X(t) and again define the increments by dX(t) E X (t + dt) — X (t), dt > 0. 
Our aim is to construct, in analogy to the procedure of the foregoing subsection, 
a stochastic differential equation for the PDP which is of the following form, 

dX (t) = g(X (t))dt + dJ(X (t)).  (1.187) 

Obviously, the first term describes the deterministic drift of the PDP. The second 
term dJ(X(t)) represents the jump part of the process. It is intuitively clear that 
this term is not small in the usual sense as dt goes to zero, since X(t) undergoes 
instantaneous jumps of finite size. This fact makes the stochastic calculus for 
PDPs very different from ordinary calculus as we shall see below. 

Our task is to find the statistical properties of the jump part dJ(X (t)). Let us 
assume that the state X(t) is given. According to the Liouville master equation 
(1.150) the system may perform an instantaneous jump from this given state to 
some other state z with a rate W(z A(t)). If no jump occurs in the time interval 
dt we must have dJ(x) = 0, of course, which means that only the deterministic 
drift is present. 

Consider now the quantity dNz (t)dz which is defined to be the number of 
jumps from the given state X(t) into the volume element dz around z, taking 
place during the interval dt. For small dt the average of the random number 
dNz (t)dz must be equal to dt times the rate W(zIX(t))dz for jumping into the 
element dz, that is, 

E [dNz (t)] = W (z1X(t))dt.  (1.188) 

This equation shows that the expectation value on the left-hand side is a condi-
tional expectation, namely it is conditioned on the given state X(t). 

If the random number dNz (t)dz takes on the value 1 we get the new state 
X(t 4- dt) = z, that is the increment dX(t) is equal to z — X(t). Thus we are led 
to the following ansatz for the stochastic jump term, 

dJ(X (t)) = f (z — X (t))dN z (t)dz,  (1.189) 

such that the stochastic differential equation for the PDP can be written as 
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dX (t) = g(X (t))dt + f (z — X (t))dN z (t)dz.  (1.190) 

We have not yet fully specified the statistics of the random quantities dNz (t), 
only their expectation values have been defined in (1.188). Since the PDP involves 
a jump rate which increases linearly with dt one expects that for small dt at most 
one jump can occur, that is, we expect that the relation 

dNz , (t) • dNz (t) = .5(z' — z)dN z (t)  (1.191) 

holds. 
According to eqn (1.191) the random numbers dNz (t) provide a field of inde-

pendent Poisson increments as may be seen as follows. We suppose that, starting 
from the given state X(t), the process may perform a discrete set of transitions 

X(t) -- za  = z a (X(t))  (1.192) 

labelled by an index a. The rate for a particular transition a will be denoted 
by '-ya (X (t)). This rate as well as the final state z a  (X(t)) of the transition may 
depend on the initial state X(t), of course. Hence we have 

W(z1X(t)) = E lic, (X (t))6 [z — z a (X (0)] .  (1.193) 
a 

We further take a disjoint partition of the state space into small elements Az a  in 
such a way that each z a  is contained in precisely on Aza . The random quantities 

dNa (t)E_-- f dN z (t)dz  (1.194) 
Az OE  

therefore denote the number of jumps into the element Aza  during the time 
interval dt. By virtue of eqns (1.188) and (1.193) their expectation values are 
given by 

E(dNa (t)) = ,ya (X (t))dt.  (1.195) 

Using eqn (1.191) we also find 

dNa (t)dNo(t) = CodNa (t).  ( 1. 196) 

This shows that the dNa (t) behave for small dt as independent Poisson incre-
ments (compare with eqns (1.120) and (1.121)). Finally, with these definitions 
the stochastic differential equation (1.190) reduces to the particularly transpar-
ent form 

dX (t) = g(X (t))dt + E {,(x(0) — X (t)} dN a (t).  (1.197) 
a 

This equation has an obvious interpretation: In view of (1.196) either all dNa (t) 
are zero, or dNa (t) = 1 for precisely one index a. In the former case X (t) follows 
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the deterministic drift, in the latter case X(t) performs a particular jump given 
by the index  Q.  

Equations (1.190) or (1.197) provide the desired formulation of a PDP in 
terms of a stochastic differential equation. Let us check that they lead to the 
correct dynamical behaviour as dictated by the Liouville master equation (1.150). 
From the latter we find for the expectation value of the increment of any function 
f 

E [f (X (t) + dX (t)) — f (X (t))]  (1.198) 

, E rofx  g (X (t)) + f If (z) — f (x (t))1W (z1X (t))dz] dt + 0 (dt2 ) . 

Our aim is to show that the same equation is obtained if one substitutes the 
right-hand side of eqn (1.190) for dX (t) and uses the properties (1.188) and 
(1.191). To this end we first determine the powers of the jump part dJ(t) in the 
stochastic differential equation. Invoking eqn (1.191) it is easy to verify that for 
all k =-- 1 5  2, 3, . . . we have 

[dJ (X (t))] k  = f { z — X (t)} k  d1V,(t)dz.  (1.199) 

This means that, after averaging, all powers of dJ (X (t)) are of the same order 
dt. Consider now the expectation value 

E —, E [f (X (t) + g (X (t))dt + dJ (X (t))) — f (X (0)] 
 

(1.200) 

which must be demonstrated to be equal to the right-hand side of eqn (1.198) 
up to terms of order dt2 . This may be achieved by first expanding with respect 
to the drift term, keeping the jump term to all orders, which leads to 

E = E [-
0 f (X + dJ)gdt + f (X + dJ) — f (X)1+ 0(dt 2 ). 
Ox 

(1.201) 

In the first term the derivative of f is evaluated at the point X + dJ. However, 
since this term is already of order dt we can evaluate it at the point  X,  thereby 
making only an error of order dt2 , due to  the above property of dJ. Hence we 
write 

E --,--- E [

Of 

 gdt + f (X + dJ) — f (X)1+ 0(dt 2 ). 
Ox 

(1.202) 

The second term must be treated, however, in an entirely different way, since, on 
averaging, all powers of dJ are of the same order dt, that is, we must evaluate the 
difference f (X + dJ) — f (X) exactly. This is obviously due to the fact that the 
process performs instantaneous jumps of finite size, such that any approximation 
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of this difference by a finite Taylor expansion fails. Hence we write, denoting by 
f( k ) the k-th derivative of  f,  

E [f (X + c1,1) – f (X)] .,--_. E rÉ9  i -i  f (k) (X) [del 
k=1 . E rÉ)  il-  f (k) (X) f {z — X} k  dl Vz (t)dd 
k=1 

E [f If (z) – f (X)} dINT,(t)dzi 

E[f Or (z) - f(x)}w(z1x)dddt.  (1.203) 

Thus we have 

E = E [—

Of

g+ f If (z) – f (X)} W (z1X)dzi dt + 0(dt 2 ), 
Ox 

(1.204) 

which coincides with the right-hand side of (1.198) and proves that the stochastic 
differential equation (1.190) correctly reproduces the expectation values of the 
increments of all functions f.  

Finally we note that stochastic differential equations similar to (1.190) or 
(1.197) also hold in the case of a multivariate process. Explicitly, we may write 

dXi(t) = gi (X (t))dt + f {zi - Xi (t)} dN z (t)dz  (1.205) 

for the stochastic differential equation of a multivariate PDP with components 
X i  (t). 

1.6 Lévy processes 

In the preceding sections our investigation of Markov processes was based mainly 
on the differential Chapman—Kolmogorov equation. An alternative approach is 
to search directly for solutions of the corresponding integral equation. Such a 
strategy is indeed possible if certain symmetry and invariance properties are 
imposed. An example is the requirement that the process is both homogeneous 
in space and time which leads to the important class of Lévy processes (Itô, 
1993; Bertoin, 1996). As will be discussed in this section it is possible to give 
a complete characterization of this class of stochastic processes. Lévy processes 
have a large number of interesting applications (Klafter, Shlesinger and Zumofen, 
1996). An example will be given in Chapter 8, where it is shown that certain 
stable Lévy distributions arise in the stochastic representation of the dynamics 
of open quantum systems. 
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1.6.1 Translation invariant processes 

A Lévy process is defined to be a stochastic process X(t), t > 0, which is both 
homogeneous in space and in time. For simplicity we assume that the process is 
real valued (the generalization to d dimensions is straightforward), and that the 
process starts at time to = 0 at the point X(0) = 0. The propagator of such a 
process depends only on the differences of its time and space arguments, 

T(x,tlx i  ,t 1 ) = Tt _ t ,(x — x`),  (1.206) 

which means that the propagator is invariant with respect to space-time trans-
lations. 

Alternatively, translational invariance may be formulated as follows. We take 
any ordered set of times, 

to E 0 < t1  <t2  < . . . < trn .  (1.207) 

Spatial homogeneity then implies that the m random variables 

X(t) — X(t u _ i ), I. = 1, 2,... , m,  (1.208) 

are mutually independent. Such a process is also called an additive process, or 
a process with independent increments. Homogeneity in time means that the 
random variable X(t + s) — X (ti + s), with t >  t',  follows the same distribution 
as the random variable X(t) — X(e) for all s > 0. Such processes are called 
processes with stationary increments. A Lévy process is thus a stochastic process 
with independent and stationary increments. 

Employing translational invariance we write the Chapman—Kolmogorov equa-
tion as follows, 

T+(y) = f 41  Tt (y — Y i )Tti(Y 1 ),  (1.209) 

which means that the propagator over the time t +t' is equal to the convolution 
of the propagators over the times t and t'. It is thus advantageous to consider 
the characteristic function 

G(k,t) E E 
[e 

 ikx(t)] = f dy e iky Tt(y),  (1.210) 

such that the Chapman—Kolmogorov equation leads to 

G (k , t 1  + t2) = G (k ,ti)G(k , t2) .  (1.211) 

This equation shows that the logarithm ln G (k , t) of the characteristic function 
(the cumulant generating function) is linear in t and that we can write the 
characteristic function as 

G(k,t) = exp [011(k)] .  (1.212) 

The quantity 41(k) is called the characteristic exponent of the process. 
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The characteristic exponent 41 ( k ) is directly related to the generator A of the 
Lévy process. We write the propagator as 

Tt(y) = f—
dk

e -ik vG(k,t) 27r 

f
dk 

(1+ t4j(k)) 0(t 2 ) 
—27r e  

(5(y) + t 0(t2 ). (1.213) f —
dk 

e'
.k

"11(k) 27r 

the generator Hence we get by the definition of 

1 
Ap(x) = f dy [Tt (y) — S(y)] 

dk  . k  
p(x — y) 

f dy[f Y41(k)] p(x — y) Tre' 

f dyA(y)p(x — y). (1.214) 

Thus we observe that the integral kernel A(y) of the generator is equal to the 
Fourier transform of the characteristic exponent 41(k). 

1.6.2 The Lévy -Khintchine formula 

According to eqn (1.211) the characteristic function G (k , t) is the m-th power 
of G(k, t/m). This implies that the propagator over time t is equal to the m-th 
convolution power of the propagator over time t/m, that is, 

Tt  = Tthn  * Ton  * • • • * Tt/m) 
 (1.215) 

where * denotes the convolution and the right-hand side contains m factors. A 
distribution with this property is called infinitely divisible. One can see this more 
directly as follows. We set t„ = vtlm for v = 0, 1, 2, ... , m. By means of the 
identity 

X(t) = E (x(t) _ x(t,)) , 
 (1.216) 

u=1 

the random variable X(t) is represented as a sum of m independent and identi-
cally distributed random numbers. This is precisely the definition for a random 
number X(t) (and its corresponding distribution Te) to be infinitely divisible. 

It is possible to give a complete characterization of all possible Lévy processes 
by making use of the property that their propagators are infinitely divisible. This 
is achieved by a fundamental theorem which is due to Lévy and Khintchine. 
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Applied to the present case this theorem asserts that the most general form of 
the characteristic exponent of a Lévy process is given by the following equation: 

4.1 ( k ) = igk - —D  k 2  + f [e  i" 1  - ikY 0 (h ly1)]W (04.  (1.217) 2 

Here, g and D are real constants with D > 0. 0(x) is the unit step function such 
that 

1\  f 1,  II < 0(h - 
 

y > h.  (1.218) 

This function cuts off the last term in the integral over y at some length scale 
h, the significance of which will be discussed below. Finally, W(y) is some non-
negative measure, the Lévy measure, defined on R {0} with the properties 

if y 2 W(y)dy < oc, 
Ivl<h 

fw 
 (ody < 00.  

IvI>h 

According to the Lévy-Khintchine theorem any translational invariant process 
X(t) has a characteristic exponent 111(k) of the form (1.217). For a given length 
scale h, the constants g and D, and the measure W(y) in this representation are 
uniquely determined by the process. 

To get a feeling for the Lévy-Khintchine representation let us consider some 
simple examples. First we take W(y) 0. Then we have 

and, consequently, 

41 ( k ) = igk - —
D 

k 2  , 
2 

D 
G(k, t) = exp [(igk - k 2) t]. 

(1.221) 

(1.222) 

On Fourier transforming this characteristic function we immediately get 

7 
1  

Tt(Y)  'N/2 Dt exP  2Dt f 
(1.223) 

which is recognized as the propagator of a Gaussian diffusion process with con-
stant drift coefficient g (corresponding to a linear drift) and constant diffusion 
coefficient D. Of course, g and D must be constant since the process is assumed 
to be homogeneous. 
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Now, consider the case g , D --,--- 0 and take the Lévy measure 

W(y) ---- 'O W — yo), 
 (1.224) 

with some positive constant 1/ and yo > h. The characteristic exponent is then 
found to be 

41(k) = 1/ (eik Y° — 1) ,  (1.225) 

such that 

G(k,t) = exp ["yt (e ik Y° — 1)] .  (1.226) 

Thus, X(t) is a Poisson process with rate 'y and step size yo (compare with 
eqn (1.99)) or, equivalently, a Poisson process N(t) with unit step size times MI> 
i.e. X(t) -L--- yo N(t). 

This example is readily generalized to the case that the Lévy measure is a 
discrete sum of (5-functions, 

W(y) ---- E -ya(5(y — ya), 
 (1.227) 

where '-y, > 0 and y, > h. The characteristic function of the corresponding 
process is in this case given by 

G(k,t) = exp = exp ['Tat (  — 1)] .  (1.228) [E 'Tat (e  — 1)1 1-1 
a a 

The result is that the Lévy process X(t) is now a discrete sum of independent 
Poisson processes with rates -y, and step sizes y,. Introducing the corresponding 
independent Poisson processes Na (t) with unit step size we thus have 

X(t) -_, E ya N,(t).  (1.229) 
a 

Hence, 

dx(t) , E yAlV a (t),  (1.230) 
a 

and 

E [dNa (t)] = "yadt, dNa (t)dNi3(t) = 60dNa (t).  (1.231) 

This corresponds exactly to our former results (1.195) and (1.196) for the special 
case of a PDP without drift and with Poisson increments dNc,(t) the statistics 
of which does not depend on X(t), which is due to the translational invariance 
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of the process. Accordingly, the Lévy measure W(y) is equal to W(x + ylx) = 
W(xlx y), which is just a discrete distribution of jump rates. 

In the general case we expect the Lévy measure W(y) to represent a contin-
uous sum of independent Poisson processes indexed by their jump sizes y. This 
can be seen directly from the general form of the generator A as follows with the 
help of expression (1.214) and the Lévy-Khintchine formula: 

Ap(x) = f dy f dk  [i
-
k_ k 2 ] 
 2 

e -iky 
P(.4' - y) (1.232) 

+ f dy f -2d  7rk  f dz [e ik z - 1 - ikz0(h - lz ) ] e-ik YW (z)p(x - y). 

The first term is easily seen to be the generator of a linear diffusion process, 
whereas the second term is determined as 

J dy f dz [ 6(z y) 6 (y) + z0 (h izi) 6 (Y) —aax 1W(z)P(x y) 

f dz W(z)[p(x – z) – p(x) + zO(h – 1z1) :1 3 (x)] •  ( 1 . 233) 

Thus we find for the most general form of the generator of a Lévy process: 

0  D 1 
Ap(x) = [

–g  Ox +  28x2  p(x) (1.234) 

+ f dy W (y)[p(x - y) - p(x) + yO(h - IY1) oax P(x)] • 

Apart from the additional term under the integral which is proportional to 0(h - 
II) this is just the generator of a process obtained by adding a jump process to 
a Gaussian diffusion process. Of course, due to the requirement of translational 
invariance of the process, drift and diffusion coefficient must be constant, and 
the jump rate W(y) in the master equation part in eqn (1.234) only depends on 
the difference y of the positions of the initial and final states. 

What is the significance of the additional term y9(h - y) 8p/0x which obvi- II 
ously depends on the arbitrary length scale h? To answer this question we take a 
closer look at the conditions (1.219) and (1.220) imposed on the Lévy measure. 
These conditions control the behaviour of W(y) at zero and infinity. Up to now 
in this section, and also in the preceding ones, we have always tacitly assumed 
that the total transition rate 

r=  f dyw(y)  (1.235) 

is finite. In this case both conditions (1.219), (1.220) are satisfied for any h > 0. 
But also the quantity flyi<h  dy yW (y) is then finite and we may absorb the last 
term in (1.234) into the drift coefficient, which yields 
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0 D 02  1 
Ap(x) = [ g'  Ox + 2 ax2J P(x)  + f dYw(Y) [P(x  — Y)  

where we have introduced a new drift coefficient by 

(1.236) 

g' = g — f dy yW(y). 
IYI<h \ 

(1.237) 

Thus we see that for a finite total transition rate F the scale h is completely 
arbitrary and the generator of the Lévy process takes on precisely the form 
encountered before. 

The important point to note is, however, that the conditions (1.219) and 
(1.220) do not exclude the possibility that the total transition rate diverges as a 
result of a singularity of W(y) at y = 0. The reason for this divergence is that 
a singularity of the Lévy measure at y = 0 can lead to an accumulation of an 
infinite number of jumps in a finite time interval. As an example take W(y) to 
be proportional to I  y. Such a measure decreases sufficiently rapidly for the 
integral (1.220) to converge, whereas the singularity at y = 0 is weak enough to 
satisfy also (1.219). But the total transition rate given by the integral (1.235) 
clearly diverges. In spite of this, the generator (1.234) and the characteristic 
exponent T(k) are well defined and finite. 

Let us rewrite the general form (1.234) of the generator as follows, 

0  D 02  1 
A.p(x) =  [— g  Ox + 2 Ox2 ] P(x)  + f clY") [P(x  — y)  — P(x)]  

IYI?h 

+ f dyW (y) [p(x — y) — p(x) 4- y -(x)].  (1.238) 
Iv1<t,  

The second term on the right-hand side yields the big jumps of size ly1 > h, 
while the third term involves the small jumps. If we apply the generator to a 
smooth probability density p(x) which varies significantly on a typical length 
scale L»  h, we may expand the integrand in the third term around x to obtain 
the expression 

1 f  a2 j dY Y2  W(Y) ---ox2 P(x). 
IYI<h 

(1.239) 

By condition (1.219) this expression is, for any fixed h > 0, well defined and 
finite. We thus see that the contribution (1.239) from the small jumps leads to 
diffusion-type behaviour of the process on small length scales. 

1.6.3 Stable Lévy processes 
In the preceding subsection we have discussed the most general form of the gen- 
erator of a Lévy process. A question that arises from the foregoing discussion is, 
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are there interesting Lévy measures for which the total transition rate diverges? 
As we shall see below there are such measures the existence of which is closely 
related to the notions of scale invariance and stability of the corresponding pro-
cesses. 

1.6.3.1 Stable distributions and scaling relations A Lévy process X(t) is called 
stable4  if it has the following scaling property. For any u > 0 there is a correspond-
ing A(u) > 0 such that the random number X(ut) follows the same distribution 
as A(u)X(t). This means that a change of the time scale by a factor of u yields 
the same distribution as a change of the length scale by an appropriate factor 
Mu) (here and in the following we shall assume, to be definite, that the variable 
X has the dimension of length). The stability of the process thus expresses a 
certain scale invariance, which is often referred to as self-similarity. We write the 
stability condition symbolically as 

X (ut) --, A(u)X(t),  (1.240) 

whereby the symbol — serves to indicate that the left- and right-hand sides of 
the expression follow the same distribution. 

One can show that a Lévy process is stable if and only if the corresponding 
propagator represents a stable distribution. Let us first define stable distribu-
tions. Consider some random number Z with distribution p(z), and mutually 
independent copies Z 1 , Z2 , . . . Zi, , . . . of Z all with the same distribution p(z). 
Then p(z) is defined to be a stable distribution if for each positive integer m 
there exists a factor A(m) such that the sum an , Zr, has the same distribution 
as the random number A(m)Z, 

M. 

E z, , A(m)Z.  (1.241) 
v.i 

Thus, a distribution p is stable if all m-th convolution powers of p are equal to 
p up to an appropriate change of the scale. A prominent example for a stable 
distribution is the normal distribution which obviously has this property with 
the scaling factor A(m) = -On. 

It is easy to show that the propagator Tt (y) of a stable Lévy process X(t) 
must be a stable distribution: For any m we can write 

771 

x(nt) , E (x(vt) - x([v - lit)). 
,=1 

(1.242) 

The left-hand side in this equation has the same distribution as  
whereas the right-hand side is the sum of m independent, identically distributed 
random numbers  X(ut) — X([v — 1]t) which follow the same distribution as 

4 More precisely, our definition is that of stability in the strict sense. 
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X(t). This shows that the distribution of X(t), namely Tt (y) must be stable. 
The converse is also true: If we take some stable distribution, then it yields the 
propagator of a stable Lévy process. 

Next we investigate what stability means for the characteristic exponent 
kli(k). The relation X(ut) - A(u)X(t) leads to the scaling relation 

(1.243) Tut (Y) =   A (1u) Tt  ( A  (Yu) )  \ 

for the propagator. The corresponding relation for the characteristic functions 
becomes 

1 ‘11(k) = - 41 (A(u)k). u (1.244) 

If we look at the Lévy-Khintchine formula (1.217) we get the following obvious 
solutions of the scaling condition (1.244): For D = W = 0 we have A(u) = 
u which is the scaling for a linear drift, corresponding to the singular stable 
distribution Tt (y) =  ä(y  - gt). For g = W = 0 one finds A(u) = \Fa which is 
the scaling for the Brownian motion case, corresponding to the stable Gaussian 
propagator 

Tt(Y) ----'
1  2 1 

(1.245)  exp   
V27rDt  [ ;Dd .  

The question is now, are there non-trivial Lévy measures that lead to stable 
Lévy processes? To answer this question we put D ,---- 0, since we already know 
that D > 0 for Brownian motion. We keep however a non-vanishing g for reasons 
that will become clear later on. On using the Lévy-Khintchine formula the scaling 
condition (1.244) then takes the form 

igk + f [e 

 

ikY  - 1 — iky0(h - IYI)] 147  (MY  (1.246) 

1  
= i (-A ) gk + f [eik9  -  1 -  ikyO(Ah -  

f y ■ 
u  uÀ  A 

 

10]  W  clY. 

This equation suggests that we can satisfy the scaling relation by taking Lévy 
measures with the property 

1  i y \ 
W(y) O W  U) ' 

provided the scale dependence through the term 9(Alz - y) can be removed in 
some way (it can!). Ignoring this term for a moment we are thus led to (1.247), 
which, of course, could have been obtained directly by dimensional analysis, since 
W(y) has the dimension (length-time) -1 . Thus we find the stable Lévy measures 

C+y 1 c  ' ' Wa(Y) = { C—IY1-1 al 

(1.248) 

(1.247) 
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with some non-negative constants  C.  These measures lead to the scaling relation 

A(u) = u l /',  (1.249) 

that is we have X(ut) — u l /aX(t). 
The possible values for the exponent a, the scaling exponent, are restricted by 

the conditions (1.219) and (1.220) which must be satisfied by any Lévy measure. 
Condition (1.219) leads to a < 2, while condition (1.220) yields a > 0, and 
hence, 

0  <ci  <2.  (1.250) 

Recall that the case a -= 2, corresponding to the scaling relation A(u) = \ru, is 
obtained for a non-vanishing diffusion coefficient D and by setting g = W = 0. 

The above scaling relation has interesting consequences for a sequence of in-
dependent random numbers X, X 1 , X2,... ,X,..., following the corresponding 
stable distribution. Consider the case 0  <ci  < 1. Then we have 

M 

E xv,mvax,  (1.251) 
v=1 

with 1/a > 1. This shows that the sum grows faster than the number in  of 
terms in it. In other words, the maximal term of the sum is likely to become 
very large and to dominate the value of the sum. It is clear that the central limit 
theorem of probability theory is therefore violated which is related to the fact 
that the stable distributions do not have a finite variance for a < 2. Indeed, it 
can be shown that a stable distribution with finite variance must necessarily be 
Gaussian (or concentrated at a single point). This is seen from the fact that the 
density p(y) of a stable distribution with exponent a 2 behaves for large y as 
iYi -1 —ct 

1.6.3.2 Characteristic exponents of stable Lévy processes Our analysis is not 
yet complete since we have neglected above the scale-dependent term in eqn 
(1.246) and since we do not yet know the characteristic exponents Ta (k) of the 
stable processes. 

As we have seen, if one changes the length scale h to some other value h', the 
corresponding change of the characteristic exponent *a  (k) can be compensated 
by an appropriate shift of the drift coefficient which is given by 

g -- g' -T---- g + f dy yWc,(y)[0(1il 
—  II)  — 0 (h — MA . 
 (1.252) 

Henceforth, this new coefficient g' will be called the renormalized drift coefficient. 
Thus we see that the choice of the length scale is to a large extent arbitrary and 
we can employ this freedom to find the characteristic exponents of the stable 
distributions. We distinguish three cases. 
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1. Consider first the case 0  <Q < 1. In this case the integral 

f cly ywa(y) 
 

(1.253) 
IYI<h 

converges. Thus, we can let le go to zero in eqn (1.252). We further put the 
renormalized drift coefficient equal to zero, since a non-zero drift term would 
violate the scaling relation (see eqn (1.246)). The characteristic exponent then 
reduces to 

+00 
0 (k) = f (e lk Y — 1) 14 c,(y)dy 

= C+  
o  

(e iky 1)  dY  c_ f 
y i+c, 

- 00 

dy  
1) 

iYi l+  
(1.254) 

The integrals can be determined explicitly and yield the final result for the 
characteristic exponent of the a-stable distributions 

(k) = ( — Co + i—
lkI

C 
 

(1.255) 

The new constants Co and C1  are related to the constants C± of the Lévy 
measure through 

Co  = — ( C+  + C_M—a) cos (72°) 
 

(1.256) 

— (C+  — C_)F(—a) sin C+:E  .  (1.257) 

Here F denotes the gamma function. As it should be, we have Co > 0 since 
r(—a) < O. Co  is the scale parameter and C1 the symmetry parameter, for 
C1 = 0 the corresponding stable distribution is obviously symmetric. 

2. Consider now the case 1  <Q <2. We cannot follow the above procedure 
in the present case for the integral (1.253) now diverges. However, for 1 < a < 2 
the integral 

f cly ywa(y) 
 

(1.258) 

Y I > h 

is finite. This allows us to take the limit le  oc  in eqn (1.252). Putting again 
the renormalized drift coefficient equal to zero we now have 
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FIG. 1.10. Plots of the propagators T1  (y)  for three a-stable Lévy processes: the 
Gaussian propagator (1.245) with a = 2 and D = 1 (dashed-dotted line), the 
Cauchy propagator (1.263) with a = 1 and Co  = 1 (dashed line), and the 
propagator (1.264) corresponding to a = 1/2 (solid line). 

+00 

T a  (k) 
 f ( e iky _ 1 _ i ky) Wa( Y )dY 

 (1.259) 
- 00 

+00 
dy  dy  C+  f  (e  1 - iky)  i+a  + C_ f (ei" 1 iky) 

O  
1Y11+a 

- 00 

Again the integrals can be evaluated explicitly and the result is precisely the same 
as above, that is, we again get eqn (1.255) with the coefficients given by (1.256) 
and (1.257). Note that again Co  > 0 since now F(-û)  > 0 and cos(7r0/2)  <0.  

3. The case a = 1 requires special treatment which involves a non-zero 
drift coefficient. Note that the drift term satisfies the scaling condition (see eqn 
(1.246)) since a = 1 gives A(u) = u. It can be shown that for the process to be 
strictly stable the Lévy measure W1  (y) must be taken to be symmetric, Thus in 
the special case a = 1 we write 

Co  1 
Co > O. 

iky dy 
 

(1.260) 

(1.261) 

(Y) =  —
IY12

, 

The characteristic exponent is then given by 
+00 

= 41 1(k)  iCi k +  1 
7r  

f (e ikY - 
1 + (y I h) 2  ) y 2  

- 00 

Note that we have included here a finite drift term with coefficient C1  and that 
we have changed the cutoff function from 0 (h - ly1) to the function 1/(1+ (y I h)2) 



REFERENCES  57 

This is permissible since this change also amounts to a finite renormalization of 
the drift coefficient. The integral in eqn (1.261) can be evaluated explicitly using 
the method of residues which yields the h-independent value —7r1kl. As a result 
one finds the same formula as for the other cases, namely 

4, i (k) = iCik — Co* = ( — Co + i l
k

C].) ikl.  (1.262) 

On Fourier transforming this result for C1  ,--- 0 we immediately get the propagator 

Tt(y)  _ f dk e —c o lkt—ik y  _ 1  Co t 
27r  7  (C0 t)2 4_ y 2'  

representing the symmetric Cauchy process (Fig. 1.10). 
We have obtained above the most general form for the characteristic expo-

nents of stable Lévy processes with scaling exponent a. In addition we have 
explicit expressions for the corresponding Lévy measures. However, the stable 
distribution functions obtained by Fourier transforming the characteristic func-
tions are known explicitly only in very special cases. For a = 1 we have already 
seen that one gets the Cauchy distribution. Another case is provided by the 
propagator given by 

t2  Tt  (y) =  r  t exp { — —2y  } ,  y> 0,  (1.264) 
-V27ry 3  

and by Tt (y) --= 0 for y < 0 (see Fig. 1.10). This case corresponds to a stable 
distribution with scaling exponent a = 1/2, scale parameter Co  = 1, and sym-
metry parameter Ci = 1. Hence we have A(u) = u2 . We shall discuss in Chapter 
8 a physical example where this stable distribution emerges in the distribution 
of the waiting times of a PDP. 
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2 

QUANTUM PROBABILITY 

Having outlined the classical theory of probability and stochastic processes we 
now turn to the notion of probability in quantum mechanics. The emphasis in 
this chapter lies on the standard formulation of quantum mechanics as may be 
found in much more detail in many excellent textbooks (von Neumann, 1955; 
Landau and Lifshitz, 1958; Cohen-Tannoudji, Diu and Laloë, 1977; Bohm, 1993). 

In the first section we concentrate on those aspects which clarify the relation 
between quantum mechanics and classical probability theory. Most importantly, 
we discuss that, although quantum mechanics is an intrinsically probabilistic 
theory, the application of probabilistic concepts to quantum mechanics is quite 
different from that of the classical theory. It turns out that the notion of a prob-
ability space together with the corresponding space of random variables is not 
applicable to quantum mechanics. On the contrary, this concept is incompatible 
with the basic structures of quantum mechanics, namely a Hilbert space of state 
vectors and the corresponding algebra of observables. 

We further introduce in this chapter the concept of a composite quantum 
system which will be important for the study of open systems. A section on 
quantum entropies is also included. The description of measurements performed 
on a quantum system provides an important part of the statistical interpreta-
tion of quantum mechanics. We therefore present in this chapter the foundations 
of the generalized theory of quantum measurement which is based on the no-
tions of operations and effects. These concepts will play a significant rôle in the 
development of a stochastic theory of open quantum systems. 

2.1 The statistical interpretation of quantum mechanics 

In this section we outline the basic mathematical notions used to formulate 
quantum mechanics and its statistical interpretation. We start with some formal 
concepts from functional analysis and then present in the following subsections 
the fundamentals of their physical and statistical significance. Further mathe-
matical details on the probabilistic interpretation of quantum mechanics may be 
found in Holevo (1982). 

2.1.1 Self- adjoint operators and the spectral theorem 
In quantum mechanics the state of a closed physical system is described by a 
state vector 5 , or wave function V) which is an element of some Hilbert space 9-t. 

5 We shall use both the notation 1/) and the `ket' 10 for an element of the Hilbert space "?-1. 
The symbol (V)1 denotes an element of the dual space )-1*  7-1, i.e. a 'bra' vector. 
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The scalar product in the Hilbert space will be denoted by angular brackets, 
that is we write MO  for the scalar product of two state vectors V), 0 E  H.  
Accordingly, the norm of I,b is given by 

NH E \/(010). (2.1) 

The Hilbert space is assumed to be separable, which means that there exists a 
finite or countable dense orthonormal basis { v a } of state vectors satisfying 

(ValVO) = 60 ,  

such that each state vector 10) has a unique decomposition of the form 

lo) = E kooxvam. 
Û 

(2.2) 

(2.3) 

The measurable quantities, or observables, of the closed physical system are 
represented by linear, self-adjoint operators in the Hilbert space. A linear oper-
ator _h, 

(2.4) 

is self-adjoint if its domain D(k coincides with the domain  D(k) of the adjoint 
operator M and if RV) = MO on the common domain. 

A theorem of fundamental importance in connection with self-adjoint oper-
ators is the spectral theorem (Akhiezer and Glazman, 1981). It states that for 
any self-adjoint operator _h there exists a unique spectral family Er  such that 

+0,0 
_h = f r dEr .  (2.5) 

- 00 

The spectral family Er , where r E R, is a one-parameter family of commuting 
orthogonal projection operators with the following properties: 

1. The family of projections is monotonically increasing, 

Er, > Er  for r' > r.  (2.6) _  

2. The family is continuous from the right, 

lim Er+, = Er .  (2.7) 
5- ->--i-0 

3. It has the following limits 

lim Er  = 0,  lim Er  = I,  (2.8) 

where / denotes the unit operator. 
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Equation (2.5) represents the spectral decomposition of self-adjoint operators on 
which the statistical interpretation of quantum mechanics is based. 

The spectral theorem asserts that all projectors Er  of the spectral family 
commute with .I' and that the domain of 1-=1 can be characterized as follows 

+00 

V()  = { 0 G R 
 LL 

 r2  401E, ki)) < oo } .  (2.9) 
00 

Note that the integral on the right-hand side is an ordinary (Riemann—Stieltjes) 
integral which may be written in the following alternative way 

+00  +00 
f r2  d(PIErttP) = f r2  cilWr011 2  = 1 1?- 011 2 . (2.10) 

 

More generally, for any continuous function f (r) one can define the operator 
function f (i?' ) in terms of the spectral decomposition 

+Do 

f(1) 
=f 

 f (r)dEr . 

—00 

(2.11) 

Furthermore, the spectral family gives rise to an orthogonal decomposition 
of the unit operator. To this end, consider any disjoint partition of the real axis 
into intervals Ara  = (ra_ i ,ra ], and define the corresponding projectors 

AE, = Er„ — Er„,.  (2.12) 

With the help of the properties (2.6)—(2.8) of the spectral family we find the 
completeness relation 

= I 
 

(2.13) 
a 

and the orthogonality relation 

AE,  LE  3 = Sa0AE0.  (2.14) 

The spectrum spec(R) of a self-adjoint operator R can be expressed in terms 
of the properties of its spectral family E. To this end, a point r E R is said to 
be stationary if for some E > 0 

Er+E  Er  _E- - O.  (2.15) 

This means that the spectral family is constant in an s-neighbourhood of r. The 
spectrum spec(R) is then defined to be the set of all non-stationary points. 
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The spectrum spec(Ê) may be decomposed into the discrete spectrum and 
the continuous spectrum. The discrete spectrum consists of all so-called jump 
points. A point r E R is called a jump point if for any E > 0 one has 

Er  — Er, 0,  (2.16) 

which means that Er  is not continuous from the left in r. If, for example, the 
dimension of Er  increases by one in r, we have for some normalized vector ça 

Er  — Er_E =  (2.17) 

It followsfollows that ço is an eigenvector of ft with eigenvalue r, i.e. ko = rcp. On 
the other hand, a point r E spec(it) belongs to the continuous spectrum if the 
spectral family is continuous in r. 

Example 2.1 The simplest example of a self-adjoint operator .1' is that of an 
operator with a purely discrete spectrum which is obtained from the eigenvalue 
equation 

-hOn,k — rnOn,k• 
 (2.18) 

The index n labels the different eigenvalues r n , whereas k distinguishes the eigen-
vectors belonging to the same eigenvalue. Thus, the projector onto the eigenspace 
with eigenvalue r n  may be written as 

ll, = E 1 On,k) (On,k1 • 
k 

The spectral family takes the form 

Er  = E rin  
rn <r 

and the spectral decomposition of it is given by 

+00 
1-  = f r dEr  = E NIL. 

—co n 

(2.19) 

(2.20) 

(2.21) 

Example 2.2 In the Schrödinger representation the position operator 0 of a 
one-dimensional system with Hilbert space 9-1 = L2 (a), the space of square-
integrable functions on R, is defined by 

(00)(x) = x0(x).  (2.22) 

Its spectral family may be defined as follows, 

{ 0(x), for x < q 1 (Eq 0)(x) = 0,  for x > q f = 9(q — x)0(x).  (2.23) 

Obviously, e-2 has only a continuous spectrum which covers the whole real axis. 
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Example 2.3 The momentum operator P canonically conjugated to e) is de-
fined by (setting Planck's constant h equal to 1) 

(N)(x) = - i -(x) . 

 (2.24) 

The domain of P consists of all functions 0(x) which are absolutely continuous 
and whose derivative belongs to L2 (R). The spectral family of the momentum 
operator is most easily defined with the help of the Fourier transform 

+00 

f dx e —i ldx 0(x) 
 

(2.25) 

of 0(x) in terms of which we get 

(Eplp)(x) = 
P f dk eikx1 , (k).  
j 27r 

—00 
(2.26) 

It can easily be verified that the momentum operator also has a purely continuous 
spectrum which covers the whole real axis and that (2.26) provides, in fact, the 
spectral decomposition of the momentum operator. Namely, if 0(x) is absolutely 
continuous we find with the help of (2.26) 

+00  +00 

f p dEpO(x) = f - 7.3rd  p e'Pxl,b(p) 

—00  —00 
+00 

f
f dp L i  d eipx ) 17)(3) _i  d 0(x)  

27r  dx  )  dx 

= (P0)(x). (2.27) 

2.1.2 Observables and random variables 
The statistical interpretation of quantum mechanics is closely connected to the 
spectral decomposition (2.5) of self-adjoint operators .h introduced in the pre-
ceding subsection. It is based on the following postulates. 

We consider a statistical ensemble E consisting of a large number of identically 
prepared quantum systems S (1) , S(2) , ... , s(N) , 

E = {so) , s( 2 ) , . . . , s( N)} .  (2.28) 

As in the classical theory, the construction of such an ensemble requires the 
specification of a certain set of experimental conditions which may be realized, 
at least in principle, an infinite number of times. Each realization of this iden-
tical set of conditions leads to the preparation of a single quantum mechanical 
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system S(i)  which belongs to the ensemble E. The first postulate is that, under 
certain conditions (more on this point later), a complete characterization of such 
a statistical ensemble is provided by a normalized state vector 10) in the Hilbert 
space 1-1 pertaining to the quantum mechanical system. 

The second postulate is that the measurable quantities of the statistical en-
semble E are represented by self-adjoint operators in the Hilbert space 1-1. The 
outcomes of the measurements of an observable it, performed on the ensemble 
described by 10), represent a real-valued random variable R with a cumulative 
distribution function FR(r) which is given by 

FR(r) = 
 (2.29) 

where Er  is the spectral family of ft. 
Equation (2.29) represents the basis of the statistical interpretation (von Neu-

mann, 1955). It is easy to see that FR (r) has, in fact, the properties (1.18)—(1.20) 
of a cumulative distribution function of a real random variable R. Note that this 
is a direct consequence of the properties (2.6)—(2.8) of the spectral family Er . 
In functional analysis FR (r) is referred to as the spectral measure. In view of 
eqn (2.29) it is also obvious that the possible outcomes of the measurement rep-
resented by it are given by the values of r which belong to the spectrum of  R. 
Namely, if r is not contained in spec(ii) then the spectral family is constant in a 
neighbourhood of r and, thus, also FR(r) is constant there. The probability for 
the random variable R to fall into this neighbourhood is therefore equal to zero. 

On the basis of eqn (2.29) one can also define the probabilities for more 
general events as follows. If B denotes some Borel set of 111 we can introduce a 
corresponding projection operator by means of 

E(B) = f dEr,  (2.30) 

such that the probability for the measurement outcome to fall into the set B is 
given by 

PR(B ) = (0 1E ( B) 10).  (2.31) 

For example, the probability for r to fall into the interval (a, b]  is found to 
be equal to (//dEb —  Ea )  = FR (b) — FR (a). In view of eqn (2.30) we have a 
correspondence between the Borel sets B and the projection operators E(B) 
defined in terms of the spectral family. For any sequence of disjoint Borel sets 
Bi  we have 

E (U i B i ) 
 

(2.32) 

and a formally identical relation holds for the corresponding probabilities, namely 
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PR (uiBi) = E PR(Bi)• i 
(2.33) 

In mathematical terms, the map B 1--> E(B) with the property (2.32) is called a 
projection-valued measure. 

Thus we see that an observable .1 leads, via its spectral family, to a real 
random variable R which describes the probabilities for all possible measurement 
outcomes. The sample space Q is the real axis and the algebra of events B is given 
by the Borel sets of R. In particular, on using the spectral decomposition one 
finds for the mean value of R the well-known expression 

+00  +00 
E(R) = f r dFR(r) = f r d(P1-Er*) =  

—cc  —00 
(2.34) 

whereas the variance of R reads 

Var(R) = E(R 2 ) — [E(R)] 2  = (0A 2 10) — (70 42.  (2.35) 

2.1.3 Pure states and statistical mixtures 

Our characterization of quantum statistical ensembles is not yet the most general 
one encountered in the applications of quantum theory. An obvious way to obtain 
more general ensembles is the following. Consider a number M of ensembles 
6'1 , 6.2, ... ' gm of the type introduced in the preceding subsection. Each of these 
ensembles is described by a normalized state vector ,0a , a = 1, 2, ... , M, in the 
underlying Hilbert space R. It is then natural to study the statistics of the total 
ensemble g which is obtained by mixing all the Ea  with respective weights wa  
satisfying 

m 
w, > 0, E wa  = 1. 

ct=i 
(2.36) 

The mixing is achieved by taking a large number Na  of systems from each Ea . 
The total number N = Ea  Na  of systems then constitutes the new ensemble g 
and the weights wa  are given by wa  = Na/N. 

2.1.3.1 The statistical formulae of quantum mechanics According to the rules 
of classical probability theory any self-adjoint operator .h now yields a random 
variable R with cumulative distribution function 

FR(r) = E wa opa 1E, *06). 
 (2.37) 

a 

This equation generalizes eqn (2.29) to the present case. Accordingly, the mean 
value of R is now given by 
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E(R)=Ewc,(7palikpa).  (2.38) 
a 

These formulae can be cast into a compact form by introducing the density 
matrix, or statistical operator, 

P = Ewal0a)(0al,  (2.39) 

which enables one to write the distribution function of the random variable R as 

FR (r) = tr {-ErP},  (2.40) 

where tr denotes the trace of an operator. The trace of an operator A is defined 
by 

trA = E(cpi A kpi ) ,  (2.41) 

where {(pi} is an orthonormal basis of the Hilbert space 7-1. Provided the trace 
exists, it is easy to show that it does not depend on the particular choice of the 
basis {cp i }. 

By the same argument, the mean and the variance of R can now be written 
in the following form, 

E(R) = tr{kp}, (2.42) 

Var(R) = tr{R 2p} — [tr{Ao}] 2  . (2.43) 

Following the usual notation we also write the expectation value of R as 

(R) = tr{R- p}, 

and its variance as 

(2.44) 

Var(ft) = (f1 2 ) — (2.45) 

Thus we have the result that the total ensemble E can, with regard to its 
statistical properties, be completely characterized by a density matrix p. With 
the help of eqn (2.39) one easily verifies that p is self-adjoint, positive 6  and has 
trace one, 

pt ==  p > 0, trp  1.  (2.46) 

The above reasoning can be confirmed further by an axiomatic approach (von 
Neumann, 1955). Namely, consider the set of bounded self-adjoint operators on 

6 An operator A is said to be positive if for all E V(A)  the inequality 0/00 > 0 holds, 
which is often simply written as A > O. Note that we include the equality sign in the definition 
of positivity. 
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the Hilbert space R. We denote this set by R. We seek a mathematical expression 
for the expectation value, which is regarded as a real functional E(R) on R, that 
is, which assigns a real number to every if? E R. A natural set of conditions any 
such functional must fulfil is the following: 

É(I) = 1,  (2.47) 
> a,  (2.48) 

E (Eat)  =Ec1t(11,), ci E R.  (2.49) 

The first condition means that the unit operator, corresponding to a determin-
istic (i.e. dispersion-free) variable R = 1, has expectation 1. The second condi-
tion expresses the natural requirement that the expectation of any projection 
operator H must be positive. This requirement results from our former observa-
tion that the events of the theory correspond to the projection operators in the 
Hilbert space such that E(H) is the probability for the event represented by H 
(see eqn (2.30) and (2.31)). Finally, the third condition states that E should be 
a linear functional on R,. A fundamental theorem (Langerholc, 1965) then states 
that any functional E(R) with these properties must necessarily be of the form 
(2.42), that is there exists a unique operator p with the properties (2.46) such 
that E(ft) = E(R) = tr(R p). 

In our definition (2.39) of the density matrix we did not assume that the 
l'006) are orthogonal. However, given p we can, of course, diagonalize it. Since p 
is positive, its eigenvalues are greater than or equal to zero. The spectral theory of 
density operators asserts that p has only a countable number of strictly positive 
eigenvalues pi  > 0. The point 0 is the only possible accumulation point of the 
spectrum. Furthermore, the strictly positive eigenvalues are finitely degenerate, 
and 0 is the only possible infinitely degenerate eigenvalue. Hence, the spectral 
decomposition of p can be written as 

P =  ( 2.50) 

where the sum extends over a complete set of eigenstates ko i ) with the eigenvalues 
pi . The normalization condition therefore takes the form 

trp =  = 1.  (2.51) 

2.1.3.2 Properties of the density matrix We briefly discuss the most important 
general properties of density matrices. The first one is the inequality 

trp2  < trp = 1.  (2.52) 

It may be shown that the equality sign holds if and only if p has the form 
p = WO for some unit state vector 0). This is the case considered in the 
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previous subsection 2.1.2. An ensemble with this property is said to be in a 
pure state. It is clear that one can replace the above kp) by exp(iX)10), with 
an arbitrary phase x E [0, 27), without changing the density matrix and the 
statistical formulae. Thus, a pure state is uniquely described by a ray in the 
underlying Hilbert space. In mathematical terms, one can therefore say that the 
set of pure states is isomorphic to the set of rays in 7-1, that is, to the projective 
Hilbert space. 

If the left-hand side in (2.52) is strictly less than 1, the ensemble is called a 
statistical mixture. Alternatively, the difference between pure states and mixtures 
may be characterized as follows. The set of all density matrices will be denoted 
by S(7-1). This set is convex which means that for any two density matrices pi. 
and p2  the convex linear combination 

p = Api  + (1— A)P2,  À E [0, 1- ] ,  (2.53) 

is also a density matrix. Physically, this convex linear combination describes an 
ensemble which is obtained from the mixture of the ensembles Ei  (corresponding 
to pl ) and 82 (corresponding to p2 ) with weights A and 1 — A, respectively. The 
pure states lie on the boundary of the set S(7-1) and are distinguished by the 
fact that they cannot be represented as a non-trivial convex linear combination 
of two different density matrices. More precisely, if p is a pure state and if (2.53) 
holds for some A G (0, 1), it follows that pi. = p2 = p. The physical implication is 
that any decomposition of a pure statistical ensemble E into two sub-ensembles 
El and 82 does not change in any way the statistical properties, that is, Ei  and 
82 have the same statistics as E. 

In eqn (2.39) the density matrix has been introduced as a convex linear com-
bination of normalized, not necessarily orthogonal states kp„) with weights w, 
satisfying (2.36). Given some density matrix p this decomposition into a convex 
linear combination of pure states is, in general, not unique (Hughston, Jozsa and 
Wootters, 1993; Nielsen and Chuang, 2000). In order to characterize the possible 
convex linear combinations which give rise to one and the same density matrix it 
is convenient to work with non-normalized states = -Vw,10„) and to write 
the density matrix as 

P =  (2.54) 

Such a set of states { kpo } is said to generate the given density matrix p. Consider 
now two sets of states {kJ)}  and { i„)}. These two sets generate the same 
density matrix p, that is 

P =  11a)(1 =  (2.55) 

if and only if there exists a unitary matrix u = (u,8) such that 
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k-ba)=Euaork3).  (2.56) 

Here, one appends zero vectors to the set with the smaller number of states in 
such a way that the number of states in both sets becomes equal. 

This statement will be very useful later on, for example in the character-
ization of the freedom one has in the representation of generalized quantum 
measurements. To prove the statement we first assume that (2.56) holds. By 
direct substitution it is then easily seen that (2.55) holds, that is both sets gen-
erate the same density matrix. Conversely, suppose that (2.55) holds. We write 
the spectral decomposition (2.50) of p as p = E = i)(k, where 
Consider any state 1 ,0) which is orthogonal to the space spanned by the states 

i 1;5  kp i ) 

{Içoi)}. Then we have 

oplpko =0= E (ok-ba)12,  (2.57) 
a 

and we conclude that (010a ) = 0 for all a and for all 10) of the above form. This 
means that 1/ -- ,:t ) can be expressed as a linear combination of the Iço" i ), 

k-ba) = Ecctirpi).  (2.58) 

This gives 

P > iXi =E 
a 

from which we deduce that 

E ct 
a ca, J 

a 

)

a* i cai  k-loi) (cAi I, (2.59) 

(2.60) 

This means that the matrix c = (c, i ) can be supplemented to form a square and 
unitary matrix such that 

ka) 
 
=EcaoPo),  (2.61) 

where, if appropriate, zero vectors must be appended to the set of the states 
4i ). In the same manner we get a relation of the form 

via) = Eda,40),  (2.62) 
0 

with a unitary matrix d. The last two equations yield a relation of the desired 
form (2.56), where the matrix u is defined by u = cdt which is unitary since c 
and d are unitary. 
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2.1.3.3 The non-existence of dispersion-free ensembles It is a well-known fact 
that quantum mechanics cannot be formulated as a statistical theory on a clas-
sical probability space. There exist many mathematical theorems which express 
this fact in various ways (see, e.g. Gudder, 1979). Here and in the following 
subsection we shall elucidate this point from a probabilistic viewpoint. 

Consider an arbitrary Borel algebra B of events on a sample space St (see 
Section 1.1). One can then always introduce a dispersion-free measure p, on B in 
the following way: Take some fixed point wo  E Q and define for A E B, 

p(A) E { 01 : for wo  E A, 
for wo  çt A. (2.63) 

The probability space thus defined has the property that all random variables 
X on it are dispersion-free. In fact, the cumulative distribution of X is given by 
(see eqn (1.17)) 

{ 0, for x < xo , Fx (x) = 1, for x > xo . (2.64) 

This shows that X is a sharp, deterministic variable which takes on the single 
value xo  = X(wo ) with unit probability. 

By a well-known theorem of von Neumann (von Neumann, 1955) in quan-
tum mechanics the situation is markedly different, namely there do not exist 
dispersion-free ensembles E of whatsoever type. This is easily demonstrated with 
the help of the statistical formulae derived above. Namely, if E were such an en-
semble and p its statistical operator we must have Var(R) = 0 for all observables 
1-=/, that is 

e  , 
tr {.fi2 p} = [tr ppl]

2 
 . (2.65) 

Taking for R the one-dimensional projections It = IOW, 11011 = 1, one finds 

(01P10) = (01)010) 2 ,  (2.66) 

and, therefore, (00 )  must be identically 0 or 1 for all unit vectors in R. 
It follows that p = 0 or p = I, which is a contradiction for both cases do 
not represent a statistical operator (they violate the normalization condition 
tr(p) = 1; if one admits non-normalizable density matrices the case p = 0 is 
clearly excluded, but also the case p = I is excluded since it does not represent 
a dispersion-free ensemble as is easily demonstrated directly). 

2.1.4 Joint probabilities in quantum mechanics 
As we have seen, a self-adjoint operator it leads via its spectral family Er  to a 
random variable R with cumulative distribution function FR (r) given by (2.29) 
(for simplicity we consider here only ensembles in pure states). Consider now 
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two self-adjoint operators it ]. and R2 and the corresponding random variables 
R1 , R2 with distribution functions 

 

Fi (r) = (7PLE:,/p), i = 1,2,  (2.67) 

where 41  and Er2  denote the spectral families of Pi  and R2 respectively. An 
important question is then, of what nature are the statistical correlations between 
the random variables R1  and R2 and can one describe these correlations in terms 
of a classical joint probability? 

This question is answered by a theorem of Nelson (1967) which asserts, es-
sentially, that two observables .h 1  and R2 can be represented in all states as 
random variables on a common, classical probability space if and only if they 
commute, that is, if and only if [k , /-42] = 0. Thus, the correlations between 
non-commuting observables do not in general admit the characterization with 
the help of a classical joint probability distribution. 

Let us formulate this theorem more precisely. To this end, consider two ran-
dom numbers R 1 , R2 on a common probability space with probability measure 
p. We denote by 

F(ri, r2) = P (Ri < r1, R2 < r2)  (2.68) 

their cumulative joint probability distribution. If R1  and R2 are statistically inde-
pendent (see eqn (1.26)) the joint probability distribution factorizes, F(ri , r2 ) = 
F1 (r i  ) .F2  (r2 ).  In that case, F(ri , r2) can be reconstructed, of course, from knowl-
edge of the marginal distributions F1 (ri  ) and F2 (7-2 ) . This is not possible if Ri 
and R2 are statistically dependent. However, if the distribution function of the 
random variable 

k • R k i R i  + k2R2,  (2.69) 

namely the function 

 

Fk.R(r) = (kiRI + k2R2 < r)  (2.70) 

is known for all real kl, k 2 , the joint distribution F(ri , r2 ) is uniquely determined. 
This is a theorem of classical probability theory and can be shown as follows. 
Recall that F(ri, r2) is uniquely determined by its characteristic function 

G(k 1 ,k2 ) = f exp  + k2 r2)] dF(ri , r2 ).  (2.71) 
R2 

This equation can be written as 

+00 

 

G(k1,k2) 
 =f 

 rclFk.R(r),  (2.72) 
—00 

which shows explicitly that the characteristic function of F(ri , r2) and, therefore, 
F(r i  , r2 ) itself can be obtained from knowledge of Fk.R(r). 



+co 

f e"dFk.R(r) = (11) 

= (0 lexp (ik • .fi)10), 

G(ki  , k2) = 

+00 

f e ir dErk.1:1  
, ) 

(2.75) 
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Turn now to quantum mechanics and consider the above self-adjoint operators 
-k1,  R2.  We assume that also the linear combination 

k • ft ki Pi +  k2î2  (2.73) 

is self-adjoint for all real k 1 ,  k2  and denote by Erk 'k  the spectral family of the 
operator k • P. One should expect then that the self-adjoint operator (2.73) cor-
responds to the random variable (2.69) which means, according to the statistical 
formulae of quantum mechanics, that the distribution function of (2.69) is given 
by 

Fk.R(r) = (0044 10. 
 (2.74) 

If this is true the observables il l  and R2 have a joint probability distribution 
F(r i , r2 ) which can be determined from Fk . R (r) with the help of eqn (2.72). 
Thus we are led to the following definition: Two observables R1  and R2 are said 
to have a joint probability distribution in the state 0 if there exist a classical 
probability space and two random numbers R I , R2 on it such that for all real 
k 1 ,  k2  eqn (2.74) holds. 

Inserting eqn (2.74) into eqn (2.72) we get 

where we have applied eqn (2.11) to the function f(r) = exp(ir) and to the 
operator k• ft. Thus we see that, if I'L and R2 have a joint probability distribution 
in the state 0, then (2.75) is necessarily its characteristic function. 

Let us investigate the expectation values generated by G(k i , k2 ). The first 
terms of its Taylor expansion around k = 0 are given by 

G(k1,k2) = 1 + iki(01f1110) + ik2(01-h210) - 4k  Win10) - --k2  (141410) 

- -1 kik2(01- 1?‘ ift2 + fl2f1111,b) + 0(k3 ).  (2.76) 
2 

This shows that G(k i , k2 ) generates the quantum expectation value of the sym-
metrically ordered product (i/11/2 + -1?- 2-ii1)/ 2 , but not that of the operator 
i(R 1 R 2  — iat1 )/2. In other words, G does not contain any information on the 
difference between the expectations (0 -1-=‘11 1/21'0) and (01-k ii1 kb ) • 

With the above definition of joint probability we can now give the precise 
formulation of Nelson's theorem: The observables R1  and R2 have a joint proba-
bility distribution in all states 0 if and only if they commute, that is if and only 
if [Ri , R2] = O. 
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It is clear that R i  and  1?2 have a joint probability distribution if they com-
mute, namely 

F(ri,r2) == (01-E 1 E 2 ).  (2.77) 

As is easily checked using the properties of the spectral families Erl , and 422 , this 
is a real, non-negative function with the properties of a true joint distribution 
function. In addition, it leads to the characteristic function (2.75) and the relation 
(2.74) is satisfied. 

The general proof of the only if part of the theorem is more difficult. We 
refrain from giving the details of this proof, but merely discuss the important 
case Ri = 0, the position operator, and f212 = P, the momentum operator, 
satisfying the Heisenberg commutation relation (h = 1), 

(2.78) 

It is then easily seen that the function (2.75) is not the characteristic function 
of a classical joint probability distribution. In fact, on Fourier transforming we 
find that the density of F (q, p) is given by 

f (q, 
32F  d2k7ri f _d2k7r2 e—i(kiq+k2P) 
Oqap  

d2k7ri  f d2k:  f 

e i( k 1 0+k2 15) (2.79) 

  

dxe—i(k,q+k2p)+ikik212+ikix (s)0(x + k2). 

Here we have introduced the position representation of the state vector, 0(x) = 
(x10). Further we made use of 

 

ei(k1ed+k2i3) = eik10 eik2P e ik1k212  (2.80) 

 

and of the fact that exp(ik 2 /5) induces the translation x  X  + k2. Carrying out 
the integrations over k i  and x and substituting s = -k2 we finally arrive at 

+00 

 

f (q, p) 
 =f 

 —
ds e 8* (q  + s12)0(q —  s/2).  (2.81) 

- 00 

This is the famous Wigner distribution (see, e.g. Louisell, 1990). It is interesting 
to see that, in the present context, it arises as the only possible candidate for a 
joint probability density of position and momentum. However, as is well known 
it does not represent a true probability density since it is not positive for general 
0. An example is shown in Fig. 2.1. 

In spite of the fact that the Wigner distribution is not a true probability 
distribution it is a useful quantity. Its Fourier transform is known as the Wigner 
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-4 

FIG. 2.1. The Wigner distribution (2.81) corresponding to the third excited 
eigenstate of the harmonic oscillator Hamiltonian H = -21 (p2 02). 

characteristic function. For a system described by an arbitrary density matrix p 
it is given by 

G(ki, k2) = tr exp (i(ki + k2 /5)) P} 
 

(2.82) 

Introducing the creation and destruction operators bt and b through the relations 
= (b+bt)INa P = — i(b — b)/v', and using the complex variable a = ik i  —k2  

one often writes the Wigner characteristic function as 

x(a, a*) = tr {exp (abt — ce*b)  p}.  (2.83) 

Similarly to eqn (2.76), it may be shown by an expansion of the exponential that 
x(a, cy*) generates the symmetrically ordered products of b and bt through the 
formula 

an+rn 
tr { (bnbil s  pl =  Dam  x(a, a*) 

Œ=Œ*=0 

(2.84) 

  

Here, the symmetrically ordered product On  bt m  s  is defined to be the average 
over all possibilities of ordering the operators in the product bn  bt m  

2.2 Composite quantum systems 

In the theory of open quantum systems the notion of composite quantum systems 
is fundamental. The Hilbert space of a composite quantum system is the tensor 
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product space of the Hilbert spaces describing its subsystems. The present section 
serves to introduce some basic features of tensor products of Hilbert spaces and 
of the statistical properties of composite systems and their subsystems. 

2.2.1 Tensor product 
We consider two quantum systems S(1)  and S(2) with respective Hilbert spaces 
70) and 'H (2). The two systems may represent two (distinguishable) particles, 
two different composite objects (e.g. two atoms or molecules), or two different 
degrees of freedom of the same object (e.g. rotational and translational degrees 
of freedom of a molecule). In general, SO-)  and S( 2) interact with each other. 
According to the postulates of quantum mechanics the state space 7/ of the 
combined system S = S (1)  + S(2)  is given by the tensor product of the Hilbert 
spaces pertaining to the subsystems S (1)  and S( 2), 

71  R (1) 0 74 (2) .  

If we take fixed orthonormal bases kc), 1) )1 and { v (i2) ) } in 71 (1)  and 71(2) , re- 
spectively, a general state in the tensor product space I/ may be written as 

141) = E  kP ,(i 1) )  IV?).  (2.86) 
ii 

This means that the elements k0,1)) 0(2) 110i  ) form a basis of the tensor product 
space and that the dimension of 71 is equal to the product of the dimensions of 
R(1)  and 71 (2) . 

If A(') is an operator acting in 70 )  and A( 2 ) is an operator acting in 7t( 2) , 
one defines their tensor product A( 1 ) 0 A (2) by 

(AM o  A(2) )(101) )  blo (i2) )) E (A(')1(p.(1))) 
0 (A (2) bp 3(2) ),  (2.87) 

and by a linear extension of this formula for arbitrary states (2.86). Any operator 
A acting on 71  can be represented as a linear combination of tensor products, 

A = E A(2) 0 A(2).  (2.88) 
a 

Specifically, the observables of system S( 1 ) take the form AO )  0 1(2), while ob-
servables of system S(2)  are given by the expression /( 1 ) 0 A(2) . The identity 
operators in 70 )  and 71( 2)  are denoted, respectively, by PO and  1(2) . 

The density matrix of the composite system S is an operator in the state space 
S(7-1). If the subsystems S (1 ) and S(2) are uncorrelated the total density matrix 
takes the form of a tensor product of the density matrices of the subsystems, 

(2.89) 

(2.85) 

This implies that the expectation value of any tensor product of operators per-
taining to the subsystems factorizes, 
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(A(1)  0 A(2) ) E tr (A(1)  0 A(2) ) pl = tr (1)  p(1) } fr(2) {A(2)p(2)} 

= (A ( ' ) ) • (A (2) ).  (2.90) 

Here, tr (1)  and tr (2)  denote the partial traces over the Hilbert spaces R (1)  and 
71( 2), respectively. 

If one is only interested in observables of subsystem S(1) , that is only in 
operators of the form 

 

A = A' o 1(2) ,  (2.91) 

it is convenient to introduce the reduced density matrix pertaining to the sub-
system by means of 

p(l) =— tr (2) p.  (2.92) 

In this equation tr( 2)  denotes the partial trace taken over the second Hilbert space 
R(2) . A density matrix which is obtained in this way through a partial trace of 
a density matrix in some larger space is sometimes called an improper mixture. 
It completely describes the statistical properties of all observables belonging to 
the subsystem under consideration since the expectation value of any observable 
of the form (2.91) can be determined with the help of the formula 

(A) = tr (1) 0(1) p(1) }.  (2.93) 

We have seen that the reduced density matrix of subsystem S( 1)  is obtained 
by taking the partial trace over subsystem S( 2). It might be interesting to note 
that this way of describing subsystem S( 1)  is the only possible. More precisely, 
if we seek a function f : 8(R) S(9 -1( 1) ) which maps the state space of the 
composite system to the state space of the subsystem, then the function given 
by f (p) = tr (2) p is the only one with the property 

tr (1) {A(1) f(p)}  tr (A(1)  1(2) ) pl .  (2.94) 

Thus, the definition of the reduced density matrix given above is the only possible 
one which is compatible with the statistical formulae. 

To prove this statement it is convenient to introduce the Liouville space. 
Given some Hilbert space R the Liouville space is the space of Hilbert—Schmidt 
operators, that is the space of operators A in R for which trAtA is finite. 
Equipped with the scalar product 

(A, B) trfAtB1  (2.95) 

the space of Hilbert—Schmidt operators becomes a Hilbert space. One can there-
fore introduce an orthonormal basis {Bi }  in this space satisfying the orthogo-
nality and the completeness conditions, 
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(Bi , Bi ) = 6,  (2.96) 

A = E Bi  (Bi , A).  (2.97) 

Let us consider now the Liouville space associated with the state space 71(1)  
of subsystem S(1) . We take an orthonormal basis {Bi } of Hermitian operators 
Bi on R(1)  • Using the completeness condition (2.97) and the requirement (2.94) 
we then get 

f (p) = E Bi (Bi, f(P)) 

E Bitr (1)  {Bi f (p)} 

EBitr{(Bi  /(2) )p} 

= EBitr(1){B ip(1)} 

= 

p( l)  = tr (2) p, (2.98) 

which proves that f (p) is necessarily given by the partial trace of p taken over 
subsystem S( 2) . 

2.2.2 Schmidt decomposition and entanglement 

An important characterization of the states of a composite quantum system is 
obtained with the help of the Schmidt decomposition theorem. This theorem 
asserts that for any given state IT) E R (1)  0 11 (2)  there exist orthonormal bases, 
the Schmidt bases { lxn} and {lx (i2)5 } in 71 (1)  and  9( ( 2) , respectively, such that 

= Eailx1)) ® le).  (2.99) 

The ai  are complex numbers called Schmidt coefficients. For a normalized state 
we have obviously, 

(TIT) = E  2  =  1  (2.100) 

It must be noted that the Schmidt bases which allow a representation of the 
form (2.99) depend, in general, on the given state IT). 

The Schmidt decomposition theorem can be proven as follows. First, we may 
suppose without restriction that R (1 ) and R( 2 ) have the same dimension. The 
matrix a = (aii) of coefficients in the decomposition (2.86) with respect to the 
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fixed basis vectors vi(1) ) and Ivi(2) ) is then a square matrix. By use of the singular 
value decomposition this matrix can always be written as a = udv, where u and 
v are unitary matrices and d is a diagonal matrix with non-negative diagonal 
elements ai  > 0. Thus, the decomposition (2.86) takes the form 

IT) = EuijaiVik kli i) ) 0  1V (k2) ) 
 

(2.101) 
iik 

By virtue of the unitarity of u and v the vectors defined by 

l (i2)  x) 

Euiibp,(i 1 )), 

=  ( 2 ) , 
vikivk /, 

(2.102) 

(2. 1 03 ) 

form orthonormal bases in 11 (1)  and  9( (2) , respectively. Using these expressions 
in eqn (2.101) we immediately obtain the Schmidt decomposition (2.99). Note 
that the proof also demonstrates that the Schmidt bases can always be chosen 
such that the Schmidt coefficients are real and non-negative. 

The number of non-zero Schmidt coefficients ai  is called the Schmidt number. 
This number is invariant with respect to unitary transformations u( 1 ) and U(2) 
which act only in the respective spaces 7/( 1 ) and  71 (2 ). For the same reason the 
Schmidt number does not depend on the particular Schmidt bases chosen and is 
thus uniquely defined for a given state IT). 

A state IT) E  71 (1)  011 (2)  is said to be entangled if it cannot be written as a 
tensor product ko(1) ) 0 I v (2) ) of states of the subsystems. If IT) can be written 
as a tensor product we call it a product state. It follows from the Schmidt 
decomposition theorem that IT) is an entangled state if and only if the Schmidt 
number is larger than 1. Equivalently, IT)  is a product state if and only if its 
Schmidt number is equal to 1. Another notion will be important later on: If the 
absolute values of all non-vanishing Schmidt coefficients for a given state Alf) are 
equal to each other the state is said to be maximally entangled. 

The Schmidt decomposition can be used to prove several interesting state-
ments about the states of a composite system and its subsystems. For example, 
if the combined system S is in a pure state p = 141 )011 1 the reduced density 
matrices p(l)  = tr(2) p and p(2)  = tr( 1) p have the same eigenvalues. In fact, the 
Schmidt decomposition of IT) immediately yields 

p(1) tr (2) {1T)(TII = E lad21x(i 1 ))(x(i 1 ) 

p(2) = tr (1) {0)(TII = E clei121x(i 2 ))(x(i, 2)k 

(2.104) 

(2.105) 

from which the statement follows. We note that the subsystems are, in general, 
described by mixed states. In particular, if IT) is maximally entangled the re-
duced densities are proportional to the identities in the subspaces spanned by 
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the Schmidt basis vectors belonging to the non-vanishing Schmidt coefficients. 
Moreover, these representations show that Ili) is a product state if and only if 
the reduced density matrix p(l ) and, therefore, also p( 2) describe pure states. 

2.3 Quantum entropies 

Quantum entropies play a crucial rôle in quantum statistical mechanics and 
quantum information theory. In this section we briefly review the basic defini-
tions and some important properties of quantum entropies, which will be used 
in later sections to characterize, for example, the information gained in a quan-
tum measurement and the irreversible nature of the quantum dynamics of open 
systems. More details about quantum entropies may be found in a review article 
by Werl (1978) and in the book by Nielsen and Chuang (2000). 

2.3.1 Von Neumann entropy 

The von Neumann entropy provides an important entropy functional used in 
quantum statistical mechanics and thermodynamics. Given the state of a quan-
tum statistical ensemble in terms of a density matrix p it is defined by 

S(p)  —tr {pinp}  (2.106) 

In the present section we set the Boltzmann constant kB equal to 1, that is we 
measure temperatures in units of energy. Using the spectral decomposition of 
the density matrix, 

P =EPibPi)(Pil,  0, E pi  = 1,  (2.107) 

we can write 

S(P) =  Pi 1nPi  1/({Pi}).  (2.108) 

In these expressions it is understood that 0 • ln O  0. For a mathematically 
precise definition one defines S(p) by means of equation (2.106) if the trace is 
finite, and sets S(p) = d- oo otherwise. 

Equation (2.108) shows that the von Neumann entropy is equal to the Shan-
non information entropy H({p i  }) of the distribution i pi , that is of the random 
number / with the distribution pi  = = i) given by the spectral decomposi-
tion of the density matrix p. A statistical mixture which is described by p can be 
obtained by mixing pure ensembles described by states ko i ) with corresponding 
weights pi . Then S(p) expresses our uncertainty, or lack of knowledge about the 
realization of a particular state bpi) in the mixture. 

We list without proof some important properties of the von Neumann en-
tropy which make evident its importance for quantum statistical mechanics and 
quantum information theory. 
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1. For all density matrices one has 

8(p) > 0,  (2.109) 

where the equality sign holds if and only if p is a pure state. 
2. If the dimension of the Hilbert space is finite, dim 7-1 = D < oo, the von 

Neumann entropy is bounded from above S`(p) < ln D, where the equality 
sign holds if and only if p is the completely mixed or infinite temperature 
state p = I ID. 

3. The von Neumann entropy is invariant with respect to unitary transfor-
mations U of the Hilbert space, that is S(UpUt)= S(p). 

4. The von Neumann entropy is a concave functional p 1-4 S(p) on the space 
of density matrices. This means that for any collection of densities pi and 
numbers Ai  > 0 satisfying Ei  Ai  = 1 one has the inequality 

>  (2.110) 

The equality sign in this relation holds if and only if all pi  with non-
vanishing Ai  are equal to each other. This property is called strict concavity 
of the entropy functional. In physical terms it means that our uncertainty 
about the state p = Ei  Aipi  is greater than or equal to the average uncer-
tainty of the states pi  that constitute the total mixture. 

5. Consider a composite system with Hilbert space 7-1 = 71 (1)  0 71 (2)  and 
denote by p the density matrix of the total system and by p( 1 ) = tr( 2)p 
and p( 2) = tr(l) p the densities of the subsystems. Then the von Neumann 
entropy obeys the so-called subadditivity condition, 

S(p) < S(p 1 ) + S(p (2) ),  (2.111) 

where the equality sign holds if and only if the total density matrix de-
scribes an uncorrelated state, p = p(1) p().  Thus, our uncertainty about 
the product state p( 1) p(2 ) is, in general, greater than our uncertainty 
about the state p of the composite system. In other words, by tracing over 
the subsystems we lose information on correlations between the subsystems 
and, consequently, increase the entropy. If P = 111')(411 is a pure state we 
have S(p) = 0. It follows from the Schmidt decomposition that p(1)  and 
p(2)  have  the same eigenvalues (see eqns (2.104) and (2.105)) and, thus the 
von Neumann entropies of the subsystems are equal to each other. This 
yields 

S(po) = S(p2) = - E  >0,  (2.112) 

and the left-hand side of the inequality is strictly greater than zero if and 
only if IT) is an entangled state. 
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2.3.2 Relative entropy 

For a given pair of density matrices p and a the relative entropy is defined by 

S(pa)  tr {p ln pl tr {pin o- } .  (2.113) 

To give a rigorous definition one introduces the kernel of a density matrix as the 
space spanned by the eigenstates with zero eigenvalue, and the image of a density 
matrix as the space spanned by the eigenstates belonging to the non-vanishing 
eigenvalues. The relative entropy is then defined to be equal to +co if the kernel 
of a has a non-trivial intersection with the image of p. 

A physical interpretation for the relative entropy can be given if we consider 
again a composite quantum system as in point 5 of Subsection 2.3.1. Then we 
have 

s(pl Ip(1)  ® 10 (2) ) = s(P(1) ) + s(P(2) )  s(p).  (2.114) 

The entropy of the density matrix p of a combined system relative to the corre-
sponding uncorrelated state p(1)  p(2)  is thus a measure of the change of the von 
Neumann entropy resulting from the tracing over the subsystems, and provides 
a measure for the corresponding information loss. 

Let us summarize some important properties of the relative entropy func-
tional. 

1. The relative entropy fulfils the inequality 

S(P10- ) > 0  (2.115) 

for all p and all a, which is known as the Klein inequality. The equality 
sign holds if and only if p =  a. With the help of eqn (2.114) the Klein 
inequality leads to the subadditivity property (2.111) of the von Neumann 
entropy. 

2. Similarly to the von Neumann entropy, the relative entropy is invariant 
with respect to unitary transformations U, 

S(UpUtlUo- Ut) = s(p 1 10.)-  (2.116) 

3. The relative entropy is jointly convex in its arguments. This means that 
for 0 < A < 1 the inequality 

S(pa)  AS(Pdlai) +  — A)S(P211 0-2) 
 

(2.117) 

is satisfied, where p = Api + (1 —  A)p2 and a --= Au 1  + (1 — A)o - 2 - 

4. Setting p( 1 ) = tr (2) p and a(1)  = tr( 2 )o-  we have 

 

s(po )  dam) < s(pl 
 

(2.118) 

Thus, the tracing over a subsystem in both input arguments reduces the 
relative entropy. In particular, if p is an uncorrelated state we find 

s(0( 1) 1 1 .7(1) ) = S(P (1)  P(2) 11.7(1)  g P(2) ).  (2.119) 
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We finally comment briefly on a theorem which is of fundamental importance 
in many proofs of entropy inequalities. This is Lieb's theorem which states that 
the functional 

ft (A, B) = —tr {XtAt XB 1-t }  (2.120) 

is jointly convex in its arguments A and B. Here, A and B are positive operators, 
while X is an arbitrary fixed operator and t is a fixed number in the interval [0, 1]. 
As an example, we note that Lieb's theorem plays a crucial rôle in the proof of 
the strong subadditivity of the von Neumann entropy (Lieb, 1973) which asserts 
that for any system which is composed of three subsystems S (1) , 8( 2 ) and S(3 ) 
the inequality 

s (p( 1,2,3)) + S(p2 ) 
< s(p( 1,2 )) + s (p( 2,3)) (2.121) 

holds, where p(123)  is the density matrix of the total system and 

p ,, = tl' (3)(123) , (2.122) 
= tr (l) p(1,2,3), (2.123) 

p(2)  -= tr (1 '3) p(1 ' 2 ' 3) , (2.124) 

are reduced density matrices pertaining to the subsystems SO) + 8(2) , 8 (2)  + S( 3)  
and 8(2), respectively. For classical systems the proof of strong subadditivity is 
relatively simple. By contrast, no easy proof of strong subadditivity is known in 
the quantum case (for details, see Werl, 1978; Nielsen and Chuang, 2000). 

We shall use Lieb's theorem in Chapter 3 to prove that the entropy production 
rate for a quantum dynamical semigroup is a convex functional on the state 
space of an open quantum system. As a preparatory step we take A = B = p in 
eqn (2.120) to get the convex functional 

ft (p) - —tr {Xtp t Xp l-t } .  (2.125) 

Since fo (p) -= —tr{XtXp} is a linear functional we conclude that the derivative 
of ft (p) with respect to t taken at t = 0 is also a convex functional. Thus, by 
Lieb's theorem the functional 

pi-4 —tr { (XpXt — XtXp) lnp}  (2.126) 

is convex. To prove convexity of the entropy production rate we have to con-
nect the expression under the trace to the generator of an irreversible quantum 
dynamical semigroup which will be derived in Chapter 3. 

2.3.3 Linear entropy 

As another measure for the purity of states it is sometimes useful to use, instead 
of the von Neumann entropy, the so-called linear entropy Si (p)  which is defined 
by 
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St (p) --= tr p - p2  = 1 - trp2 .  (2.127) 

We can immediately give an upper and a lower bound for this functional, 

0 < Si(p) < 1.  (2.128) 

The first inequality is obvious from the inequality (2.52), which also shows that 
Si(p) is equal to zero if and only if p is a pure state. The second inequality follows 
from the fact that trp2  is a positive operator. 

For a D-dimensional space, dirn1-1 --= D, we have the upper bound 

1 
Si(p) <1— —

D.  
(2.129) 

The functional Si(p) attains its maximal value for the infinite-temperature state 
p , I1D. 

2.4 The theory of quantum measurement 
In this section we discuss the quantum theory of measurement which is funda-
mental to the statistical interpretation of quantum mechanics. A general intro-
duction may be found in the book by Gottfried (1974). 

The measurement process in quantum mechanics plays a dual rôle. On the one 
hand, it describes the way in which the state of a quantum system changes if a 
measurement is performed on it, thereby influencing the predictions on the future 
behaviour of the system. On the other hand, it gives a unique prescription for 
the preparation of a quantum system in a definite state. Thus, the measurement 
process tells us how to choose the set of experimental conditions we have been 
talking about at the beginning of Section 2.1.2 and which led to the realization 
of quantum statistical ensembles. 

P = (2.130) tr {E(B)pE(B)} 

describes the sub-ensemble E' consisting of those systems for which property B 
has been found to be true. This is the well-known von Neumann—Liiders projec-
tion postulate (von Neumann, 1955; Eiders, 1951). Note that the denominator in 
(2.130) ensures that p' is normalized, tip' = 1, and that it is just the probability 
for the measured property to occur, namely 

P(B) --= tr {E(B)pE(B)} = tr {E(B)p} .  (2.131) 

If we take some self-adjoint operator 1 , then B can be, for example, a Borel 
set of 111, the corresponding event being that the random variable R takes a value 

2.4.1 Ideal quantum measurements 
The fundamental measurement postulate of quantum mechanics may be formu-
lated as follows. Suppose that some property B with corresponding projection 
operator E(B) is measured on a quantum statistical ensemble E described by 
the density matrix p. Then, after the measurement, the density matrix 

E(B)pE(B) 
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in B. The projection operator E(B) is defined in terms of the spectral family of 
.1 by eqn (2.30). For example, consider the orthogonal decomposition of unity 
which is given by the projections AE„, defined in eqn (2.12). The probability for 
the event R E Ar, then takes the form 

= tr {AE,p} ,  (2.132) 

whereas the sub-ensemble corresponding to this particular event is described by 
the density matrix 

1  
(2.133) 

The probabilities  P(r) are normalized to 1 in view of the completeness relation 
(2.13), 

= 1.  (2.134) 
a 

The density matrices p% of the sub-ensembles are orthogonal in the sense that 
P'aP"3 := 60,010- 

The measurement of an orthogonal decomposition AE,„ of unity thus leads 
to a decomposition of the original ensemble g into the various sub-ensembles 
labelled by the index a. Such a splitting of the original ensemble into various sub-
ensembles, each of which being conditioned on a specific measurement outcome, 
is called a selective measurement. 

One could also imagine an experimental situation in which the various sub-
ensembles are again mixed with the probabilities P(Ara ) of their occurrence. 
The resulting ensemble is then described by the density matrix 

P(Ar,)p'o, --= E AE,pAE,.  (2.135) 
a  a 

This remixing of the sub-ensembles after the measurement is referred to as non-
selective measurement. 

As another example, take a self-adjoint operator .fi with a discrete, possibly 
degenerate spectrum (see Example 2.1) and the initial density matrix p --= 
The probability for the measurement of the discrete eigenvalue rn , that is, for 
the event R = r72  corresponding to the projection operator II„ , is given by 

P(r) = tr {ILO — (01 11n10).  (2.136) 

The corresponding sub-ensemble is described by the density matrix 

rin10)(//) Inn  — 
10 (0 / 

P'n  P(rn) 
(2.137) 
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which implies that the measured sub-ensemble may be represented by the nor-
malized state vector 

o =  (2.138) 

Thus we see that the sub-ensemble is again a pure state. This is not true, in 
general, if the initial density matrix p is a true mixture. If however the eigenvalue 
rn  is non-degenerate, the projection being Iln  = 10n) (Onl , then its measurement 
does lead to a sub-ensemble describable by a pure state 0, even if p is a true 
mixture, namely 0 = On  with probability  P(r) = (On 1P1 On)• 

Finally, we study the position operator Q (see Example 2.2). Suppose that 
an ideal measurement of the event Q G A EE (a, b], that is, of the event that the 
coordinate lies in the interval (a, b] is performed on an ensemble E in the pure 
state p ,10)(01. The probability for this event is 

JP(A) = tr {E(A)p} -= f dx  (x)2,  (2.139) 
a 

and the corresponding sub-ensemble is to be described by the pure state p' = 
10)(01, where 

{p(A)--i / 2 0 , x ., , ) a<x<_b 0(x) --= 0,  x < a, x > b (2.140) 

represents the new wave function after the measurement. 

2.4.2 Operations and effects 

It is important to emphasize that the last example of the preceding subsection 
describes the ideal quantum measurement of the projection E(A) which is de-
rived from the continuous spectral family Eq  of the position operator Q. One 
must expect, however, that in practice it is not the exact spectral family Eq  
that is measured, but rather some kind of approximation which involves the fi-
nite resolution of the detector. Moreover, as we shall see, there are many other 
important variants of quantum measurement schemes that are encountered in 
practice. It turns out that in this context the generalized measurement theory 
based on the notions of operations and effects is extremely useful. 

We consider some measurement scheme which yields a set M of possible 
outcomes Tn G M. One may consider M as a classical sample space, and the 
possible outcomes Tn as its elementary events. For simplicity we generally assume 
the set M to be discrete. The measurement is performed on some quantum 
statistical ensemble which is described by a density matrix p. 

The generalized theory of quantum measurements (Kraus, 1983; Davies, 1976; 
Braginsky and Khalili, 1992) is based on the following concepts which are illus-
trated in Fig. 2.2 and which may be viewed as natural generalizations of the von 
Neumann—Liiders projection postulate (compare with eqns (2.130) and (2.131)): 
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1. The measurement outcome m represents a classical random number with 
probability distribution 

P( rri) = tr {Fm p} ,  (2.141) 

where F, is a positive operator, called the effect, which satisfies the nor-
malization condition 

E F, = I, 
mEM 

such that P(m) is also normalized, that is, 

E P(m) = 1. 

mEM 

(2.142) 

(2.143) 

2. For the case that the measurement is a selective one, the sub-ensemble of 
those systems for which the outcome in has been found is to be described 
by the density matrix 

P,, — Pern) -l cprn(p), 
 (2.144) 

where cb, = (1. m  (p) is a positive super-operator, called an operation, which 
maps positive operators to positive operators. The operation 4., is further 
assumed to obey the consistency condition 

tr (1)„(p) = tr {F,p} ,  (2.145) 

which yields, together with eqn (2.141), the normalization of the density 
matrix p, namely 

tr pirn  --= P (m) - 1  tr cb m (p) = 1.  (2.146) 

3. For the corresponding non-selective measurement we get the density matrix 

P1 --= E P(rn)p/m =  (2.147) 
mEM  mEM 

which is normalized according to eqns (2.145) and (2.142), 

trpf  --= tr c1( p) = E tr {Fm p} = trp = 1.  (2.148) 
mem  mem 

The von Neumann-Liiders scheme for an ideal quantum measurement is ob-
viously a special case of the above general setting. Namely, taking the orthogonal 
decomposition of unity AE, and considering M to be the set of intervals Ar, 
of that decomposition we find for the measurement outcome in = Ar„ the effect 



THE THEORY OF QUANTUM MEASUREMENT  87 

}

Pm , = i+,,) (13 m(P) P' = Ern (Drn(P) 

P(m) = tr{ F„p} 

readout m 

FIG. 2.2. Illustration of the operation 4), and the effect Fm, for a generalized 
measurement scheme. 

Fin  = AE, and the operation  t(p) = AE,pAE,. Furthermore, the complete-
ness relation (2.13) ensures that eqn (2.142) holds, whereas (2.145) follows from 
the fact that the AE, are projection operators. 

As a natural generalization of this example one may consider an operation 
given by 

and the corresponding effect 

QmPQ trn, 

Fin  = 1-2 17n 1-2„, 

where the 52„ are linear operators in the underlying Hilbert space satisfying the 
normalization condition 

E Fin  = E 1-217,12, = I.  (2.151) 
mEM  mEM 

As we have seen, an ideal quantum measurement gives rise to a projection-
valued measure which associates with each measurement outcome m = Ar, a 
projection operator F, = AE,. The above concept of generalized measurement 
theory leads, in a natural way, to the more general idea of a positive operator-
valued measure which associates with each measurement outcome m a positive 
operator Fin  =1-2tin f2„. A specific example of the above general concepts will be 
discussed in Subsections 2.4.5 and 2.4.6. 

2.4.3 Representation theorem for quantum operations 

For practical applications it is often very helpful to work with an explicit rep-
resentation for the operations cl.„. Such a representation is provided by an im-
portant theorem which is due to Kraus (1983). We first formulate the three 
conditions underlying this theorem and then briefly sketch the proof. 

We consider a collection of positive maps (1),n (p) labelled by the possible 
outcomes m of a generalized measurement. Each of these maps is required to 
fulfil the following three conditions. 
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1. Since we intend to interpret P(rn) = tr I(p) as the probability of the 
outcome m we first demand that 

0< tr (1)(p) < 1.  (2.152) 

2. The map al, n, is further required to be convex linear, that is for any collec-
tion of density matrices pi and non-negative numbers pi  > 0 with E i  pi  = 1 
we require 

cb, (Pipi) -= EPicl'rn(Pi)• 
 (2.153) 

This condition may be motivated with the help of Bayes's theorem (1.11). 
To this end, we suppose that the state p = E i  pi pi describes an ensemble 
which is obtained by preparing the states pi  with probabilities pi. We then 
expect that the following relation holds, 

cDm(P) 4(p)
tr 4,m(p) = EP(4m) tr,Drn (A). 

 (2.154) 

The left-hand side represents the state of the total mixture under the con-
dition that the outcome m occurred. The quantity 4.,,(pi)/tr cl.,,(pi) gives 
the state after the outcome in  occurred under the condition that the state 
pi has been prepared. This state is multiplied with the probability p(ilm) 
which is the probability that the state pi  has been prepared under the 
condition that the outcome in  occurred, that is under the condition that 
the operation (1),, acts on the state. Applying Bayes's theorem (1.11) we 
obtain 

Ailm) P(Tnli)  Pz  
 tr cDrn (PO  Pz  tr in (p)  

(2.155) 

where  p(mi) = tr cb m (p,) is the probability of the occurrence of the out-
come in  under the condition that pi has been prepared. Note also that pi 
is the unconditioned probability of the preparation of pi , while tr cl, ,,(p) is 
the unconditioned probability of the occurrence of the outcome in. Sub-
stituting (2.155) into (2.154) leads to the convex linearity (2.153) of the 
operation. 

3. Finally, the map 4, is required to be completely positive. This condition is 
much stronger than positivity (for an example, see Gorini, Kossakowski and 
Sudarshan, 1976) and can be formulated as follows. Positivity of (1), means 
that (1),(A) is positive for any positive operator A acting on the Hilbert 
space 9-1. Consider now a second Hilbert space 9-1 of arbitrary dimension 
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D. We can then define a combined operation  rn ®/ which acts on the 
tensor product 74 0 74 as follows, 

( m  ®I) (E /la  Ba ) =  4,m(Aa) Ba .  (2.156) 
a  a 

Complete positivity means that not only is 4), positive, but also the com-
bined operation (1),, 01 for all dimensions D, that is (I., maps positive 
operators of the composite system to positive operators. Physically, this is 
a reasonable condition since the combined operation cb m  0I may be viewed 
as an operation which operates locally on the first of two widely separated 
systems without influencing the second system. 

The representation theorem for quantum operations now states that an oper-
ation 4), satisfies the above three conditions if and only if there exist a countable 
set of operators Q m k such that the operation can be written as 

(krn(P) = E QmkPQ rnt  (2.157) 

while the effects satisfy 

 

= E Qrnt  < I.  (2.158) 

These are the most general forms for operations and effects. 
We briefly sketch the proof of the representation theorem for finite-dimen-

sional spaces. Suppose first that we have an operation (1. m  which is given by 
operators Qm k as in eqns (2.157) and (2.158). Then (D in  obviously satisfies the 
three conditions given above. For example, complete positivity of (I),T, follows 
immediately since 

(Qrnk I) ilAnt  -010 (VmklAkarnk) > 0  (2.159) 

for positive operators A acting on the product 94  where we have defined 
kornk)  (Qtrnk Pp). 

Conversely, suppose we have an operation (D rn  satisfying the above three 
conditions. Let us give an explicit construction for the operators Q m k. To this 
end, we take an auxiliary Hilbert space 74 of the same dimension as the original 
space 9-1, and choose fixed orthonormal bases  {Xi)}  and {IV} in 9-1 and 94, 
respectively. Next we introduce the maximally entangled state 

(2.160) 

and define the operator 

am  (cD, ®  (1(p)(vI) • 
 (2.161) 

We note that o-n, is an operator in the tensor product space pertaining to the 
combined system. By virtue of the complete positivity of (1),, this operator is 
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positive since l(p)((pl is positive. Therefore, am  has a spectral decomposition of 
the form 

am E Ivrfloopmk • 
 (2.162) 

The states 11 (p ink) are states of the composite system and are, in general, not 
normalized. Finally, for any state 

(2.163) 

in 9-1 we introduce a corresponding state in 94 by means of 

Iro)  (2.164) 

For each index k the equation 

1 rnk1 11)) (17*Prnk) = EaAikprno  (2.165) 

then defines a linear operator on 9-1 . We now prove that the collection of operators 
O ink represents the operation (I. rn  in accordance with eqn (2.157). To this end, 
we first consider the pure case. With the help of our definitions we obtain 

E ornkloomwrnk Eo-plvmk)(0mk  = (010-rnlq) 

(m.  0  no(p)(pDlo) 
= ENomoxixxi 1)  O Ui)U./16) 

cDrn(lXi)(XiDa;ai. 

Hence, we have 

cDrn(10)(01) = EQrnk*)(019trnle 

(2.166) 

(2.167) 

This proves the representation (2.157) for pure states. The general case easily 
follows with the help of the convex linearity of (1. m . Finally, the inequality in 
(2.158) is a direct consequence of the condition (2.152). 

The representation theorem shows that a completely positive quantum oper-
ation cb m  can be represented in terms of a set of operators Qmk • This gives rise 
to the interesting question concerning the freedom in the choice of the operators 
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S-2 ink . Consider two sets Ift ink l and {0,k } of operators which represent opera-
tions (b m  and ci, ,, respectively, in accordance with the representation theorem, 

cDrn(P)--= EQmkpf2t,,, 
 (2.168) 

Ln(P) = Ef2mkpf2tink .  (2.169) 
Ic  

Adding zero operators to the smaller set we can always ensure that both sets 
contain the same number of elements. Then both operations are equal, that is 
cb ni  --= $ n„ if and only if there exists a unitary matrix u --= (uki) such that 

Qmk --Euk/omi. 
 (2.170) 

Thus, two quantum operations are equal to each other if and only if their cor-
responding  Il-operators  are related through a linear combination involving a 
unitary coefficient matrix. 

To prove the above statement let us first suppose that (2.170) is satisfied. By 
use of the representations (2.168), (2.169) it follows immediately that cD m  --= 
Conversely, assuming (b m  --= 0i, we have 

E ,mkpf,trnk E fimkpo tink  (2.171) 

for all densities p. Using the same construction and the same notation as in the 
proof of the representation theorem we define 

l'Prnk) = (Qrnk ® -T)R°))  rnk) = (Ornk ® 
 (2.172) 

which yields 

l'Prnk)(Pmk1 = Pmk)(137nkl•  (2.173) 

This shows that the positive operator am  is generated by the two sets of states 
l'Prnk)} and {Wo rnk)}. These states are therefore related through 

koink) =Euk/ int)  (2.174) 

with some unitary matrix u (see eqn (2.56)). For arbitrary 110 we have 

Qink1 11) ) --= ( '1;  bPrnk) --= Euk1(0- 1(-pm,/)--= Euk1f4n/p),  (2.175) 

which gives eqn (2.170), as was to be shown. 
An important implication of the above statement is that any operation cb m  

acting on the state space of a system with a D-dimensional Hilbert space can be 
represented with the help of at most D 2  operators  12mk. 
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2.4.4 Quantum measurement and entropy 

In general, a quantum measurement induces a change of the von Neumann en-
tropy. We define the entropy change in a non-selective quantum measurement 
described by operations €1., as 

AS = S(d) — S(p) = S ( 
 

m (p)) — S(p).  (2.176) 

Consider first an ideal quantum measurement in which case (1.,(p) = 
with orthogonal projections Hm , satisfying Ern  Hm  = I. From the Klein inequal-
ity (2.115) we get 

0 < S(P11P') = — S(P) tr{P In P'}.  (2.177) 

With the help of the completeness relation and of the fact that p' = E rn  limpH, 
commutes with the projections Hm , the second term on the right-hand side of 
the equality sign is found to be 

{ li —tr{pinp'} = —tr E m p On p') II, 
m 

= —tr {E 11,p11,2  ln p'} 

= —tr{p'lnp'} 
= S (P'),  (2.178) 

and, hence, 

AS > 0.  (2.179) 

We conclude that non-selective, ideal quantum measurements never decrease the 
von Neumann entropy. We note also that AS = 0 if and only if p' --= p, that is if 
and only if the density matrix is left unchanged by the measurement. 

The above conclusion is, in general, not true for a generalized measurement 
as can be seen from the following example. We consider a two-level system the 
Hilbert space of which is spanned by two states le) and 1g). We define the two 
operations (I),(p) Q mpfftni , m = 1, 2, where 12 1  = 1g)(g1 and St 2 = g (el. Thus 
we have the effects  12112 1  = 1g)(g1 and  12 . S12 = le) (el, and their sum adds to 
the identity I.  However, for a normalized initial density matrix p we find the 
following state after the non-selective measurement, 

10' =  PQt +  PW2 = 19)(91.  (2.180) 

771 

The final state is therefore always a pure state and S(p') = 0. Thus, the entropy 
decreases to zero if we start from an initial density with positive entropy. This 
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example shows that a generalized measurement can decrease the von Neumann 
entropy. 

Another interesting question concerns the change of entropy involved in the 
transition from the selective to the non-selective level of a measurement. We 
define the quantity 

SS = S (EP(m)6,) —  
rn  in 

(2.181) 

which may be referred to as the mixing entropy. It is the entropy of the final 
density matrix 11 = Ern  P(17)pInt  on the non-selective level minus the average 
of the entropies of the sub-ensembles described by the states p'in . This mixing 
entropy satisfies the inequalities 

0 < OS < 11 ({P(m)}).  (2.182) 

Thus, SS is always non-negative. This statement follows immediately from the 
concavity of the von Neumann entropy (see eqn (2.110)). The second inequal-
ity shows that OS is never larger than the Shannon entropy associated with the 
random variable m following the distribution m i-- P(m). The proof of this state-
ment may be found, for example, in Nielsen and Chuang (2000). We can interpret 
the Shannon entropy H({P(m)}) as the information lost in the transition from 
the selective to the non-selective level, since during the mixing process we for-
get about the measurement results. In other words, the Shannon entropy of the 
distribution P(m) is a measure of the information gained in the measurement 
by obtaining a specific realization of the random variable m. Thus we see that 
the mixing entropy is never larger than the information gained. It can be shown 
further that the mixing entropy is equal to the Shannon entropy if and only if 
the densities p'  orthogonal images. This occurs for an ideal measurement, 
in which case the mixing entropy becomes equal to the Shannon entropy. 

2.4.5 Approximate measurements 

The generalized framework for the description of quantum measurements intro-
duced above is capable of describing, for example, approximate measurements, 
that is, measurement devices which measure the spectrum of some observable _h 
only with finite resolution (Braginsky and Khalili, 1992). 

We consider some physical situation in which an observable  R  discrete, 
non-degenerate spectrum, 

(2.183) 

is measured. If the eigenvalues r, are not too closely spaced one can measure 
such an observable exactly, provided the resolution of the experimental device is 
sufficiently large. A measurement which is only approximate arises, however, if 
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the resolution of the apparatus is not high enough to distinguish, for example, 
neighbouring eigenvalues. For such a case we introduce a conditional probabil-
ity distribution W(mlin')  which represents the probability for the measurement 
to yield the outcome m provided the measured system is known to be in the 
state Ow with eigenvalue In f . This conditional probability distribution serves to 
describe the finite resolution of the apparatus, possible disturbances by the en-
vironment, as well as possible uncertainties in the precise state of the apparatus 
before the measurement. 

Assuming that the apparatus always yields a definite outcome we have 

Ew(rnlini) = 1.  (2.184) 
171 

The probability distribution for the measurement outcomes r m  then takes the 
form 

P(m) := E woontxorn ,  iolorni),  (2.185) 

which is obviously normalized to 1, 

E P(m) --= 1.  (2.186) 
771 

Defining the effect operator 

Frn  _= E lonoworont)(orn ,  (2.187) 
rn' 

we can rewrite the probability distribution of the outcomes as 

P(m) --= tr {Fin p} .  (2.188) 

As is easily verified, (2.187) is a positive operator and satisfies the normalization 
condition (2.142). 

To find an appropriate operation we invoke the ansatz (2.149) and conclude 
from the consistency condition (2.145) the relation (2.150). The most general 
solution of this relation takes the form 

Q in  = UrnFrn112 , 

where Urn  is an (undetermined) unitary operator and 

Fri?" 2  = E kprn,  Ww(nont)(orni 1 
ne 

is the square root of Fm . Thus we have the operation 
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(1)(p) =Um Fm112 pFm112 U;tn ,  (2.191) 

showing that the transition from the initial density matrix p to that describing 
the sub-ensemble conditioned on the outcome r, may be viewed formally as a 
two-step process: 

p  P(m) -1 F,,112 pFm1 / 2  pir'n  =Um p',A.  (2.192) 

The second step in (2.192) represents a unitary transformation of the density 
matrix. During this step the entropy thus remains constant and no information 
on the quantum system is gained. The precise form of the unitary operator Um  
is determined by the details of the measuring device. The above analysis shows 
that one cannot determine the exact form of the operation from the probability 
distribution of the measurement outcomes alone. As we shall see, the unitary op-
erator Urn  describes the disturbance of the quantum object by the measurement 
apparatus (see Section 2.4.7). 

The first step in (2.192) describes the gain of information during the measure-
ment: It is this step which splits, in general, the initial ensemble into the various 
sub-ensembles. The effect F, is uniquely determined by the spectral family of 
and the conditional probability distribution W(indin')  that describes the finite 
resolution of the measuring device. Since R and F, have the same spectral fam-
ily they commute, [Frn ,RJ = O. As we shall see this is a sufficient condition for 
the first step to be a quantum non-demolition measurement. 

In the case of an infinite resolution we get W(mIrre) =  and, therefore, 
the effect reduces to that of an ideal measurement of  R , namely F,  
Accordingly, the operation takes a form which is similar to the one given in the 
von Neumann-Li_iders postulate, namely 

P'r'n = rnki)  rn) ml  n 
 (2.193) 

where the projection is, in general, accompanied by an unitary transformation. 
As another example we consider the approximate measurement of the position 

operator Q (Davies, 1976). The probability density p(q) for the outcome q is taken 
to be 

 

p(q) = f dq' W(q  (2.194) 

Here, the distribution W(q - q') yields the conditional probability density for the 
apparatus to respond with the value q provided the system is in the (generalized) 
eigenstate IC of  Q.  Note that an exact position measurement would be obtained 
if W(q) approaches the Dirac delta function. The corresponding effect reads 

Fq  _-= f dq' q')14/(q - ql(q`1.  (2.195) 
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FIG. 2.3. Schematic picture of an indirect measurement. 

It is interesting to determine the mean value E(Q, W) and the variance 
Var(Q, W) of the measurement outcomes in this approximate measurement. We 
find with the help of the distribution p(q), 

E(Q, W) = E(Q) + f dq qW(q),  (2.196) 
2 

Var(Q, W) = Var(Q) + f dq q 2 W (q) — [f dq qW (q)] ,  (2.197) 

where, as usual, E(Q) and Var(Q) denote the mean and the variance as they 
would be obtained in an ideal measurement of  Q.  The first equation shows that 
a non-vanishing mean value of W(q) leads to a systematic bias of the measure-
ment results. The second equation tells us that a finite variance of the distribu-
tion W(q) yields an additional dispersion which is superimposed on the intrinsic 
quantum fluctuations given by Var(Q). 

2.4.6 Indirect quantum measurements 

An important measurement scheme which can also be treated within the frame-
work of the generalized theory of quantum measurements is provided by the 
concept of an indirect measurement (Braginsky and Khalili, 1992). 

An indirect measurement can be viewed as consisting of three elements (see 
Fig. 2.3). The first element is the quantum system to be measured, that is the 
system from which information is to be extracted. This system is therefore called 
the quantum object and will be considered to live in the Hilbert space 7-10. The 
second element is the so-called quantum probe with Hilbert space Np. The quan-
tum probe is again a certain quantum system which interacts with the quantum 
object. It is assumed that the probe system has been prepared, prior to this in-
teraction, in a suitable state given by some density matrix pp. As a result of the 
subsequent interaction, correlations between object and probe are built up. The 
third element of the scheme is a classical apparatus by which a measurement 
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on the quantum probe is performed when the interaction between object and 
probe is over. The aim of this scheme is to obtain information on the state of the 
object by means of the measurement on the probe. This information is deduced 
from the correlations between object and probe built up during their interaction. 
Thus we can formulate three basic requirements for an ideal measurement: 

1. Before the interaction between object and probe at time t --= 0, the probe 
has been prepared in a well-defined quantum state pp. At the same time 
the quantum object is in a state po. 

2. The interaction between quantum object and probe starts at time t = 0 
and is finished at some time t = T > 0 before the measurement by means 
of the apparatus sets in. 

3. The third element of the scheme represents a classical apparatus and the 
measurement on the quantum probe can be described as an ideal measure-
ment according to the von Neumann—Liiders projection postulate. 

In the following we shall derive explicit expressions for the effect and the opera-
tion pertaining to such an ideal measurement scheme. 

At time t --= 0 the total quantum system consisting of object and probe is 
described by the density matrix po 0 pp in the total Hilbert space given by the 
tensor product 1-1 --= 1-10 0  Hp.  The Hamiltonian of the total system is taken to 
be 

11(t) = Ho + Hp + HIM, 
 (2.198) 

where Ho and Hp describe the free evolution of object and probe, respectively, 
and 1//(t) their interaction. This time-dependent interaction is assumed to vanish 
outside the time interval [0, T]. The corresponding unitary operator describing 
the time evolution over this interval according to the Schrödinger equation will 
be denoted by U, 

U U(T, 0) --= T exp [--i f dt1/(t)] , 
o  

(2.199) 

where T denotes the chronological time ordering and we have set h = 1. 
The initial density matrix p(0) , po 0 pp of the total system thus evolves 

after time T into 

p(T) --- u (po ® pp) (it.  (2.200) 

We now assume that at time T the classical apparatus measures the probe ob-
servable 

-h — E rrn korn)(4,orn1 
 

(2.201) 

T 

m 
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with a non-degenerate, discrete spectrum. Note that _h is a self-adjoint operator 
which acts in the Hilbert space 7-1p of the quantum probe. The probability P(m) 
for the outcome  Tm  of this measurement is found to be 

P(m) = tr fb,orn)(PrnIP(7)} = tr { utkorn)((pmlu (Po 0 Pp)} ,  (2.202) 

where the trace is taken over the total Hilbert space 9-1. The partial traces over 
'Ho and 1-tp will be denoted by tro and trp, respectively. The expression for 
P(m) can then be rewritten as 

P(Trt) = tro {Fin po} ,  (2.203) 

where the effect takes the form 

Frnpo = trp { Ut kPm)( (Pm r (PO 0  pp)} •  (2.204) 

As is easily verified Fm  is a positive operator which acts in the Hilbert space 9-to 
of the quantum object and which satisfies the normalization condition, namely 
we have 

E Fin po = E trp  {U  kOrn) (C)in 1U (PO 0  PP)} = trP {po 0 pp} = po, 

(2.205) 

showing that (2.142) is fulfilled. 
The operation for the indirect measurement is obtained by applying the von 

Neumann-Li_iders projection postulate to the measurement of the probe which 
immediately yields the following state of the quantum object: 

P'm = P(111 ) -1  (PrnIU (PO 0 PP) Ut  kom).  (2.206) 

Introducing the spectral decomposition of the density matrix of the probe, 

PP =  P 10k)(Okl,  (2.207) 

we can write the operation on the quantum object as 

cDm(P0) = EQmkpoRnt k ,  (2.208) 
k 

where 

Qmk = N/Pk(Prn1 11 10k)• 

On using these operators the effect is given by 

Fm = mk • mk 

(2.209) 

(2.210) 
k 
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Thus we observe that operation and effect take exactly the form given in the 
representation theorem, see eqns (2.157) and (2.158). If initially the probe is in 
a pure state pp = 10) (01, we get 

12 in = (ornIU10)  (2.211) 

which is proportional to the amplitude for a transition of the probe from the 
state 0 to the eigenstate (p in  of the measured observable  R. Note that Sl, is an 
operator in the Hilbert space of the quantum object which describes the change 
of the state of the object induced by the outcome T., of the measurement on 
the probe. The additional sum over the index k in the general expression (2.208) 
results from the additional ignorance in the case that the initial state of the 
probe is a statistical mixture. 

The above results are readily generalized to the case of an observable 1-  
with a continuous spectrum. Let us work out a specific example. We take 1-  
to be the momentum operator P in a specific direction, that is, the classical 
measurement apparatus measures a certain component of the momentum of some 
probe particle. Our aim is to measure by means of an indirect measurement the 
non-degenerate, discrete observable 

A --= Eavlxv)(x,1  (2.212) 
v 

of the quantum object. To this end, we couple the position operator Q canonically 
conjugate to P, 

(2.213) 

to the observable A, that is, we consider the interaction Hamiltonian 

 

HT (t) = g(t)Â,  (2.214) 

where the time-dependent coupling g(t) is assumed to vanish outside the time 
interval [0,  T].  For simplicity we further assume that the interaction time 7 is 
very small and that the free evolution generated by Ho +  Hp  may be neglected 
over this time. The unitary time-evolution operator then takes the simple form 

 

U --= exp [—iGA(2]  (2.215) 

where 
T 

G _-- f dt g(t)  (2.216)  
a 

denotes the integrated coupling strength. The quantum probe is assumed to be 
in the initial state pp --= 1(0(01  such that we obtain for the operator 11p  pertaining 
to the measurement outcome p (see eqn (2.211)) 
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(WO) 
= exP [ — iGM2] 10) 

 

E lXv)(Plexp [ — iGav(2] 10)(XvL 
 

(2.217) 

The matrix element in the last expression is equal to 0(p + Gap), where 0(p) E-
(p10) is the initial wave function of the probe in the momentum representation. 
Hence we have 

Xv)(/)(P + Gav)(xv1= o(p  + GA)  (2.218) 
Ii  

It follows that the probability density f (p) for the momentum measurement (to 
avoid confusion with the momentum we denote here probability densities by f) 
is given by the expression 

f (p) = tr Otp QpPol = E 10(p + cav)12(xvIpolxv).  (2.219) 
Ii 

The last two equations can now be interpreted as describing an approximate 
measurement of the observable A. To see this we must answer the following 
question: What information on the observable A of the quantum object can 
be inferred from the measurement of P? Suppose for a moment that 0(p)1 2  is 
sharply peaked around its mean value 

(p) E (01 16 10) E f dP 13 10(13)1 2 
 

(2.220) 

Looking at eqn (2.218) we then see that the measurement of p effectively projects 
the state of the quantum object onto a group of eigenstates x v  of A whose eigen-
values av  satisfy p + Ga,, (p). The precise number of states in the group is 
determined by the widths of the probe's wave function in the momentum rep-
resentation. We thus define the a-value which is inferred from the measurement 
outcome p by means of the relation p + Ga --= (p), that is, 

1 
a  ((P)  P) •  (2.221) 

We then get for the probability density of a 

f (a)  = E W(a av)(Xv1P01Xv),  (2.222) 
z, 

where 

 

W(a — av) = PI • OM — G[a — avi)1 2 
 

(2.223) 

We thus observe that the direct measurement of the momentum P of the probe 
particle yields an approximate measurement of the observable A of the quantum 



THE THEORY OF QUANTUM MEASUREMENT  101 

object. Expression (2.223) represents the conditional probability density of this 
approximate measurement of A: It yields the density for obtaining the value a 
provided the object is in an eigenstate with eigenvalue a,. 

Clearly, W(a — a v ) is normalized to 1, 

f da W (a — ay ) = 1,  (2.224) 

and satisfies 

f da aW (a — ay ) = ay , 

f da a2 W (a — ay ) = a2, + —1  Var(P) 
G 2  

 

(2.225) 

 

, 
(2.226) 

where Var(P) denotes the variance of I" in the initial state (/) of the probe. It 
follows from eqn (2.225) that the expression (2.221) for the value of a inferred 
from the measurement outcome p has a vanishing bias, that is, its expectation 
value coincides with the exact mean value of A, 

E(a) f da a f (a) = tr {Apo} = E(A).  (2.227) 

Equation (2.226) on the other hand leads to the relation 

Var(a) E f da a2  1 (a) — [f da a f (a)] 

1 
= Var(A) + Var(P). 

2 

(2.228) 

This equation tells us that the variance of the inferred value of a equals the 
sum of the exact quantum variance Var(A) of A and the variance of the probe 
momentum in the initial state divided by G2 . It follows that the measurement 
is the more accurate the lower the momentum uncertainty of the probe and the 
stronger the coupling between quantum object and probe. 

Having obtained a particular value a, the corresponding operation is given 
by the operator 

9a 
 lx v ) A AGIO((p) — G[a — ad)(x v i = VIGO ((p) — G(a —  Â)).  (2.229) 

i, 

The density matrix of the resulting sub-ensemble then takes the form 

/  I» lx,)0((p) — G[a — av])(x,IPolxvi)0*((P) — Gla — av, l)(xvi I  Pa = E, 10((p) — G[a — av1)1 2  (Xv1Polxv) 
flaP0 9a  

— tr{Qtat/aP0}. 
(2.230) 
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In the ideal case of an infinitely sharp initial momentum Po  of the probe we 
have 10(p)1 2  ---> Op — p o ) and, therefore, 

.f(a) = E Oa — av)(XvP01Xv), 
v 

(2.231) 

which shows that a takes on only a discrete set of values given by the eigenvalues 
of the operator A. The corresponding probabilities 

P(a) = (xvIPolxv) 
 

(2.232) 

as well as the new density matrix 

P  a, = lxv)(x,1 
 

(2.233) 

are given by the correct quantum mechanical formulae corresponding to an ideal 
quantum measurement of A. 

2.4.7 Quantum non-demolition measurements 
Suppose an ideal, non-selective measurement of some observable A is performed 
on a quantum system in the state p. As is well known if A commutes with p then 
the state of the system is not changed by the measurement. In fact, if 

A  
z, 

(2.234) 

represents the spectral decomposition of A, the a,, denoting the eigenvalues and 
Hy  the corresponding projections, then we find for the non-selective density 
matrix p' after the measurement 

II = E H11" = E 1LP = P,  (2.235) 

where we have used the completeness relation as well as the fact that p commutes 
with the projections  H. 

Consider now some generalized measurement scheme with operations (1 , 77„ 
defined in terms of operators Q„,, (see eqn (2.149)). Such a scheme is defined 
to be a quantum non-demolition measurement (QND measurement) (Braginsky 
and Khalili, 1992) for some observable A if the probability distribution for an 
ideal measurement of A remains unchanged during the measurement process, 
that is if the distribution of the eigenvalues of A is the same in the initial and 
the final density matrix. Here, the generalized measurement is assumed to be a 
non-selective one. We remark that QND measurement devices are important for 
the design of high-precision quantum measurements (Bock() and Onofrio, 1996). 
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On using expression (2.149) for the operation of a generalized measurement 
we can cast the above definition into the following mathematical form, 

tr {Â' p} = tr {AY} = E tr {A k  Qm pf2tn,} .  (2.236) 
M, 

This means that all moments of A coincide in the initial and the final state and, 
therefore, also the distribution of its eigenvalues (assuming for simplicity that the 
moments exist). For the above example of an ideal measurement of A the II, are 
given by the projections Hy  and condition (2.236) is obviously satisfied provided 
p commutes with the  11 ,. This is a condition for the state of the quantum system 
on which the measurement is performed. 

Alternatively, we can read eqn (2.236) as a condition for the operators  11„, 
which is required to hold for all states p of the quantum system. Employing the 
normalization condition (2.151) we can cast eqn (2.236) into the form 

E tr {Wm, [A k  , S2 m,] p}= 0.  (2.237) 
171 

Since this condition is assumed to hold for all p we conclude that a sufficient 
condition for a QND measurement is given by 

[A, O m] = 0.  (2.238) 

A measurement is therefore a QND measurement for the observable A if the 
operators 11 „,, describing the change of the quantum system induced by the mea-
surement commute with A. Condition (2.238) is always fulfilled for an ideal 
measurement of the observable A, that is an ideal measurement of A is always 
a QND measurement in the sense defined above. We also see immediately from 
eqn (2.229) that the example for an indirect measurement scheme discussed in 
the preceding subsection fulfils the QND condition (2.238). This is due to the fact 
that Sl a, is diagonal in the A-representation which, in turn, results from the fact 
that the interaction Hamiltonian 1//(t) commutes with the measured quantity. 
As a result, A is a constant of motion during the measurement process. 

Let us study the general setting for an indirect measurement with a probe in 
a pure state O. Substituting (2.211) into (2.238) we find 

(cio m  I [A, U(7, 0)] 10) = 0.  (2.239) 

Since this must be true for all in  and because the (p, represent a basis in the 
Hilbert space li p of the probe, we conclude that 

[A, U(r, 0)] 10)  =0.  (2.240) 

This equation can possibly be achieved by preparing the probe in an appropriate 
state O. Since this is obviously a difficult task in practice one requires that the 
commutator itself vanishes, which leads to the following sufficient QND condition 
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[A, U(r, 0)1 = 0.  (2.241) 

According to this equation the Heisenberg picture operator 

AH(t) = Ut(t, 0)AU(t, 0) 
 

(2.242) 

returns to its original value after time t = T, that is, AH(r) = AH(0). The easiest 
way to achieve this is to require that A commutes with the total Hamiltonian 
11(t) = Ho ± Hp ± 111(t), that is 

[A, Ho + I-1/  (t)]  =0.  (2.243) 

If A is a constant of motion under the free evolution of the quantum object, a 
general sufficient condition for a QND measurement is found to be 

[A, Hi(t)] = O.  (2.244) 

This condition is also known as the back-action evasion condition, for it guaran-
tees that the interaction of the quantum object with the probe system does not 
disturb the measured quantity. 

We remark finally that by the same reasoning one can show that a suffi-
cient condition for the approximate measurement discussed in Subsection 2.4.5 
to be a QND measurement is given by [f?,  Urn]  = 0, which means that the 
observable measured approximately by the scheme must commute with the uni-
tary operators Urn  that occur in the second step of (2.192). Thus, these unitary 
transformations disturb, in general, the probability distribution of the measured 
quantity. 
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Part II 

Density matrix theory 





3 

QUANTUM MASTER EQUATIONS 

In contrast to the case of a closed systems, the quantum dynamics of an open 
system cannot, in general, be represented in terms of a unitary time evolution. 
In many cases it turns out to be useful to formulate, instead, the dynamics of 
an open system by means of an appropriate equation of motion for its density 
matrix, a quantum master equation. In this chapter we shall give a survey of the 
various types of master equations which can be employed to analyse the quantum 
dynamics of open systems. The emphasis lies on the Markovian dynamics of open 
systems. A systematic treatment of non-Markovian quantum processes will be 
presented in Part IV. 

To begin with, we give a general characterization of the dynamics of closed 
and open quantum systems. Quantum Markov processes are then introduced 
which represent the simplest case of the dynamics of open systems. They can 
be regarded, essentially, as a direct generalization of the classical probabilistic 
concept of a dynamical semigroup to quantum mechanics. In analogy to the dif-
ferential Chapman—Kolmogorov equation of classical probability theory, a quan-
tum dynamical semigroup gives rise to a first-order linear differential equation 
for the reduced density matrix, which is known as quantum Markovian master 
equation in Lindblad form. 

A number of derivations of Markovian density matrix equations will be given 
which start from various microscopic models, such as the weak-coupling inter-
action of radiation with matter and the Caldeira—Leggett model. The resultant 
density matrix equations enable the investigation of general features like irre-
versibility, entropy production, and relaxation to equilibrium. In standard ap-
plications of the dynamics of open systems two limiting cases are of particular 
relevance. These are the quantum optical and the quantum Brownian motion 
master equation. We shall give a number of examples and discuss basic properties 
of the corresponding master equations. For later purposes the Caldeira—Leggett 
model will also be studied from a broader perspective using the exact Heisenberg 
equations of motion as well as influence functional and path integral techniques. 

In the treatment of open many-body systems non-linear quantum master 
equations are also encountered. If one takes into account particle correlations on 
the mean-field level the reduced density matrix equation involves a non-linear 
time-evolution generator. Under certain conditions the solutions of such non-
linear density matrix equations may be obtained with the help of a non-linear 
Schrödinger-type equation. As two prominent examples for mean-field master 
equations we treat the laser equations and the phenomenon of super-radiance. 
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3.1 Closed and open quantum systems 
3.1.1 The Liouville -von Neumann equation 
According to quantum mechanics the state vector 10(t)) evolves in time according 
to the Schrödinger equation, 

d 
i(t)) = H(t)Mt)), (3.1) 

where _H(t) is the Hamiltonian of the system and Planck's constant h has been 
set equal to 1. The solution of the Schr6dinger equation may be represented in 
terms of the unitary time-evolution operator U(t, to ) which transforms the state 
*(to )) at some initial time t o  to the state 1/)(t)) at time t, 

10(t)) = U(t,to )mt o )).  (3.2) 

If we substitute expression (3.2) into the Schr6dinger equation (3.1) we get an 
operator equation for the time-evolution operator U(t, to ), 

U(t, to ) = H(t)U(t, to),  (3.3) 

which is subjected to the initial condition 

U(to , to ) = I.  (3.4) 

It is easy to show with the help of (3.3) and (3.4) that Ut(t, to)U(t, to) = 
U(t, to)Ut(t, to )  I and, hence, that U(t, to) is a unitary operator. 

For a closed, isolated physical system the Hamiltonian H is time independent 
and eqn (3.3) is readily integrated to yield the well-known expression 

U(t, to) = exp [—iH(t — to)l.  (3.5) 

In physical applications one often encounters the situation that the system under 
consideration is driven by external forces, an external electromagnetic field for 
example. If in such a case the dynamics of the system can still be formulated in 
terms of a possibly time-dependent Hamiltonian generator H(t) the system will 
again be said to be closed, while we reserve the term isolated to mean that the 
Hamiltonian of the system is time independent. For a time-dependent Hamil-
tonian the solution of eqn (3.3) subjected to the initial condition (3.4) may be 
represented as a time-ordered exponential, 

[ U(t, to ) = T, exp — i f dsH(s) ,  (3.6) 
to  

where T, denotes the chronological time-ordering operator which orders prod-
ucts of time-dependent operators such that their time-arguments increase from 
right to left as indicated by the arrow. 
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If the system under consideration is in a mixed state the corresponding quan-
tum statistical ensemble may be characterized with the help of the statistical 
operator p. It is straightforward to derive an equation of motion for the density 
matrix starting from the SchrEdinger equation (3.1). Let us assume that at some 
initial time to the state of the system is characterized by the density matrix (see 
Section 2.1.3) 

P(to ) —  w.10, (to )) (0a(t0 )1,  (3.7) 
a 

10 where the w, are positive weights and the „(to)) are normalized state vectors 
which evolve in time according to the Schralinger equation (3.2). The state of 
the system at time t will therefore be given by 

P(t) = Ewau(t,t0)10a(toopa(tort(t, to),  (3.8) 
a 

which may be written more concisely as 

p(t) = U(t,to )p(to )Uf (t, t o ).  (3.9) 

Differentiating this equation with respect to time we immediately get an equation 
of motion for the density matrix, 

—d p(t) = —i[H (t), p(t)],  (3.10) 
dt 

which is often referred to as the von Neumann or Liouville—von Neumann equa- 
tion. 

In order to stress the analogy of the von Neumann equation with the cor- 
responding equation of motion for the probability density in classical statistical 
mechanics it is often written in a form analogous to the classical Liouville equa- 
tion, 

—
d p(t) = r(t)p(t).  (3.11) 
dt 

Here, f is the Liouville operator which is defined through the condition that 
.C(t)p is equal to —i times the commutator of H(t) with p. More precisely, f 
is often called a Liouville super-operator since it acts on an operator to yield 
another operator. In close analogy to eqn (3.6) the Liouville equation (3.11) 
leads to the formal expression 

p(t) = T, exp [f ds,C(s)1 p(t o ).  (3.12) 
to 

For the case of a time independent Hamiltonian the Liouville super-operator is 
also time independent and we obviously have 

t 

P(t) = exp [C(t — to)] P(to).  (3.13) 
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3.1.2 Heisenberg and interaction picture 
In the Schr6dinger picture the time dependence of the density matrix p(t) is gov-
erned by the Liouville—von Neumann equation (3.11). An equivalent description 
of the quantum dynamics is obtained by transferring the time dependence from 
the density matrix to the operators in the Hilbert space 7-t. This leads to the 
Heisenberg picture. We assume that at some fixed initial time to  the quantum 
states in both pictures coincide, that is p(t o ) = pH (to ). Here and in the following 
Heisenberg picture operators are indicated by an index H. Schr6dinger picture 
and Heisenberg picture operators are related through the canonical transforma-
tion 

 

A H (t) = Uf(t, t o )A(t)U(t, to ),  (3.14) 

where we allow the Schriidinger picture operator A(t) to depend explicitly on 
time. Obviously, at time to Schralinger and Heisenberg picture operators coin-
cide,  AH  (t0) = A(to ). In the Heisenberg picture the quantum expectation values 
are determined through the fixed density matrix pH(to ). The physical equiva-
lence of the two pictures is made evident by the fact that the expectation value 
of an observable A(t) is the same in both pictures, 

(A(t)) = tr {A(t)p(t)} = tr OH MPH (to)} - 

 (3.15) 

It is straightforward to derive an equation of motion for a Heisenberg picture 
operator A H (t) from the transformation law (3.14). Differentiating both sides of 
(3.14) with respect to time we obtain the Heisenberg equation of motion 

—d 
AH(t) = i[I I H (t) A H ( ,  01 ±   (9t  , dt  

DAH(t)  

where I - I H (t) denotes the Hamiltonian in the Heisenberg picture, 

 

HH(t) = Ut(t, to)H(t)U(t, to ).  (3.17) 

In eqn (3.16) d/dt denotes the total time derivative, while 0/0t is the partial 
derivative with respect to the explicit time dependence of the Schriidinger picture 
operator. Explicitly, we have 

a AH(t) 
 — ut (t

' 
 to)" ( t )  u (t, to) - ot  ot 

(3.18) 

If dAH(t)Idt = 0, then  AH  is a constant of motion. An important special 
case of the Heisenberg equation of motion is obtained by choosing A to be the 
Hamiltonian of the system, i.e. A = H. For an isolated system 01110t =  O. 
and the time-evolution operator has the special form (3.5). Hence, the Hamilto-
nian commutes with the time-evolution operator U(t, t o ) and it follows that the 
Heisenberg picture Hamiltonian HH(t) is a constant of motion, that is 

(3.16) 
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—
d 

H H = 0 . 
dt 

(3.19) 

Moreover, if the SchrZidinger operator A has no explicit time dependence and if 
the system is isolated the Heisenberg equation of motion reduces to the form 

—d A H (t) = 411, AH (t)]. 
dt 

(3.20) 

Let us now look at the equation of motion for the expectation value of an 
arbitrary Schriidinger observable A(t) , which in general will depend explicitly on 
time. Differentiating eqn (3.15) with respect to time and invoking the Heisenberg 
equation of motion (3.16) one finds 

—dd  t  (AM) = (—dc it  AH (t)) = tr { (i[HH  (t) , A H (01 ±  0 A;(t)  ) 
 P11(t0)} - (3.21) 

This equation is known as the Ehrenfest equation. It states that the time vari-
ation of the expectation value of an observable A(t) is equal to the expectation 
value of the time derivative of the corresponding Heisenberg observable AH  (t) . 

The Schn5dinger and the Heisenberg pictures are the limiting cases of a more 
general picture, which is called the interaction picture. Let us write the Hamil-
tonian of the system as the sum of two parts 

H(t) = Ho  +  Û1 (t).  (3.22) 

The precise form of the splitting of the Hamiltonian depends upon the particular 
physical situation under study. In general, Ho  represents the sum of the energies 
of two systems when the interaction between the systems is ignored and we shall 
assume that it is independent of time; ii,i (t) is then the Hamiltonian describing 
the interaction between the systems. Again, the time evolution operator of the 
total system will be denoted by U(t, to ). According to eqn (3.15) the expectation 
value of a Schriidinger observable A(t) (which may depend explicitly on time) at 
time t is given by 

(A(t)) = tr {A(t)U(t,to)P(to)Ut(t,  t0)},  (3.23) 

where p(to) is the state of the system at time to. 
We introduce the unitary time evolution operators 

Uct  (t, to) E eXP[ — iHO (t — to)]  (3.24) 

and 

U1 (t,  to) E Uci; (t, to)U(t, to).  (3.25) 

Then the expectation value (3.23) may be written as 
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(11(t)) = tr { Uci; (t, to )A(t)U0 (t, to)U/ (t)p(to)U1 (t, to)} 

E tr { A i (t) p 1 (t)} ,  (3.26) 

where we have introduced Ai(t) as the interaction picture operator 

24/ (t) E Uct)  (t, to)A(t)U0(t, to),  (3.27) 

and  pi(t)  as the interaction picture density matrix 

Mt) E U/ (t, to)P(to)0(t, to).  (3.28) 

It may be important to note that in contrast to the Heisenberg picture the time 
evolution of interaction picture operators is not generated by the full Hamiltonian 
H but only by the free part 1/0 . If f-1/(t) = 0 we have Uo (t, to ) = U(t, to ) and 
U/(t, to ) = I,  such that the interaction picture is identical to the Heisenberg 
picture. Conversely, in the other limiting case of a vanishing free Hamiltonian, 
Ho  = 0, we have f-1/(t) = H (t) such that Uo(t, to) = I and U./(t, to) = U(t, to), 
and we regain the Schr6dinger picture. 

It is clear that the interaction picture time-evolution operator Ur (t, to) is the 
solution of the differential equation 

0 
i — U1 (t '  to) = HI W U' (t, to ) 

Ot  (3.29) 

subject to the initial condition U/(to, to) =  I.  Here, we have denoted the inter-
action Hamiltonian in the interaction picture by 

Hj(t) E U(I3, (t, to)ffi MU() (t, to).  (3.30) 

The corresponding von Neumann equation in the interaction picture thus takes 
the form 

d 
—dt P 1 (t) = — i [II i (t) , P i (0] . (3.31) 

Often, the interaction picture von Neumann equation is written in the equivalent 
integral form 

t 

P 1 (0 = P I (to) — i fds [II i (8) , P 1 (s)1 . 
t o  

(3.32) 

This form of the von Neumann equation may be used as a starting point of a 
perturbative approach to the construction of approximate solutions. 
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( S + B, 1-t s 0 71B, P) 

FIG. 3.1. Schematic picture of an open quantum system. 

3.1.3 Dynamics of open systems 

Having briefly sketched the fundamental equations describing the Hamiltonian 
dynamics of a closed quantum system let us now turn to the notion of an open 
system. In general terms, an open system is a quantum system S which is cou-
pled to another quantum system B called the environment. It thus represents a 
subsystem of the combined total system S +B (see Section 2.2), whereby in most 
cases it is assumed that the combined system is closed, following Hamiltonian 
dynamics. The state of the subsystem S, however, will change as a consequence 
of its internal dynamics and of the interaction with the surroundings. The inter-
action leads to certain system—environment correlations such that the resulting 
state changes of S can no longer, in general, be represented in terms of uni-
tary, Hamiltonian dynamics. The dynamics of the subsystem S induced by the 
Hamiltonian evolution of the total system is often referred to as reduced system 
dynamics, and S is also called the reduced system. 

Let us denote by 7-15,  the Hilbert space of the system and by 1-63 the Hilbert 
space of the environment. The Hilbert space of the total system S + B is then 
given by the tensor product space 94 = 7-ts ORB (see Section 2.2.1). The total 
Hamiltonian H(t) may be taken to be of the form 

H(t) = Hs 0 IB ± IS 0 HB ± fil(t),  (3.33) 

where Hs is the self-Hamiltonian of the open system S, Hg is the free Hamilto-
nian of the environment B, and Hi(t) is the Hamiltonian describing the interac-
tion between the system and the environment. Of course, one may also include 
time-dependent interactions into the model. A schematic picture of the typical 
situation under study is shown in Fig. 3.1. 
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If we speak of an open system S we shall use the general term environment for 
the system B coupled to it. The term reservoir refers to an environment with an 
infinite number of degrees of freedom such that the frequencies of the reservoir 
modes form a continuum. As will be seen, it is this property which generally 
leads to an irreversible behaviour of the open quantum system. Finally, the term 
bath or heat bath will be used for a reservoir which is in a thermal equilibrium 
state. 

We are going to investigate several physical examples of open quantum sys-
tems in this book. Mainly, the motivation for the study of open systems is that 
in many physically important situations a complete mathematical model of the 
combined system's dynamics is much too complicated. The environment may 
represent, for example, a reservoir or a heat bath consisting of infinitely many 
degrees of freedom, in which case an exact treatment requires the solution of an 
infinite hierarchy of coupled equations of motion. Even if a solution is known one 
is confronted with the task of isolating and determining the interesting physical 
quantities through an average over the remaining, irrelevant degrees of freedom. 
Moreover, one often encounters the situation that the modes of the environment 
are neither known exactly nor controllable. One therefore tries to develop a sim-
pler description in a reduced state space formed by a restricted set of physically 
relevant variables which is achieved by employing various analytical methods 
and approximation techniques. 

We regard an open system S to be singled out by the fact that all observations 
of interest refer to this subsystem. According to Section 2.2.1 the observables 
referring to S are all of the form A 0 IB, where A is an operator acting on 
the Hilbert space 'Hs and IB denotes the identity in the Hilbert space 7-IB. If 
the state of the total system is described by some density matrix p, then the 
expectation values of all observables acting on the open system's Hilbert space 
are determined through the formula 

(A) = trs {APs} ,  (3.34) 

where 

Ps = trBp  (3.35) 

is the reduced density matrix of the open quantum system S (see eqn (2.92)). 
Here and in the following trs denotes the partial trace over the open system's 
Hilbert space, while trB denotes the partial trace over the degrees of freedom of 
the environment B. It is clear that the reduced density operator ps will be the 
quantity of central interest in the description of open quantum systems. 

The reduced density matrix PS  (t)  at time t is obtained from the density 
matrix p(t) of the total system by taking the partial trace over the degrees of 
freedom of the environment. Since the total density matrix evolves unitarily we 
have 

Ps (t) = trB fu(t, to)p(to)u f (t, to)} 1 
 (3.36) 
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u  
P(0) = P s (0) 0 PB

nitary evolution
> P(t) = U(t,0)[Ps(0) 0 pB]Uf (t,0) 

trg i 

dynamical map 
PS(0)  ) 

Itrg 

Ps( t) = V (t )ps (0 ) 

FIG. 3.2. A commutative diagram showing the action of a dynamical map V(t). 

where U(t, to ) is the time-evolution operator of the total system. In an analo-
gous way the equation of motion for the reduced density matrix is obtained by 
taking the partial trace over the environment on both sides of the Liouville—von 
Neumann equation for the total system, 

c--1--ps (t) = —itrB  [11(t),p(q. 
dt 

(3.37) 

In the following sections we give a survey of the most important equations of 
motion for the reduced density matrix used to approximate the above exact 
dynamical equations. 

3.2 Quantum Markov processes 

The most important property of a classical, homogeneous Markov process is 
the semigroup property which is usually formulated in terms of the differential 
Chapman—Kolmogorov equation (1.68) involving a time-independent generator. 
The extension of this property to quantum mechanics leads to the concepts of 
a quantum dynamical semigroup and a quantum Markov process (Kraus, 1971; 
Davies, 1976; Alicki and Lendi, 1987; Alicki and Fannes, 2001). These concepts 
are introduced in this section and the general form of a quantum Markovian 
master equation is derived. We also discuss some general features of quantum 
Markov processes, such as the adjoint master equation, the quantum regression 
theorem, irreversibility and entropy production. 

3.2.1 Quantum dynamical semigroups 

In general the dynamics of the reduced system defined by the exact equations 
(3.36) and (3.37) will be quite involved. However, under the condition of short 
environmental correlation times one may neglect memory effects and formulate 
the reduced system dynamics in terms of a quantum dynamical semigroup. 

We first introduce the concept of a dynamical map. To this end, let us suppose 
that we are able to prepare at the initial time t = 0 the state of the total system 
S + B as an uncorrelated product state p(0) = ps(0) 0 pB, where ps(0) is the 
initial state of the reduced system S and pB represents some reference state of 
the environment, a thermal equilibrium state, for example. The transformation 
describing the change of the reduced system from the initial time t = 0 to some 
time t>  0 may then be written in the form 
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ps (0) 1- ps (t) = V (t)ps (0) E trB { U(t, 0) [ps (0) 0 pBlUt (t,  0)}.  (3.38) 

If we regard the reference state pB and the final time t to be fixed, this relation 
defines a map from the space S(I(s) of density matrices of the reduced system 
into itself, 

V (t) : S(I (s) —4 S(Hs)-  (3.39) 

This map, describing the state change of the open system over time t, is called 
a dynamical map (see Fig. 3.2). 

A dynamical map can be characterized completely in terms of operators per-
taining to the open system's Hilbert space 'Hs. To this end, we use the spectral 
decomposition of the density matrix pB of the environment, 

pB = E Aalvax(pod. 
c, 

(3.40) 

Here, the Iva ) form an orthonormal basis in RB and the A, are non-negative 
real numbers satisfying E OE  A, = 1. Definition (3.38) then immediately yields 
the following representation, 

v(t)p  wao mpswat,(0,  (3.41) 
c3  

where the Wao , being operators in lis, are defined by 

W(t) = 00(Va 1U(t , 0 )1'100)-  (3.42) 

According to eqn (3.41) the dynamical map V(t) is of the form (2.157) of an 
operation (D in  describing a generalized quantum measurement. Moreover, the 
operators Wao (t) satisfy the condition 

E wo,t s (owao (t) = IS,  (3.43) 
a ,0 

from which we deduce that 

trs {V(t)ps} = trsps = 1.  (3.44) 

Thus, we conclude that a dynamical map V (t) represents a convex-linear, com-
pletely positive and trace-preserving quantum operation. 

We have introduced above a dynamical map V(t) for a fixed time t > 0. If 
we now allow t to vary we get a one-parameter family {V(t)lt > 0} of dynamical 
maps, where V(0) is the identity map. Such a family describes the whole future 
time evolution of the open system, which, in general, could be very involved. 
However, if the characteristic time scales over which the reservoir correlation 



QUANTUM MARKOV PROCESSES  119 

functions decay are much smaller than the characteristic time scale of the sys-
tematic system evolution, it is justified to neglect memory effects in the reduced 
system dynamics. As in the classical theory one thus expects Markovian-type 
behaviour. For the homogeneous case the latter may be formalized with the help 
of the semigroup property (compare with eqn (1.70)) 

V( t ) V (t 2  ) = V (t + t2)  t i , t2  > 0.  (3.45) 

The precise physical conditions underlying the Markovian approximation will be 
given in the microscopic derivations of Markovian quantum master equations (see 
Sections 3.3 and 3.4). A systematic investigation and an expansion around the 
Markovian limit is postponed to Part IV. Summarizing, a quantum dynamical 
semigroup is a continuous, one-parameter family of dynamical maps satisfying 
the semigroup property (3.45). 

3.2.2 The Markovian quantum master equation 
Given a quantum dynamical semigroup there exists, under certain mathematical 
conditions (see below), a linear map r, the generator of the semigroup, which 
allows us to represent the semigroup in exponential form, 

V(t) = exp(ft).  (3.46) 

This representation immediately yields a first-order differential equation for the 
reduced density matrix of the open system, 

d 
—dt P s = p s (t) , (3.47) 

which is called the Markovian quantum master equation. The generator r of the 
semigroup represents a super-operator. It may be regarded as a generalization of 
the Liouville super-operator which has been introduced in eqn (3.11) and which 
is given by the commutator with some Hamiltonian. 

Let us construct the most general form for the generator f of a quantum 
dynamical semigroup. To this end, we consider first the simple case of a finite-
dimensional Hilbert space Rs, dimRs = N. The corresponding Liouville space 
is a complex space of dimension N2  and we choose a complete basis (see eqn 
(2.97)) of orthonormal operators Fi , i = 1,2, ... , N2 , in this space such that we 
have 

(Fi ,  trs  {FP }  8j.  (3.48) 

For convenience one of the basis operators is chosen to be proportional to the 
identity, namely FN 2 = (1/N) 1 / 2 /s, such that the other basis operators are 
traceless, that is trsFi = 0 for i = 1, 2, ,N2  — 1. Applying the completeness 
relation to each of the operators  W(t) defined in eqn (3.42), we have 
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N 2  
Woo W =  (3.49) 

With the help of the representation (3.41) we can write the action of the dynam-
ical map V(t) as 

N 2  
V WPS E (3.50) 

where 

cii  (t)  (Fi , Wco (t))(Fj , Wao (t))*  (3.51) 

The coefficient matrix c = (cij ) is easily seen to be Hermitian and positive. In 
fact, for any N2 -dimensional complex vector y we have 

  

2 

 

(E viFi , Wo (t)) > 0,  (3.52) 

   

which proves that e >  0. 
The definition (3.46) of the generator f now gives, by virtue of eqn (3.50), 

1 
= hill — { V(E)PS — PS} e—)-0 E 

= liM 
e—q) 

1 cN 2 N2(E)  —  N  {  1  
Ps + N  E  fl—V 

N 2  _1 
(eiN2 (6)  F  eN2i(E)iPs +  Fi 

rps 

(3.53) 

  

Next, we define coefficients aii  by 

aN2 N2 

a iN2 

cN 2 N2(E) — N 
e 

= lirn ei N2 (E)  
E  * 

= c(E) 
e—)-0  E  15 

(3.54) 

,N2  1,  (3.55) 

,N2  1,  (3.56) 

and introduce the quantities 

(3.57) 
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and 

1  1 
G = —a N 2 N2/s + -

2 
+ F), 

2N 

as well as the Hermitian operator 

1 H = (Ft - F). 

(3.58) 

(3.59) 

We note that the matrix formed by the coefficients a ii, i , j = 1, 2,  N2  - 1, 
is Hermitian and positive. With the help of these definitions we can write the 
generator as 

N 2 -1  

rPS  [H, psi + {G,  + E aii FipsFr (3.60) 

Since the semigroup is trace preserving we have for all density matrices ps  

N2  -1 
f 0 = trs {ps} trs { (2G + E ajjFjFi  J  ps} 

from which we deduce that 

N 2 -1  1 F G 
2 

(3.61) 

(3.62) 

Hence, we get from (3.60) the first standard form of the generator, 

N 2  -1 
fps  [H, psi + E aii (F  3  iPsFr  - -1  3 Fi, Ps}) • 2  

(3.63) 

Since the coefficient matrix a = (a ii) is positive it may be diagonalized with the 
help of an appropriate unitary transformation u, 

j=1 

( -Y1 

uaut 
 0'y2 

0 0 • .  0 
\0  0 • • • -yN2_ 1  

where the eigenvalues -y i  are non-negative. Introducing 
Ak through 

N 2 -1  
=  A 

k=1 

(3.64) 

a new set of operators 

(3.65) 
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the following diagonal form of the generator is obtained 

N2 -1 

,CPS  PS] + E  (AkpsAt — —1  At  AkPs — —1  PSA t  Ak) k  2 k  2  k (3.66) 

This is the most general form for the generator of a quantum dynamical semi-
group. The first term of the generator represents the unitary part of the dy-
namics generated by the Hamiltonian H. The operators Ak, introduced above as 
appropriate linear combinations of the basis operators Fi  in Liouville space, are 
usually referred to as Lindblad operators and the corresponding density matrix 
equation (3.47) is called the Lindblad equation. We note that the non-negative 
quantities 'yk have the dimension of an inverse time provided the Ak are taken 
to be dimensionless. As will be seen later the 'yk are given in terms of certain 
correlation functions of the environment and play the rôle of relaxation rates for 
the different decay modes of the open system. 

The detailed mathematical proof that (3.63) defines the most general gen-
erator of a quantum dynamical semigroup for the case of a finite-dimensional 
Hilbert space has been given by Gorini, Kossakowski, and Sudarshan (1976). At 
the same time Lindblad (1976) proved in a theorem that bears his name that 
(3.66) provides the most general form for a bounded generator in a separable 
Hilbert space if the index k is allowed to run over a countable set. In the physics 
literature quantum master equations of the form (3.63) or (3.66) appeared much 
earlier, for example in the context of spin relaxation dynamics and laser the-
ory (see, e.g. Bausch, 1966; Haake, 1973; Haken, 1984). We emphasize that the 
Lindblad theorem presupposes that the generator f is bounded. In physical ap-
plications this is usually not the case: The self-Hamiltonian Hs of the reduced 
system as well as the Lindblad operators are, in general, unbounded. However, 
all known examples for generators of quantum dynamical semigroups are either 
of Lindblad form, or can be cast into it by slight modifications. 

In the above presentation we have left out all mathematical details. Let us 
make, however, a few remarks on the mathematical theory (for a review see, 
e.g. Gorini, Frigerio, Verri, Kossakowski and Sudarshan, 1978; Spohn, 1980; Al-
icki and Lendi, 1987). First, we mention that the theory of quantum dynami-
cal semigroups is usually formulated in terms of the Heisenberg, instead of the 
Schrödinger picture. To this end, one characterizes dynamical maps in the Heisen-
berg picture. The Heisenberg picture dynamical map will be denoted by Vt(t) 
and acts on operators A in the Hilbert space 7-ts of the open system such that 
we have 

tr s {A (V (Op s)} = tr s { (V t (t) A) p s  (3.67) 

for all ps. Since we know that V(t) maps density matrices to density matrices, 
the Heisenberg picture map Vt (t) should also transform positive operators into 
positive operators and must preserve the identity operator, that is Vt (t)Is =  I. 
If the mathematical theory is based on an axiomatic approach to dynamical maps 
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one has to demand not only positivity but the stronger condition of complete 
positivity (see Section 2.4.3). However, from a physical point of view the addi-
tional requirement of complete positivity does not introduce a new condition if 
dynamical maps are introduced, as we have done above, through the reduced 
dynamics induced by the unitary dynamics in a larger system S + B. 

We have also required the one-parameter family of dynamical maps V(t) to 
be continuous. It can be shown that it suffices to demand ultraweak continuity, 
which means that we must have 

lim trs {(Vt (OA – A) ps} =  0  (3.68) 

for all Ps  and all bounded operators A. It can be shown further that quantum 
dynamical semigroups always have the property of being contracting, that is 
they fulfil the condition 

 

Ilv ( t )
r  A 
 

AH1, 
 (3.69) 

where A = trs IA is known as the trace norm. It is this property which 
allows the application of the theory of contracting semigroups and enables the 
introduction of the infinitesimal generator f. 

It is sometimes convenient to introduce the dissipator 

D(Ps) E 7k (AkpSA t  - -1  A t  AL.D‹ ,  - -1  OçA t  AL) 

 

k  2  k r„ „  2 ,  k  (3.70) 

and to write the quantum master equation (3.47) in the form 
d 
—dt Ps  Ps(t)] + D(Ps(t)).  (3.71) 

We remark that, in general, the operator H cannot be identified with the free 
Hamiltonian Hs of the reduced system S: The Hamiltonian H may contain 
additional terms which are due to the coupling of the system to its environment 
(see Section 3.3.1 for an example). We also note that the generator f does not 
uniquely fix the form of the Hamiltonian H and the Lindblad operators A.  In 
fact, the generator is invariant under the following transformations: 

1. unitary transformations of the set of Lindblad operators, 

^Ai  Ri  A 'i  = E u  ,  (3.72) 

where ui3  is a unitary matrix, 
2. inhomogeneous transformations 

Ai  Ati  =--- Ai  + a i , 
1 

H H' =  H+  E (a*. 

 

3  - aiAti ) + b,  (3.73) 

where the ai  are complex numbers and b is real. 
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Because of the second invariance property it is always possible to choose traceless 
Lindblad operators. 

As we already noticed the open system may be subjected to an external time-
dependent field. The description of such an open system may require the help of 
time-dependent generators. An obvious time-dependent generalization of (3.47) 
may be written in the form 

d 
Ps(t) = 
 (3.74) 

where C(t) is the generator of a quantum dynamical semigroup for each fixed 
t > O. Let us introduce the corresponding propagator by means of 

t 

V(t, to ) = T+_ exp  (Id) 
 ,  (3.75) 

to 

which satisfies 
a 

i v(t,t o ) = OW (t, to). 

Instead of the semigroup property (3.45) we now have 

(3.76) 

V(t, ti)V(ti, to) = V(t, to).  (3.77) 

We study Lindblad generators with time-dependent external fields in Section 8.4. 

3.2.3 The adjoint quantum master equation 
In full analogy to closed quantum systems, also for open quantum systems it 
is possible to define for each system operator A in the Schrödinger picture a 
corresponding operator AH(t) in the Heisenberg picture. This is achieved with 
the help of eqn (3.67) which we rewrite as 

trs {A V (t, O) ps } =trs I(Vt(t, 0)A)  Ps}  =trs {AH(t)Ps},  (3.78) 

where we allow the Lindblad generator to be time dependent. In analogy to 
eqn (3.75) we have introduced the adjoint propagator 

vt (t ,  to = 1-1 _ exp (f dset (s)) .  (3.79) 

t 

The symbol T, denotes the antichronological time-ordering operator, while the 
adjoint generator ft is defined by 

to 

trs  {A,C(t ) ps} -- trs { (E t  ( t )A) Ps} .  (3.80) 
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The adjoint propagator Vt (t, to ) satisfies the differential equation 

0 
—
Ot 

V (t
'
to ) = Vt(t , to )ft(t)

, 
(3.81) 

and describes the time evolution of operators in the Heisenberg picture, 

AH(t) = Vt(t, 0)A.  (3.82) 

This yields the following equation of motion for the Heisenberg operator  AH  (t),  

—
d 

AH(t) = Vt(t,0) {t(t)A}  , 
dt 

(3.83) 

which is known as the adjoint master equation. 
Notice that on the right-hand side of eqn (3.83) the adjoint Lindblad operator 

first acts on the operator A and then the result is propagated with the help of 
the adjoint propagator. In order to determine the form of the equation of motion 
at time t knowledge of the Heisenberg operator AH(t) is not sufficient; one also 
needs the adjoint propagator, in general. 

An important special case is obtained if the Lindblad generator does not 
depend explicitly on time, as is the case in eqn (3.66). In this case the adjoint 
Lindblad generator ft commutes with Vt(t, 0) and the adjoint quantum master 
equation takes the simpler form 

—
d 

AH(t) 
dt 
, r t AH(t)  

i [H AH (t)] +E -Yk (A tkAH(t)Ak - 
k 

(3.84) 

1 
—
2 

AH(t)AtA k  –
t
AkAH(t)) . 

k  2 k  

Now, the right-hand side of the adjoint master equation only depends on the 
Heisenberg operator AH(t) at time t. An example of the use of the adjoint 
master equation will be discussed in Section 3.4.6. 

3.2.4 Multi - time correlation functions 
The quantum master equation (3.47) and the adjoint master equation (3.83) 
describe the time evolution of the density matrix and of the Heisenberg picture 
operators. With their help we can determine expectation values and matrix el-
ements of all system observables. However, it is important to be aware of the 
fact that for open quantum systems these are not the only observable quanti-
ties. A complete statistical description also requires knowledge of mean values 
of operators taken at different times, that is of multi-time correlations functions. 
In physical applications these are of great interest since they are often directly 
related to measurable quantities. A typical example is provided by a radiation 
mode a(t) of the electromagnetic field. In this case one might be interested in 
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the fluctuation spectrum which is defined in terms of the Fourier transform of 
the two-time correlation function (at (t)a(0)). 

To begin with, we first consider a two-time correlation function of the form 

g(t, s)  (B(t)C(s)) = trs {B(t)C(s)ps ( 0)1 (3.85) 

where t > s > 0. Suppressing for simplicity the index H we write B(t) and C(t) 
for arbitrary Heisenberg operators, where we take the fixed initial time to  = 0. 
On using the propagator of the quantum master equation we can write eqn (3.85) 
as follows, 

g(t, s) = tr s  IBV(t,$)C17(s, 0)ps(0)} ,  (3.86) 

where B and C are Schrödinger picture operators. We use here and in the fol-
lowing the convention that the super-operators V(t, s) always act on anything 
standing to the right of them. Equation (3.86) thus means that, in order to calcu-
late the two-time correlation function, one propagates the density matrix ps(0) 
from time 0 to time s, applies from the left the operator C, propagates the new 
'density matrix' Cps(s) from time s to time t, and, finally, applies B from the 
left and takes the trace over 

This result is easily generalized to the most general form of a measurable 
multi-time correlation function which is given by (Gardiner and Zoller, 2000; 
Gardiner and Collett, 1985) 

g(t 1 ,t 27  • . • tn; .9 1 7  .9 2, • • . S m )  (3.87) 
(B i (s 1 )B 2 (s 2 )... B 7 (s 7 )C(t) . • • C2(t2)C1(t1)) 
trs {C(t) ... C2 (t2)Ci (ti)Ps(0)Bi (Si )B2 (82) .  

Here, the  Bi (s), j =  1, . . . , m, and the Ci (t i ), i = 1, ... n, are arbitrary Heisen-
berg operators and the si and ti  are ordered in time such that 

tn  > tn _i >  > ti > 0, sm  > sm _1 >  > S i  > 0.  (3.88) 

In order to bring the multi-time correlation function into a form analogous to 
(3.86) we perform a time ordering of the set  {t 1 , t2 , , tn , si, s2, , sm l. Note 
that the number q of elements of this set may be smaller than n+m since we allow 
the possibility that t i  = si  for certain indices i, j. We denote the time-ordered 
elements by r1 , 1 = 1, 2, ... , q. Thus we have 

rq  > rq _ i  >  > ri  > O. 

For each / we define a super-operator T1 through 

Tip = Cip if ri  = ti  si for some i and all j, 
Tip = pBi if ri = si  ti  for some j and all i, 

Tip = CipBi if  r  = ti  =si  for some i and j. 

(3.89) 

(3.90) 
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Then we have 

,tn; si,s2, • • srn)  (3.91) 
trs {..rg V(r q ,rq _ 1 ),Fg _1V(r q _1,rq ___2) • • • TiV(ri, 0)ps(0)} • 

This equation provides a general expression for all time-ordered multi-time corre-
lation functions in terms of the propagator of the underlying quantum Markovian 
master equation. 

In practical applications it is often useful to formulate the dynamics of corre-
lation functions in terms of a system of differential equations. Suppose we have 
a set of system operators {Bi } such that the Markovian master equation (3.47) 
gives rise to a closed linear system of first-order differential equations for their 
averages, 

d 
It (13i(t))  

G ij(Bi(t)) (3.92) 

with some coefficient matrix G.  The two-point correlation function then satisfies 
the same system of differential equations, 

d 
(B i (t + Bt(t))  = E Gii  (Bi  (t T)B, (0).  (3.93) 

3 

This statement is known as the quantum regression theorem (Lax, 1963; Gardiner 
and Zoller, 2000). To prove it we first write 

d  = trs {(Lt B) ps (01 = trs  Gii Bi  ps  (0 .  (3.94) 

Since this is supposed to hold, in particular, for any initial density ps(0) we 
conclude that 

= E  (3.95) 
3 

Hence we obtain 

d 
—
dr

(B i (t + r)131(t)) = trs {(ft Bi ) V(t + 77 t)Bips(t)} 

= E Gii (Bi (t 7-)B, (0),  (3.96) 

which was to be shown. The significance of the quantum regression theorem 
derives from the fact that it allows us to determine explicit expressions for the 
correlation functions once a solution for the mean values is known. An example 
will be discussed in Section 3.4.5. 
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3.2.5 Irreversibility and entropy production 

The quantum Markovian master equation (3.47) describes the irreversible evolu-
tion of an open quantum system. In order to discuss in some detail the irreversible 
character of quantum dynamical semigroups we shall derive in this section a gen-
eral expression for the entropy production rate a in an open quantum system 
which admits a stationary state and show that it is always non-negative. 

To begin with, we consider an arbitrary dynamical map V(t) and investi-
gate the change of the relative entropy S(pl1P0)  of two states p, po  of S which 
is induced by V(t) (Lindblad, 1975). Representing V(t) as in eqn (3.38) and 
employing eqns (2.116) and (2.119) and the inequality (2.118) we find7  

S(V(t)pll V (t)p o ) = S (tr{U (t, 0)p 0 pBUf (t,0)}11tr{U (t , 0) p o  ® pBUf (t 7 0)1) 

< S (U(t,O)p 0 pBUt (t,0)11U(t, o)po  ® pBut(t, 0)) 
= s(p 0 pB 1 Po 0 PB) 

= s(P1 1P0).  (3.97) 

Let us suppose that po  is a stationary state of S, that is V (t)p o  = po . We can 
then conclude that a dynamical map V (t) decreases the relative entropy with 
respect to a stationary state, 

s(v(t )pl lpo)  s(pl IN). 
 (3.98) 

If now V(t) = exp ft is a dynamical semigroup it follows from inequality 
(3.98) that the negative time derivative of the relative entropy is positive, that 
is we have the inequality 

d 
a(p(t)) --

= --dt S(p(t)11Po)  >0, (3.99) 

where p(t) = V (t)p(0). Invoking arguments from non-equilibrium thermody-
namics we may interpret the functional a(p) as the entropy production rate (see 
below). The definition of the relative entropy functional, eqn (2.113), leads to 
the explicit expression 

a(P) = — kBtr {f(P) in p} + kBtr ff(p) lnpol > O.  (3.100) 

Note that we have included here the Boltzmann constant kB  into the definition 
of the entropy. 

Equation (3.100) shows that the entropy production is non-negative and van-
ishes in a stationary state. With the help of Lieb's theorem (see eqn (2.120)) we 
can prove even more, namely that the map p 1-4 a(p) is a convex functional on 
the state space of the open system (Spohn, 1978). To see this we first observe 

7To simplify the notation we omit the index S on quantities of the reduced system. 
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that the second term in expression (3.100) is a linear functional. Thus, it suffices 
to show that the map 

pH-* —kBtr fr(p) ln pl  (3.101) 

is a convex functional. Employing the general form (3.66) of the generator ,C this 
map takes the form 

p F4 —k B  E Ntr { (A k pAtk  — Atk A k p) ln p} .  (3.102) 
k 

The convexity of the entropy production functional  a(p) now follows immediately 
from the convexity of the map (2.126). 

Let us motivate the definition (3.100) for the entropy production rate by using 
arguments from non-equilibrium thermodynamics. To this end, we suppose that 
the canonical equilibrium distribution (Gibbs state) 

Pth = 1  exp (—NI )  
Z 

(3.103) 

is a stationary solution of the master equation. This means that f(pth) -- 
D(pth) ---- 0, where D denotes the dissipator of the quantum master equation 
(see eqns (3.70) and (3.71)). The normalization factor Z = tr exp(— 31-1) is the 
partition function and 

1 
/3 = 

kBT 
(3.104) 

is the inverse temperature. The precise physical conditions underlying this as-
sumption will be discussed later. 

In non-equilibrium thermodynamics the entropy obeys a balance equation 
which can be written in the form 

dS 
o-  ,--- Trt + J. (3.105) 

Here, S is the von Neumann entropy (see Section 2.3.1) of the open system. 
The quantity J denotes the entropy flux, that is the amount of entropy which is 
exchanged per unit of time between the open system and its environment, where 
we use the convention that for  J>  0 entropy flows from the open system into 
the environment. Consequently, the quantity a is the entropy production rate, 
that is the amount of entropy produced per unit of time as a result of irreversible 
processes. 

The time derivative of the von Neumann entropy is easily evaluated to be 

dS kB tr{,C(p) ln p} . 
dt 

(3.106) 
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On the other hand, the entropy flux J is due to those changes of the internal 
energy E = tr{Hp} which result from dissipative effects. Thus we may define 
the entropy flux by means of 

1 d 
J --T —dt diss 

1  1 E E --
T tr{HD(p)} = --

T tr{Hr(p)}. (3.107) 

   

Using the explicit expression (3.103) for the thermal distribution we find 

1 
T H = kB ln  9th + kB In Z, 

so that the entropy flow can be written as 

(3.108) 

J = kB tr {,C(p)ln pth} ,  (3.109) 

where we have made use of the fact that the generator is trace-preserving, i.e. 
tr{ f(p)} =  0. Adding eqns (3.106) and (3.109) we see that the thermodynamic 
entropy production rate a defined by the balance equation (3.105) coincides with 
expression (3.100) for the negative rate of change of the relative entropy with 
respect to the thermal equilibrium state. In this context the inequality a(p) > 0 
expresses the second law of thermodynamics. Note also that cr(p th) = 0, that 
is the entropy production vanishes in the thermal equilibrium state. Thus we 
conclude that the entropy production rate a(p) is a convex functional on the 
space of density matrices which vanishes in the thermal equilibrium state. 

3.3 Microscopic derivations 

From a fundamental viewpoint it is desirable to derive the generator of a quan-
tum dynamical semigroup from the underlying Hamiltonian dynamics of the 
total system. The aim of this section is to show under which assumptions such 
derivations can be given on the grounds of various approximation schemes. 

3.3.1 Weak - coupling Limit 

We begin by considering a quantum mechanical system S weakly coupled to a 
reservoir B. The Hamiltonian of the total system is assumed to be of the form 

H = Hs+ HB + ( 3.110) 

where Hs and HB denote respectively the free Hamiltonian of the system and 
of the reservoir and H1 describes the interaction between the system and the 
reservoir. The derivation of a quantum Markovian master equation is most easily 
performed in the interaction picture. Our starting point is thus the interaction 
picture von Neumann equation (see Section 3.1.2) 

d 
— P(t) = — i[Ili(t),P(t)1 dt 
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for the total density matrix p(t) and its integral form 

t 
p(t) = p(0) –  if  ds[11 1  (s), p(s)]. 

o 
(3.112) 

Note that we omit here for ease of notation the index / which served to indicate 
the interaction picture in Section 3.1.2. Inserting the integral form into (3.111) 
and taking the trace over the reservoir we find 

I 

d 
—dt p s (t) = – f dstrB [H 1 (t),[11 1 (8), p(s)]]. 

o 

Here, we have assumed that 

(3.113) 

trB [HI (t), p(0)]  (3.114) 

Equation (3.113) still contains the density matrix of the total system p(t) on 
its right-hand side. In order to eliminate p(t) from the equation of motion we 
perform a first approximation, known as the Born approximation. This approxi-
mation assumes that the coupling between the system and the reservoir is weak, 
such that the influence of the system on the reservoir is small (weak-coupling 
approximation). Thus, the density matrix of the reservoir pB is only negligibly 
affected by the interaction and the state of the total system at time t may be 
approximately characterized by a tensor product 

p(t)Pz.,-' p s (0 0 pB.  (3.115) 

We emphasize that this does not imply that there are no excitations in the 
reservoir caused by the reduced system. The Markovian approximation to be 
derived below provides a description on a coarse-grained time scale and the 
assumption is that environmental excitations decay over times which are not 
resolved. Inserting the tensor product into the exact equation of motion (3.113) 
we obtain a closed integro-differential equation for the reduced density matrix 
Ps (0 

, 

d 
—dt P ( ) – – f dstrB [II 1 (t) , [II 1 (s), ps(s) 0 PB]l• 

. 

(3.116) 

In order to simplify the above equation further we perform the Markov ap-
proximation, in which the integrand ps(s) is first replaced by ps(t). In this way 
we obtain an equation of motion for the reduced system's density matrix in which 
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the time development of the state of the system at time t only depends on the 
present state Ps  (0, 

t 
d Ps(t) --r- - f dstrB [II 1 (t),[111 (s), Ps (t) 0  PBii. 

o 
(3.117) 

This equation is called the Redfield equation (Redfield, 1957; Blum, 1981). 
The Redfield equation is local in time, but it is not yet a Markovian master 

equation since the time evolution of the reduced density matrix still depends 
upon an explicit choice for the initial preparation at time t = O. This implies 
that the dynamics of the reduced system is not yet described by a dynamical 
semigroup. In order to achieve this we substitute s by t - s in the integral 
in eqn (3.117) and let the upper limit of the integral go to infinity. This is 
permissible provided the integrand disappears sufficiently fast for s > TB . The 
Markov approximation is therefore justified if the time scale TR over which the 
state of the system varies appreciably is large compared to the time scale TB 

over which the reservoir correlation functions decay. Thus, we finally obtain the 
Markovian quantum master equation 

cj ps (t) = - I dstrB [H 1 (t),[11 1 (t - s), PO) 0 Pa • dt 
o 

(3.118) 

It is important to realize that in a description of the reduced system dynamics 
on the basis of a Markovian quantum master equation the dynamical behaviour 
over times of the order of magnitude of the correlation time TB is not resolved. 
As mentioned before, the evolution is described in this sense on a coarse-grained 
time axis. 

The approximations performed above are usually termed the Born-Markov 
approximation. In general they do not guarantee, however, that the resulting 
equation (3.118) defines the generator of a dynamical semigroup (Davies, 1974: 
Diimcke and Spohn, 1979). One therefore performs a further secular approxima-
tion which involves an averaging over the rapidly oscillating terms in the master 
equation and is known as the rotating wave approximation. To explain the pro-
cedure let us write the Schrödinger picture interaction Hamiltonian HI in the 
form 

HI -= E Aa 0 Ba7 
 (3.119) 

a 

where Atc, = A, and Bic; =  B a .  This is the most general form of the interaction. 
The secular approximation is easily carried out if one decomposes the interaction 
Hamiltonian H1  into eigenoperators of the system Hamiltonian Hs. Supposing 
the spectrum of Hs to be discrete this may be achieved as follows. Let us denote 
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the eigenvalues of Hs by E and the projection onto the eigenspace belonging to 
the eigenvalue E by 11(e). Then we can define the operators 

A0 (w)  E H(e)A,H(e).  (3.120) 
Er 

The sum in this expression is extended over all energy eigenvalues Ei  and E of Hs 
with a fixed energy difference of w. An immediate consequence of this definition 
is that the following relations are satisfied, 

[Hs, A c,(w)] =  (3.121) 
[Hs, A (w )]  = -FwAta (w).  (3.122) 

The operators A 0  (w) and Atc,(w) are therefore said to be eigenoperators of Hs 
belonging to the frequencies +w, respectively. It follows from relations (3.121) 
and (3.122) that the corresponding interaction picture operators take the form 

Finally, we note that 

e  i Hs t A a  ( w  ) e  Hs t 

e ifIst iqt p) e—ilist =ei-iwtAlt (w) .  

S, A ta (W) 43(W)] = 0 , 

Atc,(w) =  A0 (—w). 

(3.123) 
(3.124) 

and 

Summing (3.120) over all energy differences and employing the completeness 
relation we get 

E A0 (w) =>A(w) = A,.  (3.127) 

This enables us to cast the interaction Hamiltonian into the following form 

= E A 0 (w)®B 0  =  (w) Btc,.  (3.128) 
ct,u)  ce,w 

This is the desired decomposition of the interaction into eigenoperators of the 
system Hamiltonian. Note that the frequency spectrum {w} is, in general, degen-
erate: For a fixed w the index a labels the different operators A 0 (w) belonging 
to the same frequency. A specific example will be encountered in Section 3.4, 
where a labels the Cartesian components of the dipole operator. 
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The reason for introducing the eigenoperator decomposition (3.128) is that 
the interaction picture interaction Hamiltonian can now be written in the par-
ticularly simple form 

H1(t) . E e- iw t A a (co) 0 B a (t) = E e+iw t itta  (w) ® B(t),  (3.129) 

where 

Ba(t) = e iHB t Bae -iHB t  (3.130) 

are interaction picture operators of the environment. We also note that condition 
(3.114) becomes 

(B a (t)) E tr {B a(t)pB} = 0,  (3.131) 

which states that the reservoir averages of the B c,(t) vanish. 
Inserting now the form (3.129) into the master equation (3.118) we obtain 

after some algebra 

DO 

d 
—dt

Ps(t)= f d3trB fili(t- 8)ps(t)PB-111(t) - 111(tgli(t -  s)Ps(t)PB} + h.c. 
o 

= E Eeiw — w)trao(w) (Aompswitta(w') — Atc,(wi)itocuops(t)) 
w,w ,  ct,s 
+h.c.  (3.132) 

Here h.c. means the Hermitian conjugated expression and we have introduced 
the one-sided Fourier transforms 

00 

110P) E f dse'"(B1(t)Bo(t - s)) 
o 

of the reservoir correlation functions 

(Bta (t)B(t - s)) E trB {BI(t)B(t — s)PB 1 . 

(3.133) 

(3.134) 

Let us suppose that pB is a stationary state of the reservoir, that is [HB, pB].--  0. 
The reservoir correlation functions are then homogeneous in time which yields 

(B(t)B0(t - s)) = (B'cr, (s)Bs (0)),  (3.135) 

showing that the quantities Fo(w) do not depend on time. We remark that 
there are interesting cases in which the reservoir correlation functions do depend 
on the time argument t. This happens, for example, if the reservoir represents a 
squeezed vacuum state (see Section 3.4.3). 
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As mentioned before, the basic condition underlying the Markov approxima-
tion is that the reservoir correlation functions (3.135) decay sufficiently fast over 
a time TB which is small compared to the relaxation time TR. Typical exam-
ples for the behaviour of these correlation functions will be discussed in Sections 
3.6.2.1 and 12.1.1.3. It is important to note that a decay of the correlations can 
only be strictly valid for an environment which is infinitely large and involves a 
continuum of frequencies. In the typical situation the reservoir is provided by a 
collection of harmonic oscillator modes bn  with frequencies co n  and the B a  are 
given by linear combinations of the modes bn . If the frequency spectrum {co„} 
of the reservoir modes is discrete, it is easy to see that, in general, correlation 
functions of the type (3.135) are quasi-periodic functions of s. A rapid decay of 
the reservoir correlations therefore requires a continuum of frequencies: For an 
infinitely small frequency spacing Poincaré recurrence times become infinite and 
irreversible dynamics can emerge. 

We denote by Ts the typical time scale of the intrinsic evolution of the system 
S. This time scale Ts is defined by a typical value for lw' — w , w' co, that 
is by a typical value for the inverse of the frequency differences involved. If Ts 
is large compared to the relaxation time TR of the open system the non-secular 
terms in (3.132), i.e. the terms for which co' co, may be neglected, since they 
oscillate very rapidly during the time TR over which ps varies appreciably. This 
condition is typically satisfied for quantum optical systems where it is known as 
the rotating wave approximation. Thus we have 

cips(t )  . E E row (43 (w)p s (t)4(w) - AtŒ mAo mps (0) + h.c. 
dt 

It is convenient to decompose the Fourier transforms of the reservoir correlation 
functions as follows 

1 
Pas(w) ---, —

2
-y„s(w) + iS,o (w), 

where for fixed w the coefficients 

(3.137) 

w a 03 
(3.136) 

1 So (w) =---- Ti. (Fao (co ) — (w )) 
(3.138) 

form a Hermitian matrix and the matrix defined by 

+00 

70(w) = Fa (w) + F a(w) = f dse" (Bta (s)Bs(0))  (3.139) 
--co 

is positive (see below). With these definitions we finally arrive at the interaction 
picture master equation 
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ci Ps(t)  Ps(t)] +D(Ps(t)). dt 

The Hermitian operator 

Ihs = EESco (w) Ato,(‘.4_,) Ao (w) 
c , /3  

provides a Hamiltonian contribution to the dynamics. This term is often called 
the Lamb shift Hamiltonian since it leads to a Lamb-type renormalization of the 
unperturbed energy levels induced by the system-reservoir coupling. Note that 
the Lamb shift Hamiltonian commutes with the unperturbed system Hamilto-
nian, 

[Hs, Ihs]  =0,  (3.142) 

by virtue of eqn (3.125). Finally, the dissipator of the master equation takes the 
form 

E'Ycto((-0 )(AsP)PsA tc,(w) --1- {Ata(w)A0(w),Ps1). (3.143) 2 
cto3 

We note that the master equation (3.140) is of the first standard form (3.63). 
It can be brought into Lindblad form (3.66) by diagonalization of the matrices 
ey(w) defined in eqn (3.139). In order to prove that these matrices are pos-
itive one uses Bochner's theorem according to which the Fourier transform of 
a function f(s) is positive provided f(s) has the property of being of positive 
type. The latter property means that for arbitrary t 1 , t -2, • • •  ,t,  and all n the 
(n x n) matrix aki = f (tk - t1) must be positive. Since all homogeneous cor-
relation functions f (s) = (Bt (s)B (0)) are of positive type the positivity of the 
matrices 70(w) follows immediately. Finally, we remark that the Schrödinger 
picture master equation is obtained from (3.140) simply by adding the free sys-
tem Hamiltonian Hs to His, as is easily verified with the help of the properties 
(3.121), (3.122) and (3.125) of the eigenoperators. 

Let us summarize the different approximations used in the above deriva-
tion. The first approximation is a consequence of the weak-coupling assumption 
which allows us to expand the exact equation of motion for the density matrix 
to second order. Together with the condition p(t) ps(t) 0 pB this leads to the 
Born approximation to the master equation. The second approximation is the 
Markov approximation in which the quantum master equation is made local in 
time by replacing the density matrix ps(s) at the retarded time s with that at 
the present time ps(t). Furthermore, the integration limit is pushed to infinity 
to get the Born-Markov approximation of the master equation. The relevant 
physical condition for the Born-Markov approximation is that the bath corre-
lation time TB is small compared to the relaxation time of the system, that is 
TB < TR. Finally, in the rotating wave approximation rapidly oscillating terms 
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proportional to exp[i(Lo' — co)t] for co' co are neglected, ensuring that the quan-
tum master equation is in Lindblad form. The corresponding condition is that 
the inverse frequency differences involved in the problem are small compared to 
the relaxation time of the system, that is Ts — — w < TR. 

3.3.2 Relaxation to equilibrium 
In the previous section we have assumed that the environment is in a stationary 
state pB which is invariant with respect to the dynamics of the reservoir. Now 
we want to consider a situation in which the environment is a heat bath at 
the inverse temperature O. In the absence of external time-dependent fields one 
expects the Gibbs state 

Pth trs exp(-01/s) 

to be a stationary solution of the quantum master equation (3.140). It can be 
shown then that for any initial state the system returns to equilibrium, 

Ps(t)  pth, for t  +cc,  (3.145) 

provided the quantum dynamical semigroup has the property of being ergodic. 
This means that the relations 

[X, Atc,(w)] = [X, A,(co)] = 0 for all a, CO  (3.146) 

imply that X is proportional to the identity. 
In order to show that (3.144) is indeed a stationary solution of the master 

equation (3.140) we make use of the KMS condition according to which the bath 
correlation functions are related through 

(B(t)B(0)) = (B,3(0)Bta (t + 0)).  (3.147) 

The KMS condition can easily be verified if the reservoir is a heat bath with 
canonical equilibrium distribution 

exp( — OHB) 
PB trB exp(—OHB) -  

It can also be shown to hold for thermal equilibrium systems in the thermody-
namic limit. Equation (3.147) leads to the following relations between the Fourier 
transforms (3.139) of the bath correlation functions, 

70 ( — A)) = exP( - 0w)'yoc, (w).  (3.149) 

We further have by virtue of eqns (3.121) and (3.122), 

PthA cE (L0-7) 7--  e 43w AcEMPth, 
PthA ta (w) = e — d3w Ata (w)Pth. 

exp(— /3Hs) (3.144) 

(3.148) 

(3.150) 
(3.151) 

The proof of the stationarity of p th  is now easily carried out with the help of the 
relations (3.142), (3.149), (3.150) and (3.151). 
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We mention a further important property of the quantum master equation 
(3.140). Namely, if the spectrum of the system Hamiltonian Hs = EnEn In)(n 
is non-degenerate it gives rise to a closed equation of motion for the populations 

P(n,t) = (rips(t)In)  (3.152) 

of the eigenstates In). Thus, the equation for the diagonals of the density matrix 
in the eigenbasis of Hs decouples from the off-diagonal elements. As is easily 
checked using the quantum master equation the populations are governed by the 
equation 

d 
—dt P(n,t) = E [w(on)P(7n, t) - w(illn)P(n, t)] . 

In 
(3.153) 

This equation is of the form of the classical discrete master equation (1.89) with 
time-independent transition rates given by 

W(n n) =E'Yas(Eln — En)(7n1Actln)( 71 1Aolm). 
 (3.154) 

oe,3 

Equation (3.153) is also known as the Pauli master equation. The rates (3.154) 
are real and non-negative as a consequence of the positivity of the matrices 
'To (w). They are just those obtained with the help of Fermi's golden rule. 

The relations (3.149) give 

W(mln)exP(--Oen) = W(nlm) exp(-- /km )  (3.155) 

which is known as the condition of detailed balance and which leads to the con- 
clusion that the equilibrium populations Ps  (n) follow the Boltzmann distribution 

P8 (n) = const x exp(-- /3E72 )  (3.156) 

over the energy eigenvalues en. 

3.3.3 Singular- coupling limit 
In the weak-coupling limit the perturbation caused by the interaction between 
the system and the environment is assumed to be small. As a result the degrees 
of freedom of the environment are the fast variable and can be effectively elimi-
nated. With an appropriate scaling of the time parameter it is possible to derive 
under certain conditions a linear quantum master equation also for the case of 
strong coupling. In this so-called singular-coupling limit one considers a total 
Hamiltonian of the form 

H = Hs +e-2 HB  +6-1  HI ,  (3.157) 

where the interaction Hamiltonian is again written as 

E Act Ba 
 (3.158) 

a 

with Ata  = Ac, and  B =  B.  The aim is to derive an equation of motion for 
the reduced density matrix in the limit c  0. To motivate the form of the 
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Hamiltonian (3.157) we first observe that the decay time of reservoir correlation 
functions of the form (3.134) is decreased by a factor of 6-2  through the scaling 
HB E -2  HB. The scaling III 6-1  HI of the interaction Hamiltonian ensures 
that the Fourier transforms of the reservoir correlation functions remain finite 
in the limit e -4 0. 

The derivation of the quantum master equation from this microscopic model 
is similar to the weak-coupling case and will not be presented here in detail. The 
only essential difference is that it is not necessary to perform the rotating wave 
approximation. The result of the derivation is the following Schrödinger picture 
master equation, 

d —p s (t) -_-, -i[Hs + HLS 1 PS(0] ±  E-yas (A,ps(to, _ _1 {A,A3,ps(t)}) , 
dt  2 

ct43 

(3.159) 

where the Lamb shift Hamiltonian reads 

HLS (3.160) ---= Esa0 A,A0 , 
cr)3 

with Sao defined analogously to (3.138), and 

+Do 
tyco = f ds(B a (s)Bfi(0)).  (3.161) 

The matrix -yas is again Hermitian and positive. Hence, the generator of the 
quantum master equation (3.159) is of the first standard form (3.63) and may be 
written in Lindblad form by diagonalization of the matrix -yas . Master equations 
of the general form (3.159) will be encountered, for example, in our study of 
the quantum Zeno effect in Section 3.5.2 and in the recoilless limit of quantum 
Brownian motion (see Section 3.6.4.5). 

3.3.4 Low - density limit 
We consider a gas of particles with low density n. The particles of the gas inter-
act through collisions involving the excitation of internal degrees of freedom of 
the gas particles. The collisions of the gas particles are considered as statistically 
independent processes. The aim is to write down a master equation which effec-
tively describes the dynamics of the internal degrees of freedom. To this end, the 
internal variables are taken to be the reduced system S, while the translational 
degrees of freedom of the gas particles provide the environment B. 

The internal degrees of freedom of the particles may be described by a free 
Hamiltonian of the form 

Hs  = E Ed/0 (k 1'  (3.162) 
k 
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The translational degrees of freedom of a gas particle are described by the Hamil-
tonian 

HB  = fd3pE(15)1A(151,  (3.163) 

where IA is a momentum eigenstate and E ( 5) = 2 /2m  is the free particle 
energy. The one-particle states of the environment are given by the density matrix 

pB = —vi  f d3PG(15)11 5)051,  (3.164) 

where GO represents the momentum distribution of the gas particles. The den-
sity matrix pB is normalized in some volume V according to 

d3  p „ , 

 

trpB f d3 130 5-1PB113) = f (2 ,703 L-7(P) =  (3.165) 

The interaction of the internal degrees of freedom with the translational de-
grees of freedom is given by scattering reactions in which the incoming momen-
tum changes from 17 to while the internal level changes from 1) to k). The 
scattering amplitude for this process can be written in the form 

(k, OS1 1 ,13) = (4.  15)(5k1 — 27ri5 (ck + E(q') — — EV) T (k, -41 1 ,13),  (3.166) 

with the S-matrix and the T-matrix known from scattering theory. In the low-
density limit the reduced dynamics of the quantum systems formed by the inter-
nal degrees of freedom can be shown to yield the Schrödinger picture quantum 
master equation 

 

d 
Ps(t) = —i[Hs HLS PS (t)] +D(Ps (t) 

 
(3.167) 

The Hamiltonian Ths yields a renormalization of the system Hamiltonian, 

HLS = —n2  E f d3  P G05)  (k ,1511,15) + T* ( 1 ,131k,13)}  (3.168) 
Ek =6 / 

and the dissipator is given by 

D(p s) = 2rn Ef d3  p f d3  qG(13)(5 (EK) E(13) + w)  (3.169) 

X { TW(4:APS T1(T7 — PSTC:r1(q1/3) 7142 (4.7)3) 

where 71,(4.,17) is defined by 

(T, = E  (3.170) 
Ele—El=W 
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Thus the Lindblad operator 77, (4', /I) is given by a coherent superposition of the 
scattering amplitudes for all processes which contribute to a given excitation 
energy w of the internal degrees of freedom, 

C4) = Ek —  q  = E(p) — E(0.  (3.171) 

This is the low-density limit of the quantum master equation which can be 
shown to hold in the thermodynamic limit. A rigorous mathematical treatment 
may be found in D Eimcke (1985). Equation (3.167) is obviously in Lindblad form, 
where we have, however, a continuous family of Lindblad operators. To derive 
the master equation an averaging procedure over times which are large compared 
to the mean collision time rc is performed, which is similar to the rotating wave 
approximation. Let d be the linear dimension of the interaction volume, y the 
mean particle velocity, and 1 the mean free path length. Then the low-density 
limit master equation is valid as long as 

V it —1,1  t  v—ln-1/3 re ess  < V—  7 (3.172) 

which means that the mean collision time Tc  must be small compared to the 
time between collisions. Hence, we get the low-density condition n < 

3.4 The quantum optical master equation 

The interaction of matter with electromagnetic radiation in the quantum optical 
limit provides a typical field for the application of quantum dynamical semi-
groups and quantum Markovian master equations (Cohen-Tannoudji, Dupont-
Roc and Grynberg, 1998; Gardiner and Zoller, 2000; Walls and Milburn, 1994). 
The reason for this fact is that in a typical quantum optical situation the phys-
ical conditions underlying the Markovian approximation are very well satisfied. 
A number of examples will be discussed in this section. 

3.4.1 Matter in quantized radiation fields 
We consider a bound quantum system, e.g. an atom or a molecule, which interacts 
with a quantized radiation field. The radiation field represents a reservoir with 
an infinite number of degrees of freedom and the bound system is the reduced 
system we are interested in. The uncoupled atom or molecule is described by some 
Hamiltonian Hs, while the free quantized radiation field will be represented by 
the Hamiltonian (subtracting an infinite c-number for the vacuum energy) 

HB = E E riwkbio-z)b),(/-,).  (3.173) 
X=1,2 

In this section we reintroduce all physical constants such as Planck's constant 
h and the speed of light c. For simplicity we decompose the radiation field into 
Fourier modes in a box of volume V, imposing periodic boundary conditions. 
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These modes are labelled by the wave vector k and two corresponding, transverse 
unit polarization vectors 6,(1;), such that 

(  =0,  (3.174) 
r,(k) • 6, (k) =  S,  (3.175) 

E e(k)e(k) =
kz  k 

7  

 

3  i, = 1,2,3.  (3.176) 
A=1,2  l iC' 1 2   

The dispersion relation is Wk  = ck =  c. The field operators b),(1) and OA  (1-i) 
describe the destruction and creation of photons with wave vector 1 and polar-
ization 6,(k). They obey the commutation relations 

(P)] = [b, °Ai (P )]  = 0,  (3.177) 

[b),(),  b, (k')] 
 

15- P 6)0,1  • 
 (3.178) 

Finally, we assume the interaction Hamiltonian to be given in the dipole 
approximation by 

 

H1= -it) • f,  (3.179) 

where B is the dipole operator of the system under consideration and  Ê is the 
electric field operator in the Schrödinger picture, 

f=iE 
 

27vhwk  (1-c.) (b),(k) — btx (k)) .  (3.180) 

With these definitions the total Hamiltonian governing the coupled system of 
the matter degrees of freedom and the radiation degrees of freedom is given by 

H = Ils +11B + 
 

(3.181) 

3.4.1.1 Performing the Born-Markov approximation We proceed as in Section 
3.3.1 and decompose the dipole operator D into eigenoperators of  H.  The latter 
take the form (see eqn (3.120)) 

A(w)  E ll(s),6H(61) 
 

(3.182) 
-Eh)  

Note that the index a used in Section 3.3.1 labels here the Cartesian components 
Di , i = 1, 2, 3, of the dipole operator. In accordance with eqns (3.121), (3.122) 
and (3.126) we now have 

[H f(w)] = — hw Â(w) , [H s Ât ( o)] = -Fhwift(w),  (3.183) 
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and 
Al 

(
o ) 4(— w) .  (3.184) 

The decomposition of the interaction picture dipole operator bb (t) into eigenop-
erators therefore reads 

 

15 (t) E  e _iwt .z(, )  _ E  e -Fiwt iv (,),  (3.185) 

and the interaction Hamiltonian can now be written in the interaction picture 
in a form analogous to eqn (3.129), 

(t) =  e- iw t1(w ) 
 

(3.186) 

where f(t) denotes the electric field operator in the interaction picture. 
Assuming as in eqn (3.131) that 

(É(t))  E  tr {_g(t)p B }  =0,  (3.187) 

we can immediately write down the equation of motion analogous to eqn (3.132), 

d 
dt s 

E E  (w) (A (w) p s Ati  (co') — (w i  ) Ai (co) p s} + h.c. 
w,w' 

(3.188) 

The correlation functions of the electric field operator are defined through 

(Ei  (t)Ei  (t s))  E  trB  {Ei  (t)Ei  (t — s)pB} 

and their one-sided Fourier transforms are given by 

rii ( r.)) E  f dse iw (Ei(t)E (t — s)) . 
o 

The matrix Fii  (w) will be referred to as the spectral correlation tensor. It de-
pends, in general, on  t.  In fact, without further assumption on the state pB  of 
the reservoir we find 

(w) = E E 
i;,W ,  )01  

00 

27rruok,12 7rhwie  exi (k) eiv  (p) (3.191) 

x f ds [(b ),(k) bt), ,  (i)) exP [+i(wk ,  wk)t i(wk ,  — w).9] 

+(btx(k)bv(P))exP [ — z(wk— cok)t + i(cok ,  + co)s] 

— (1)),(k)bv(P))exP  + cok)t + i(wk ,  + w) .5] 

(btx (k)b tx ,  (1?)) exP [- F  — (co — co) .51] . 
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3.4.1.2 Thermal reservoir As our first example let us now take the reservoir 
of radiation modes to be in an equilibrium state at temperature T, 

1 pB =  exp [ — ,31-1B] = ri(i_exp[_,@riwk])exP [— firkokb t),(0b,„(k)] . 

k*,x 
(3.192) 

As above, expectation values with respect to this equilibrium state are denoted 
by angular brackets. Note that (f(t)) = 0 since the field operator is linear 
in the creation and annihilation operators. Since the thermal equilibrium state 
is stationary with respect to the reservoir dynamics, the reservoir correlation 
functions are homogeneous in time and we have 

(Ei  (t)Ei  (t — s)) = (Ei (s)Ei  (0)).  (3.193) 

It follows that the spectral correlation tensor fii(w) does not depend on t. Con-
sequently, if we perform the rotating wave approximation in eqn (3.188) only the 
diagonal terms b..) = w' of the double sum over the system frequencies survive 
and we are left with 

d 
dt Ps = EE  {Ai(w)PsA ti (w) AIMAi(w)Ps} + h.c. 

i,j 
(3.194) 

It remains to determine the spectral correlation tensor. To this end we use the 
relations 

= (OA  (ObtA , (P)) = 0,  (3.195) 
= (5w,(5),), ,  (1 + N(wk)),  (3.196) 

=  (3.197) 

where 

1 
N(wk)  exp [ruok]  —1  

denotes the Planck distribution, that is the average number of photons in a mode 
with frequency Wk. We further perform the continuum limit, 

00 

1  
d3k  1  

17-  (270 3  (27r) 3 c3  f dwkw 12, f dO.  (3.199) 

The integration over the solid angle dQ of the wave vector k is carried out with 
the help of 

(3.198) 

d9  (6,3  kiki  87r 
k 2  )  3 3  

(3.200) 
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Equation (3.191) then yields 

CC 

11(w)  6 
 f dwk4 

'3 7r2h, (1+ 

+N(wk) 

s = 76(E) 

-2 7(w) 

42 

value, 

CO 

N(wk)) f dsexp[-i(wk 

f ds exp [+i(wk + 
o 

- iP -
1

, 

we finally arrive at 

+ iS (w)) 

± N(w)) 

1+  N(wk)  N (wk) 

w)s] 

w)sj  .  (3.201) 1 
(3.202) 

(3.203) 

(3.204) 

(3.205) 

3c3 " 

On making use of the formula 

CXJ 

se -iE 

where P denotes the Cauchy principal 

0 

 Su
- 

where we have introduced the quantities 

l'(w) = 3h,c3  

and 

+cc 
2 

S(w)  P  dwk4 

( 1  

= 
37c3 h,  

f 
w  w  bid 

Note that the Planck distribution satisfies N (-w)  -(1 + N(w)) such that 
-y(w) = 42(1 + N(w))13hc 3  for co > 0 and 7(w) = 41w13N(14/3h,c3 for c,.) G 0. 

Summing up our results we obtain a Markovian quantum master equation for 
the matter degrees of freedom, often called the quantum optical master equation, 
which can be written in Lindblad form, 

The Hamiltonian 

d —
dt

ps (t) =  [His, ps(t)] D(ps (0). 
h, 

HLS = E h,S(w).2it (w) • _if(w) 

(3.206) 

(3.207) 

leads to a renormalization of the system Hamiltonian Hs which is induced by 
the vacuum fluctuations of the radiation field (Lamb shift) and by thermally 
induced processes (Stark shift). A more detailed treatment of the Lamb shift is 
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given in Section 12.2.3.2. The dissipator of the quantum master equation takes 
the form 

D(Ps) = 
42  1 r 
3h3 ( 1  + N (w)) (IP)Ps2ft  (w) - -2 

{At (w)A(w) s})  MA(w ), ps 
w>0 

+ E  N(w) (Ât(w)psif(w) _ p(w)24 .t(w),ps}) • (3.208) 3hc3  2 w>o 
To obtain this form we have transformed the sum over the negative frequencies 
into a sum over the positive frequencies and have made use of relation (3.184). 
We observe that the dissipator of the master equation describes spontaneous 
and thermally induced processes. By virtue of eqn (3.121) the Lindblad operators 
Ai  (co) lower the atomic energy by the amount ruo: If is an eigenstate of Hs with 
energy E, then Ai  (w)0 is again an eigenstate of Hs belonging to the eigenvalue 
E - hw. Correspondingly, the operators AI(w) raise the atomic energy by h‘.4.;. 
Thus, the Lindblad operators Ai (w) describe spontaneous and thermally induced 
emission processes which occur with the rate 4w 3 (1 + N(w))13hc 3 , while the 
Ati  (w) describe thermally induced absorption processes taking place with the 
rate 4w 3 N(w)/3hc 3 . 

Let us finally comment on the validity of the quantum optical master equa-
tion. The relaxation time TR is given by the inverse of a typical relaxation rate 
'yo . The latter is defined by a typical value for the transition rates 4w 3 lc/-2 /3hc3  
of electric dipole transitions, where ci is the corresponding matrix element of 
the dipole operator. On the other hand, the vacuum correlation time TB of the 
reservoir of radiation degrees of freedom is given by the inverse of a typical tran-
sition frequency wo . This will be seen explicitly in our discussion of a systematic 
perturbation expansion around the Markovian limit in Section 9.2.1. It can also 
be concluded from the well-known derivation of the golden rule in quantum me-
chanics. The condition TB < TR for the Born-Markov approximation thus yields 

< wo, which is obviously a weak-coupling condition. This condition is usually 
very well satisfied in the quantum optical regime. For example, typical radiative 
inverse atomic lifetimes are of the order 107  s -1  to 109  s -1  or even much smaller, 
whereas optical frequencies are of the order 10 15  s -1 . Furthermore, it must be 
noted that we need the condition Ts < TR if the master equation involves a num-
ber of different transition frequencies (see Section 3.3.1). This condition enables 
one to perform the rotating wave approximation and ensures that transitions 
belonging to different frequencies may be described as separate decay channels 
involving different Lindblad operators. 

3.4.2 Decay of a two-level system 
The simplest quantum system is a two-level system whose Hilbert space is 
spanned by just two states, an excited state le) and a ground state lg). The 
Hilbert space of such a system is equivalent to that of a  spin4-  system. In fact. 
the Pauli operators 
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07 1 = ION + 19)(e, u2 = — ile)(91+ ilg)(e , cr = le)(el —1001  (3.209) 

satisfy the commutation relations 

[0-i , a-i] = 2iEjikak 7  (3.210) 

as well as the anticommutation relations 

{cr ,cr} = 26ii .  (3.211) 

It will be convenient to define also the operators 

1 
= 1001 = (al + ig2)  = LOW = 

The corresponding matrix representations of these operators in the basis le), 1g) 
take the form 

(0 1 ) (1 0 
= 1 0) 7  02 — r i ) 7 U3 — — 1) 7  

and 

—  7  ( 00  0)  — 1 0 ) 
(0 1 

We take the free Hamiltonian Hs  of the system to be diagonal in the basis le), 
19) 

1 
Hs = -2 w0u3, (3.215) 

where wo  > 0 is the transition frequency and we set again h = 1. In the following 
we work in the interaction picture. 

Physically, such a two-level system arises whenever the dynamics of the sys-
tem under study is effectively confined to a two-dimensional subspace, that is 
under the condition that transitions to other levels may be neglected. To be spe-
cific we regard here the model to describe the dynamics of a two-level atom with 
a transition frequency coo  in the optical range. We note that the Pauli operators 
a+ represent eigenoperators of the atomic Hamiltonian, 

[Hs, u-] = — wou-  u-p] = +wou+  (3.216) 

and, hence, a+ changes the atomic energy by the amount ±wo , corresponding to 
the absorption and emission processes, respectively. We thus have two Lindblad 
operators 

24.(wo ) _= Â=  Â(—wo )  At  = cr*a± ,  (3.217) 

where ci= (g1-61e) is the transition matrix element of the dipole operator (it 
is assumed here that the diagonals of the dipole operator vanish). Within the 

1 
(ai — zu2) •  (3.212) 

With an appropriate choice for the ground state energy we then have 
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two-level approximation the atomic dipole operator in the interaction picture 
can thus be written as 

15(t) = der _ e -iwot  I, + d a + e+iw° t  . (3.218) 

Neglecting the Lamb and Stark shift contribution we can now write the quan-
tum optical master equation (3.206) in the form (writing p instead of ps for 
simplicity) 

d  1  1 —dt p(t) = -yo (N + 1) (o-  _ p(t)o-  + - -2 o-  ± o-  _ p(t) - -2 p(t)o-  ±  a _) 

1  1 
+fiYoN (a ±  p(t)o-  _ - o- _ a ±  p(t) -  (3.219) 

with the spontaneous emission rate 

   

 

4w3 2  

 

(3.220) 7o = 31 ,c3  . 

The dissipator of the master equation describes spontaneous emission processes 
(rate 70 ) as well as thermally induced emission and absorption processes (rates 
70 N). The total transition rate will be denoted by 

7 = 'Yo (2N + 1) ,  (3.221) 

where N = N (co 0 ) denotes the Planck distribution at the transition frequency. 
To solve eqn (3.219) it is convenient to represent the density matrix as 

p(t) =  (I + (6 (0) • 

where the vector 

6) = ( 32. (1(0.++((atT)))  1. ( 1(°-  ((0.90)) ) , (3.222) 

11(t) (46-  (t)) = tr {6 .-  p(t)} (3.223) 

is known as the Bloch vector. It represents a real 3-vector satisfying 177(t)1 < 1. 
This condition is equivalent to the requirement that p(t) must be positive. For 
1'6(01 < 1 the corresponding density matrix describes a true statistical mixture. 
while a Bloch vector satisfying Iff(t)1 = 1 represents a pure state. Thus we see 
that the set of density matrices of the two-level system is isomorphic to the unit 
sphere, known as the Bloch sphere, the surface of which is equal to the set of 
pure states. 

The matrix elements p H  (t) = 1),(0 and p22 (t) =  p9  (t) are the populations of 
the excited and ground state levels, respectively. The off-diagonals p 12 (t) = p'2K 1  (t) 
are the coherences given by the expectation values of the atomic raising and 
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lowering operators u± . With the help of the algebra of the Pauli matrices one 
easily derives the differential equations 

d (ai(t)) = 

d 
lt (a2(t))  = 
d 
Tt (a3(t))  = 

(3.224) 

(3.225) 

(3.226) 

We observe that the 3-component of the Bloch vector decays exponentially with 
rate -y, while the coherences  (u±   (t))  decay with rate 7/2. The stationary solution 
is given by 

1 

 

(Gri)s = (0-2) 8  = 0, @Os = - ')± :) =    7  2N + 1' 

and the stationary population of the upper level is found to be 

1  N 
P:  = -2 (1  ± (u3)s)  = 2N + 1 .  

(3.227) 

(3.228) 

Of course, the stationary solution of the master equation is equal to the thermal 
equilibrium state Ps  = Pth given in eqn (3.144). 

If we choose, for example, the initial state p(0) = 1g)(g we find the corre-
sponding time-dependent solution 

(u3(t)) = -e -71  ( 1 + (0-3) 5 ) + (708, 
 (3.229) 

pe (t) = p: (1- e-1 ,  (3.230) 

showing explicitly the exponential approach to the thermal equilibrium values. 

3.4.3 Decay into a squeezed field vacuum 

In the preceding subsection we have considered a reservoir which is station-
ary with respect to the bath dynamics. In order to give an example for a non-
stationary environmental state we consider here a two-level system interacting 
with a reservoir in a state of the form pB = 10) (0 , where 10) represents a 
squeezed vacuum 

10) , 11 5, (ek) 0).  (3.231) 

Here, we have introduced the unitary squeeze operator (Walls and Milburn, 1994) 

exp [-21 eZb),(fc) 2  - -21  k btx (fc) 2 1 ,  (3.232) 



26 
=  

i 
37r h,c3  f dwk b-4 
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with k  rkeiek. With the help of the transformation properties 

= b), (k) cosh rk  (k)e iek sinh rk ,  (3.233) 

S t (4)bt  (ii)S- , X (4) k = btA  (k) cosh rk -b),(fi)ek sinh rk (3.234) 

one obtains the expectation values (compare with eqns (3.195)-(3.197)) 

= 
=  Nk7 

(bA (i)bA'(i')) = h'k1 XV Mk, 

(b tx (k)bl, (rCI )) = 
where we have defined the quantities 

Nk sinh2  rk, Mk  — cosh rk sinh rke iek.  (3.239) 

(3.235) 
(3.236) 
(3.237) 
(3.238) 

We note that these relations are compatible with the commutation relations 
(3.177), (3.178) of the field operators and that 

111,41 2  = Nk (N k  + 1).  (3.240) 

As for a thermal reservoir we have (f(t)) = (01É(00) = O. However, the 
correlation functions (3.189) of the electric field operator are no longer homoge-
neous in time since pB  is not an invariant state. As a consequence the spectral 
correlation tensor now depends explicitly on time t. With the help of eqn (3.191) 
the spectral correlation tensor for the squeezed vacuum can be written as follows, 

[(1 + Nk) f dse- i" -w)s + Nk f dSe ± i(wk+w)s  

0  0 
00  00 

-Mke-2" t  f dse+i(wk+w )s Mk*e+2iwk t  f dse -i(wk - ' )8  

_ (3.241) 
It has been assumed that the squeezing is uniform over the total 47r solid angle. 
We observe that the spectral correlation tensor consists of two parts: The first 
contribution  F(w) is independent of t and is formally identical to the thermal 
correlation tensor given in eqn (3.201), while the second contribution 1-' 32. ) (w) 
involves the rapidly oscillating exponentials exp(±2iwkt). 

Correspondingly, the dissipator of the master equation consists of two parts. 
d 

—dt p(t) = D(1) (P(t)) + 1)(2) (P(t)). (3.242) 

The contribution DO) is determined through rT(w). Formally it therefore has 
the same structure as the thermal dissipator given by the right-hand side of 



j(w ) pÂt pi) — A.)- pift  _  ci*2 0.±p0.±  

whereas the second case leads to the contribution 

ÂMPÂt  (w I ) ÂPX 

(3.247) 

(3.248) 
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eqn (3.219), where N is the value of Nk at the resonance frequency co o  = cko . It 
is given in terms of the resonant squeeze parameter r as 

N = sinh 2  r, N +1 = cosh2  r.  (3.243) 

If we neglect the Lamb and Stark shift contributions we find for the time-
dependent part of the spectral correlation tensor 

( 2 )  2w3 
 = 3hc3  " 

22  (5.  m* e 2iwt for co > 0, (3.244) 

and 

21w13  me2iwt 
F(w)id  

3h,C3  7 for co G 0, (3.245) 

where again M is the value of Mk taken at the resonance frequency, that is 

M = — cosh r sinh re i° , (3.246) 

with the resonant squeeze parameter r and the resonant phase O. In order to 
determine the contribution D (2)  of the dissipator of the master equation we sub-
stitute  F (w) into the right-hand side of eqn (3.188) and perform the rotating 

(2) wave approximation. Since F  oscillates with exp(2icot) the rotating wave 
approximation selects exactly two resonant terms from the double frequency 
sum, namely the terms corresponding to the case w = —coo , co' = +wo and to the 
case co = +coo, w' =  —we .  The first case is seen to lead to the contribution 

Absorbing the phase of the dipole matrix element into the squeezing phase 61  we 
therefore get 

 

1) (2)  (p) = — 72°  [M o-+  po-+  +  o-  _ po-  _] + h.c.  (3.249) 

Adding the first part D ( ' )  (p) of the dissipator we finally arrive at the density 
matrix equation 

 

1  1 

 

p(t) = 70 (N +1) (o- _p(t)o-±   - -2 o-  +o-  _ p(t)  p(t)o-+o-  _) 

1  1 
+70 (a+ P(t)u- - - 0  +P(t) - P(t)(1  - +) 

(3.250) — 70/0-+P(t)a+ 'YoM*0--P(t)a-. 



d  70 -2 

(al (t))  =  r(cri (t)),  (3.255) 

(3.256) 

(3.257) 

(a2 (t)) =  ') e-F2r  (.72 (t)) 
d  

—To (2 sinh2  r + 1) (0-3 (t)) -  'Yo • 
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This is the master equation describing the decay of a two-level system into a 
squeezed vacuum. It is important to realize that it can be written in Lindblad 
form. In fact, introducing the Lindblad operator 

 

C a_ cosh r + cy+  sinh  re if)  (3.251) 

we find 

—

d 

p(t) =ryo (C p(t)Ct - -
1 

Ct C p(t) - -
1 

p(t)Ct C) .  (3.252) dt  2  2 

Invoking the algebra of the Pauli matrices we obtain the equations of motion 

d  d 
dt (a+ (t)) = —dt  (t)) *  

=  (cosh2  r + sinh2  r) (o-±   (t)) + sinh r cosh re(cr (0)7 
d 
dt 

(0-3 (0) =  (cosh2  r + sinh2  r) (o-3 (t)) - 70 . (3.254) 

These equations describe a phase-dependent relaxation of the coherences and a 
relaxation of the 3-component of the Bloch vector which is enhanced in compar-
ison with the decay into the field vacuum. Setting 0 = 0 the equations of motion 
for the Bloch vector take the form 

(3.253) 

The corresponding vacuum Bloch equations (eqns (3.224)-(3.226) for ey = 70 ) 
are obtained in the limit r O. We observe that for a squeezed vacuum the 
components (o- 1 ,2) of the Bloch vector decay with different relaxation rates: In 
comparison to the vacuum case the relaxation rate is enhanced in one direction 
and diminished in the other. The 3-component of the Bloch vector approaches 
the stationary state 

(u3)s =   (3.258) 
2 sinh2  r + 1 

which has the same form as in eqn (3.227), where N = sinh2  r here plays the 
rôle of the Planck distribution. 

3.4.4 More general reservoirs 
The form of the master equation (3.250) holds for a general environmental state 
PB which can be represented by a product of independent modes satisfying 

1 
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(b),(fc)) = (btx (k)) = 0. For example, if we consider a squeezed thermal state, 
that is if we replace the vacuum state 10)(01 used in the preceding subsection by 
a thermal equilibrium state and squeeze the latter, we get instead of eqns (3.243) 
and (3.246) 

N =  Nth  (cosh2  r + sinh2  r) + sinh 2  r,  (3.259) 
M = - cosh r sinh rem  (2Nth  + 1),  (3.260) 

where we have written Nth  = 1/(exp[8w0] - 1) for the Planck distribution. Ob-
viously, the quantities N and M are not independent. One easily verifies the 
relation 

1m1 2  = N(N  + 1)  - Nth (Nth  + 1).  (3.261) 

The last equation shows that the inequality 

1M1 2  < N(N +1) 
 

(3.262) 

holds. This inequality is satisfied for general pB of the above form and may be 
proven with the help of an appropriate uncertainty relation. To this end we take 
a fixed mode bb),(k) and write 

(bt b) = N (bbt) = N + 1,  (3.263) 
(bb) = M =  (btbt) =  m.  (3.264) 

This is the most general parametrization which is compatible with the commu-
tation relations [b,b1= 1. Next one defines the operators 

X = —1= (e -i9 / 2 b + e±i62 bt) e _io/2 b  e+ 2 bt )  (3.265) 

which are Hermitian and satisfy (X) = (Y) = 0 and [X,  = - i. The un- 
certainty relation (X 2 ) • (Y 2 ) > 1/4 then immediately leads to the inequality 
(3.262). 

The significance of the inequality (3.262) is that it guarantees the positivity of 
the generator of the master equation (3.250). In fact, the generator of eqn (3.250) 
is in the first standard form (3.63) with F1  = u_, F2 = a+  and the coefficient 
matrix 

(aii)  (N + 1 --M* 
-M N (3.266) 

The positivity of this matrix leads to the condition (3.262). 
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3.4.5 Resonance fluorescence 
Let us consider the case that the atomic transition le)  1g) is driven by an 
external, coherent single-mode field on resonance. Invoking the dipole approxi-
mation we obtain the following interaction picture Hamiltonian describing the 
interaction of the system with the driving mode, 

 

HL  = -E.  L(t) • _b.  (t).  (3.267) 

Here, the quantity 

EL(t) = ee - iwot + e* eot 
 

(3.268) 

is the electric field strength of the driving mode. The product 

Q -= 2e • cr* 
 

(3.269) 

is referred to as the Rabi frequency. In the following we choose the phase of 
the external field such that 12 is real and positive. With these definitions we can 
write the atom-field interaction in the rotating wave approximation as follows, 

S2 

 

HL = - —2 (u+ + u-) .  (3.270) 

Now we couple the system to a thermal reservoir of radiation modes. Accord-
ing to Section 3.4.2 the quantum master equation becomes 

d  iS2 
—

dt

p(t) = —2 [4(7+ + (7- ,P(t)] 

+70(N + 1 ) ((7-P(t)(7+ -  u-P(t) - -21 P(t)(3"+u-) 

1  1 
+70N (a+P(t)(7- - -2 0- -(7+P(t) - -2 P(t)(3"-u+) • (3.271) 

3.4.5.1 Equation of motion for the Bloch vector The master equation (3.271) 
leads to the following system of differential equations, 

= G(.6- (t)) +6,  (3.272) dt 
where we have introduced the matrix 

(-7/2 0 0 ) 
G =  0 -7/2 Q  (3.273) 

0  --S2 -7 

and the 3-vector 

(0 
g  0 =  . 

— 70 

Equation (3.272) is known as the optical Bloch equation. 

(3.274) 
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The stationary solution of the differential equation (3.272) is found to be 

( 0  _ 3 ) 8  707  , 
72  + 2S12  

— ifrYo  
=  = • .72 + 2S-12 

(3.275) 

(3.276) 

The stationary population of the upper level is therefore 

p:  1  7(7 — 'To) + 292  (3.277) 2  72 + 2C22  • 

At zero temperature (N = 0, -y = 70 ) the stationary solutions take the form 

(a3)8  

(a+ )8 

while the stationary population 

2 
70 (3.278) 

(3.279) 

(3.280) 

=  2 
70 ± 2112'  

97°  = (a- ): =  2-4  2 ' 
70 + 21l ' 

of the upper level is 

 

11 2  

7o + 292.  

In the strong driving limit S-) >> -yo we get the limiting forms pse  = 1/2 and 
(a+ ), = —i-y0 /2Q. 

The time-dependent solution of the Bloch equation (3.272) is most easily 
found by introducing the vector 

(V1(t))) = (6 (t)) — ( 6)8.  (3.281) 

Representing the difference to the stationary solution this vector satisfies the 
homogeneous equation 

d 
Eit (V1(t))) = (3.282) 

which can easily be solved by diagonalization of the matrix G. The eigenvalues 
of G are given by 

A1 — —  

x 
-2- , '12,3 - - —4 ± tl-i, (3.283) 

where we have introduced 

   

    

(3.284) 
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0 t 

FIG. 3.3. The population of the upper level IA (t) for the driven two-level system 
as a function of time. Parameters: -yo /SI = 0.1 (solid line), 70 /Q = 0.5 (dashed 
line), and '70 /S2 = 1 (dashed-dotted line). 

We note that all eigenvalues have negative real parts. It follows that any initial 
density matrix is driven to the unique stationary solution (.6), of the Bloch 
equation determined above. The time-dependent solution can be represented by 

(0-3  (t)» = e -37t /4  [cos lit - iTt  sin [it]  

+ iSi  e -371 /4  sin pt Ma-  ±  (0))) - ((a _(0)))) ,  (3.285) 
tt 

and 

1 
((a+ (0)) = et/2 (((a+(0))) + ((a- (0 )))) 

1  7 + -

2

e -3't/4  [cos pt + —
4p 

sin /it] (((a+(0)))  -  

sin pt((u3( 0))).  (3.286) 2p 

Let us consider here the case that the atom is initially in the ground state, 
p(0) = g) (g, which gives 

((u±  OM = - (0-±)8,  (3.287) 

( c13(0)» = -1-  (c13)8. 
 (3.288) 
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S-1t 

FIG. 3.4. The imaginary part of the coherence (o-± (t)) for the driven two-level 
system as a function of time. Parameters: -yo /Q = 0.1 (solid line), -yo /Q = 0.5 
(dashed line), and -yo /Q = 1 (dashed-dotted line). 

At zero temperature (-y = 70 ) we find for arbitrary driving strength 

pe (t) = 
112  [ 

1 _ e -3-yo t/4  3'TO 
{COS pt + —4tt si } n  7,3 + 2S12  (3.289) 

- iQ'Yo  
(a+ (0) = 2  [i — e -37°t /4  {COS fit + (31  -) - --°2  ) sin pit}1(3.290) 

7o + 2Q2  4p, 70  p 

In the underdamped case, which is defined by Q > -y0 /4, the quantity p is real and 
both the occupation of the upper level and the coherences exhibit exponentially 
damped oscillations as shown in Figs. 3.3 and 3.4. By contrast, in the overdamped 
case, Q G 70 /4, the quantity p becomes purely imaginary and we write 

( \ 2 7o  f 
4 ) _ p

.  (3.291) 

The occupation probabilities and the coherences then show a monotonic ap-
proach to their stationary values. 

In the limit of very strong driving, Q >> 70 /4, we obtain the asymptotic 
expressions, 

,  1 
Pe  (t) 7:-.'„ — [I_ _ e -3-yot/4 

2  
cos Sit] 7 (3.292) 

i 
(u(t)) ssss  — e-37°1/4  sin Qt. (3.293) 
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The tip of the Bloch vector thus follows an exponential spiral in the (2, 3)-plane 
around the origin, the circular frequency being equal to the Rabi frequency Q. 

3.4.5.2 Spectrum of resonance fluorescence As an application of the quantum 
regression theorem (see Section 3.2.4) we determine the fluorescence spectrum of 
the emitted radiation in the stationary state. The radiation spectrum is deter-
mined by a certain two-time correlation function of the system. To see this we 
first note that the positive frequency component of the electric dipole field radi-
ated by the source is found from the retarded solution of the Maxwell equations 
to be 

2 
f (± ) (t, i) = --cW2°r  ( [11 X  d X 71) (7_ (t — r/c).  (3.294) 

Here, the dipole is located at the origin of the coordinate system, r = A and 
71 = Z/r is the unit vector pointing into the direction of Z. This equation relates 
the positive frequency component of the radiated field to the atomic lowering 
operator a_ at the retarded time t — r/c. On the other hand, the spectral intensity 
radiated per unit solid angle by the oscillating dipole is given by 

+00 
d/(w)  cr2  f dr e i„(f(—) (t,  z)f(+)(t + 1- ,  

c/S2  47r j 27r (3.295) 

Substituting eqn (3.294) one finds 

di (C41)  w4 
0    = 

c/S)  872  c3  

 

2 
S(C4J), 

 

(ri x d") x ri (3.296) 

   

which shows the typical angular distribution of dipole radiation, whereas the 
frequency dependence is embodied in the spectral function 

+00 

S(w) = f dTe'"(o-± (7)o- _(0)) s . 

—00 

(3.297) 

Here, we have employed the homogeneity in time of the stationary correlation 
function. 

Thus, in order to obtain the spectrum we need the atomic correlation function 
(o-± (T)o- _(0)) 8 . To this end, we consider the vector 

— (5.-) 8 (u _) s .  (3.298) 

It follows from the quantum regression theorem that the dynamics of this vector 
is determined through the homogeneous part of the optical Bloch equation, i.e. 

d 
cw (V- (T)o-_ (0))) = G((d- (r)o- _ (0))) . (3.299) 
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1.2 

1 

159 

5 

FIG. 3.5. The spectrum of resonance fluorescence according to (3.305) without 
the elastic contribution. The plot shows S(w) for the three values 4Q/-yo  = 2 
(solid line), 4S1/-yo  = 8 (dashed line), and 412/')/0  = 16 (dashed-dotted line). 

We conclude that the desired correlation function ((a +  (T)o- _ (0))) is given by the 
right-hand side of eqn (3.286), where the initial values ((o-±(0))) and ((o-3 (0))) 
must be replaced, respectively, by 

((a+  (0)a_ (0))) = (a+  a_ ), - (a+  ) 8  (cr- )8 =  p  - ((3-  +) s12  (3.300) 

= (0. - 0-49 -  (3.301) 
(0-3 (0)a_ (0)))  (a3 a_ )  (o-3 ),(u- ), = (a_ ),  (03),(a-),  . (3.302) 

Finally, it must be taken into account that the Bloch equations have been 
solved in the interaction picture. To return to the Schrödinger picture we replace 
g± (t) by exp[±iwot]a±(t). This yields the two-time correlation function in the 
stationary state 

2  1 
=  + 2Q2 

„
yg +

-Yo
2Q2 

exp [iwo r] + -2 exP [ - (7o/ 2  - iwo)r] 
yo 

+A+ exp [- CI)4-((2  - -  Ti 
+A_ exp [- (-P3  +  iwo)  ,  (3.303) 

where we have defined the amplitudes 

A±  =  2   [2 -2 2  —  .2‘r)  (10S12  - -y,3)] . 
1  1 
4 -yo  + 2S2 2  

(3.304) 
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Equation (3.303) gives the two-time correlation for T > 0; for negative times it 
is found with the help of the relation (a+  (—Oa_ (0)), = (a+(r)o- _(0)):. 

The correlation function is seen to consist of four terms. The first term rep-
resents the contribution from elastic Rayleigh scattering which gives rise to a 
6-shape spectral function (see below). The other three terms describe inelastic 
scattering processes and yield Lorentzian line shapes. In the overdamped case. 

<70/4,  the quantity  ji  is real, such that the spectral function contains a sum of 
three Lorentzian peaks centred at w = coo. If one goes over to the underdamped 
case, Si > -y0 /4, the quantity  ji = — ill becomes imaginary and the single inelastic 
peak splits into three peaks centred at co = coo and co  =  coo  ± p. In fact, on taking 
the Fourier transform of (3.303) we find the spectral function for the fluorescence 
radiation of an atomic dipole in the underdamped case (see Fig. 3.5): 

2Q2  2 

 

7rN  1  70/2 (3.305) 2 1l 2 
6(co co0 ) + 

2 (70/2) 2  + (w — wo) 2  
A_ (3-y0/4 i [
(3-7o/4) 2  + (w — wo —  } 

R  
b.)  wo  1-1 ])  +R A+ (370/4 i [ci.) 

(37o/4)2 ± _ 
wo + 

wo + p) 2  

In the limit of strong driving, 1  » 70 /4, the amplitudes A± approach 1/4 and the 
elastic scattering contribution is negligible. This yields the following spectrum 
in the strong driving limit, 

1  70/2  = 2 (70/2)2  + (co  _ wo)2 (3.306) 

1  37o/4   1  37o/4  
+ 4 (3-y0 /4) 2  + (co — coo + Si)2  4(37/4)2  + (w — wo _Q)2 

The spectrum thus consists of three Lorentzian peaks: A central peak at co = wo  
with width 70/2, and two sideband peaks at ci.) = co0  ± Si with width 370 /4. The 
heights of the peaks are in the ratio  1:  3 : 1, while their integrated intensities are 
in the ratio 1 : 2 : 1. The above spectrum was derived theoretically by Mollow 
(1969), and verified experimentally by Wu, Grove and Ezekiel (1975) and by 
Hartig et al. (1976). Further interesting features of the two-level system, such 
as the photon statistics and the phenomenon of photon antibunching, will be 
discussed in Section 6.3.2. 

3.4.6 The damped harmonic oscillator 
As a further example of a dynamical semigroup we study the master equation 
for a damped harmonic oscillator. The free evolution is generated by the system 
Hamiltonian Hs = woata, describing a harmonic oscillator with frequency wo. 
The Schrödinger picture master equation reads 
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—

d 

 

p(t) = -ico0 [at  a, ps(t)] dt 
1  1 

+70(N +1) faps(t)a - -at aps(t) - - ps(t)at a} 
2  2 

+70 {at  ps(t)a — —

1 

aat Ps (t) — —
1 ps(t)aat} 

2  2 

E r Ps (t)-  (3.307) 

This equation may be used, for example, to describe the damping of an electro-
magnetic field mode inside a cavity, in which case at and a denote the creation 
and annihilation operators of the cavity mode. The environment is provided, for 
example, by the modes outside the cavity and leads to a damping of the cavity 
mode with a rate 70 . The quantity 

N = [exp(wo /kB T) -1] -1  (3.308) 

is the mean number of quanta in a mode with frequency co o  of the thermal 
reservoir. 

3.4.6.1 Pauli master equation and stationary solution We denote by In), n = 
0,1, 2, ... , the n-th oscillator eigenstate, i.e. ataln) = nIn) • 
(3.307) leads to a closed equation for the populations of the n-th level, 

P(n,t) = (71 1Ps(t) n),  (3.309) 

which takes on the form of a classical master equation for a one-step process (see 
Section 1.4.4.2), the Pauli master equation 

—d P(n t) = 70 (N +1)[(n +1)P(n + 1,t) - nP(n,t)] dt  ' 
+'YoN [71P(n - 1, t) - (n + 1 )P( 71 ,t)] . 

The stationary solution of this equation is given by 

1  (  N  VI  P$ (n) = 1+N1+Nj . 

Invoking eqn (3.308) this can be rewritten as 

Ps (n) = [1 — exp (—w o /k B T)] exp [—nwo /kBT] ,  (3.312) 

which is recognized as the Boltzmann distribution over the eigenstates of the 
oscillator. The stationary value for the mean number of quanta in the mode is 
thus equal to the thermal average, 

CO 

The master equation 

(ata), = E nPs (n) = N.  (3.313) 
n=0 
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3.4.6.2 Adjoint master equation To investigate the dynamics one may deduce 
equations of motion for expectation values of system operators directly from the 
master equation. Alternatively, one can use the adjoint master equation (3.84) 
which becomes 

—d 
A H (t) = +iwo [ata, AH(t)] dt 

+70 (N + 1) {at A H (t)a - -21  ataAH (t) - -21  A H (t)ata} 

+70N faA H (t)at - -21 aatA H (t)- -21  A H (t)aat} , (3.314) 

in order to determine the dynamics of the corresponding Heisenberg operators 
AH(t). Solving this equation with the initial condition that Heisenberg and 
Schrödinger operators coincide at t = 0 one finds, for example, 

aH (t) = e(-iw 0--012)t a,  (3.315) 
41 (0 = e (+iwo —ro/2 )t at  (3.316) 

(ata) H  (t) = e -7° t ata + N (1 - e --)T' t ) .  (3.317) 

From these equations one immediately deduces the mean amplitude of the oscil-
lator, 

(a(t)) = tr faH(t)ps(0)} = (a(0))e(-jw0 0 I2  (3.318) 

and the mean number of quanta, 

 

(ata(t)) = tr { (Oa) H  (t) p s (0)1 = (ata(0))e—Y0t N ( 1 _ e —yo t)  (3.319)  

The mean oscillator amplitude thus follows an exponential spiral in the complex 
plane, converging for -yo t >> 1 to the origin. The mean number of quanta is 
seen to start from the initial value (ata(0)) and approaches, for times which are 
large compared to the inverse damping rate, the thermal average N which is 
independent of the initial value. 

3.4.6.3 Coherent state representation In quantum optical applications one of-
ten studies the master equation with the help of phase space methods. As an 
example we consider here the coherent state or P-representation of the master 
equation. More details and various other related representations may be found 
in Gardiner and Zoller (2000). 

For any complex number a the coherent state la) is defined in terms of the 
number states In) of the oscillator by 

00 
la) = expIctI 2 j  an  In) = exp [aat - a* al 10) .  (3.320) 

n=0 
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The coherent states are normalized to 1 but are not orthogonal to each other. 
The overlap of two coherent states is given by 

(a1r3 ) = exp  1 212 
 

--2 lal - - IA + a * 0 • 

 

2  (3.321) 

The coherent states are eigenstates of the non-Hermitian operator a, that is 

 

ala) = ala)•  (3.322) 

They form an overcomplete set of states satisfying the completeness relation 

 

-1  f d2a1a)(a1  =1.  (3.323) 
7r 

The coherent state representation of the system's density matrix goes back 
to Glauber (1963) and Sudarshan (1963) and is defined by 

p(t) = f d2  aP (a , a* , t) a) (a  (3.324) 

Thus,  p(t) is represented as a mixture of coherent states la) with a correspond-
ing weight function P (a, a* , t) which is uniquely defined by the given density ma-
trix. It should be noted, however, that P is only some kind of quasi-probability for 
it is, in general, not a positive distribution function. It can been shown (Klauder, 
McKenna and Currie, 1965) that the distribution P exists for any density matrix 
provided one permits P to be a generalized, singular function. The normalization 
of the density matrix leads to the normalization condition 

trs ps(t) = f d2 aP(a, a* ,t) = 1.  (3.325) 

A product of (equal-time) creation and annihilation operators at (t), a(t) is said 
to be normally ordered if all creation operators stand to the left of all annihilation 
operators. For such a normally ordered product we find 

((at (t))P a(t)q) = f d2  a(a* )P aq P (a, a* , t).  (3.326) 

This is an important property of the P-representation which means that the 
expectation value of any normally ordered product of creation and annihilation 
operators transforms into a corresponding moment of the distribution P (a , a* , t). 

To derive an equation for P (a, a* ,t) one substitutes the P-representation 
into the quantum master equation (3.307) and uses the properties 

ala)(al = ala)(al, 
1a)(ala t  = ala)(a1, 

at la)(al = (79-c-t8  +a  l la)(a1, 

(a  
la)(ala =  I acts:  +a  )  

(3.327) 
(3.328) 

(3.329) 

(3.330) 
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which may easily be deduced from the definition for the coherent states. Next. 
one performs an integration by parts (assuming zero boundary conditions at 
infinity) which introduces an additional minus sign for each differential operator. 
The above properties then show that we have the following correspondences, 

a p s aP, 
P sat  H a* P, 

( 
a 

atps  H  P, aa 
( a  

psa  , + a) P. oa* 

(3.331) 
(3.332) 

(3.333) 

(3.334) 

With the help of these relations on easily derives the following Fokker-Planck 
type equation of motion in the P-representation, (Scully and Zubairy, 1997), 

a  a 
a * , t) = - [( - iwo - 21) ) --a  a + (+ ° iw  7° )   2 aa* a s] P (a, as: ,t) 

2 aa 
a2 

+-yoN a aaa* 
P (a

' 
a* ' t) '  (3.335) 

The structure of this equation is similar to that of the classical Fokker-Planck 
equation (1.129) for a diffusion process: The first term on the right-hand side 
represents the deterministic drift, while the second term has the structure of a 
diffusion term. 

Let us solve eqn (3.335) for the initial value 

P(a, a*, 0) = 62 (a— ao),  (3.336) 

which means that the initial state is the coherent state a o ). The corresponding 
solution can be obtained by substituting the Gaussian ansatz 

P(a, a*, t) =  1  exp [ a  -  Nt)12 1  
7ro-2  (t)  0-2  (t) 

(3.337) 

into (3.335) and deriving differential equations for the time-dependent functions 
o-2 (t) and /3(0. However, a simpler way is to observe that NO is equal to the 
mean amplitude since 

w --t 0 (t) = f d2  aa P (a , a*, t) = (aolaH(t)lao) = ao0yo  12) . (3.338) 

Correspondingly, we find that a2  (t)  is equal to the variance of at a which can be 
obtained using (3.317), 

o-2 (t) = Var (at (t)a(t)) 

= (NI (a f a)H (t)lao) - aa0e —Y0t  

= N (1 -  e 0).  (3.339 
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FIG. 3.6. Coherent state representation of the damped harmonic oscillator. The 
figure shows the distribution function P (a, a* , t) according to eqn (3.337) 
over the complex phase plane with coordinates a = a l  + ia2 at three different 
times given by co o t = 370, 77r/ 4, 327r. Parameters: 70/coo = 0.1, ao  = 1, and 
N = 0.025. The trajectory of the mean amplitude NO is also shown. 

The P-representation is therefore given by a Gaussian function whose mean value 
spirals around the origin of the phase plane. The width o-2 (t) increases from 
zero to the thermal average N when the oscillator comes to equilibrium with 
the surrounding reservoir (see Fig. 3.6). We also note that at zero temperature 
(N = 0) the initial coherent state remains a coherent state under the time 
evolution. 

The Fokker—Planck equation (3.335) describes the evolution of a complex 
Ornstein—Uhlenbeck process (see Section 1.4.5), the equivalent stochastic Itô 
differential equation (see Section 1.5.4.1) being given by 

da(t) = (— iwo  — ) a(t)dt ±  V -yo N dW (t).  (3.340) 

Here, dW (0 is the increment of a complex Wiener process which satisfies 

E[dW (0] = E[dW * (t)] ,- 0,  (3.341) 
dW (t)dW (t) = dW* (t)dW* (t) = 0,  (3.342) 

dW (t)dW * (t) = dt.  (3.343) 
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The complex increment can be represented in terms of two statistically indepen-
dent real Wiener processes as follows 

dW(t) = —
1 (dW i (t) idW2(t)) ,  (3.344) 

which is easily verified with the help of the relations (1.184)–(1.186). 
Thus we observe that for appropriate initial conditions which give rise to 

a true probability distribution in the P-representation, the dynamics of the 
complex amplitude of the oscillator can be modelled in terms of the classical 
stochastic process a(t). It must be noted, however, that this does not imply, as 
we already know, that all features of the dynamics can be described with the 
help of a classical stochastic process on the phase plane. The quantum optical 
master equation (3.307) for the damped harmonic oscillator will be encountered 
at several occasions in the following chapters. For example, it will be used for 
a study of decoherence phenomena in Chapter 4, in the context of a stochastic 
analysis of continuous measurements in Section 6.7, and for a test of numerical 
simulation algorithms in Section 7.3.1. 

3.5 Non-selective, continuous measurements 

Density matrix equations can be used to describe the system evolution which is 
induced by a non-selective, continuous measurement of some observable of the 
system. An ideal and continuous measurement gives rise to the so-called quantum 
Zeno effect which will be described in the first subsection. We then turn to the 
description of a continuous, indirect measurement of a system observable and 
derive an equation of motion for the density matrix of the object system. 

3.5.1 The quantum Zeno effect 

We consider the measurement of an observable A whose spectrum is assumed. 
for simplicity, to be purely discrete and non-degenerate, 

A  ani 7MONI.  (3.345) 

A series of ideal and instantaneous measurements of the observable A is carried 
out in such a way that two successive measurements are separated by a fixed 
time interval 0. In between two successive measurements the state vector evolves 
according to the Schr6dinger equation 

i -:1 7i)(t)) = Hili5(0)  (3.346) 

with some Hamiltonian H. In the limit 0 —> 0 one speaks of a continuous 
measurement of the observable A. 
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Let us assume that the system is initially in an eigenstate 10n ) belonging to 
the eigenvalue an  of A, 

IV)(0)) =  (3.347) 

For sufficiently small t we then have according to the Schrödinger equation, 

110) = [I — iHt — —1  H2 t2  ±  ...]111)n ). 
2 

(3.348) 

The first ideal measurement of A is carried out at time t = 0. The probability of 
obtaining the eigenvalue a, in this measurement is given by 

w(0) = Pni/i)(0))12 _ 1 — (AE)202 +..., 
 

 

where the dots indicate terms of higher order and 

(AE) , = (OniI/2 10n) — (Orilli 

is the energy uncertainty in the state W). The quantity  w(0) is just the 
probability that the system is still in the initial state PO after time O. After 
time T = 109, that is after k measurements this probability is thus 

tOnn(T) Pe., [1 _ (AE)2no2]k . (3.351) 

For large k and fixed T, that is in the limit 0  Ik = r 0, this leads to 

-k  
[i — (AE) 2 122- 

n  k z,- exp [—(AE) 2n 7-0] 1. (3.352) 

This equation tells us that the system remains with probability 1 in the initial 
state 10n ) if a continuous, ideal measurement of the observable A is carried out 
on the system. As a result of the continuous state reduction induced by the 
measurements the system cannot leave its initial state. Formally, the reason for 
this fact is that in the limit of small 0 the probability of leaving the state IOn ) 
is proportional to the square of 0, that is we have 1 — w(8) oc 0 2 , while the 
number k of measurements increases as 8 -1 . The state reduction induced by the 
succession of measurements is thus faster than possible transitions into other 
states. In analogy to Zeno's paradox this phenomenon is known as the quantum 
Zeno effect. 

3.5.2 Density matrix equation 

The quantum Zeno effect described above results, or course, from an idealization 
which presupposes an ideal, continuous measurement. In order to investigate 
what happens for non-ideal measurements we consider the following model for 
an indirect continuous monitoring of the system. 

on )2 

(3.349) 

(3.350) 
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As in the preceding subsection we first subdivide the time axis into inter-
vals of length 1.  Over each interval the object system evolves according to the 
Schr6clinger equation (3.346). However, instead of performing ideal measure-
ments at the beginning of each interval we carry out indirect measurements of 
A (see Section 2.4.6). At the beginning of each interval a single probe particle 
with coordinate Q interacts with the quantum object through an interaction 
Hamiltonian of the form 1//(t) = g(t) AQ . The probe particles are independent 
and supposed to be in identical initial states 100). After the object-probe inter-
action the momentum P canonically conjugated to Q is measured directly on 
each probe particle. This leads to a quantum operation which is described by 
the operators (compare eqn (2.217)) 

 

(pI exp( - iG AQ)I0 0 ) ,  (3.353) 

where p) is a momentum eigenstate and G = f dt g (t) = 0 is the integrated 
coupling strength which is assumed to scale with B. 

Including the coherent evolution generated by H we thus have an operation 
described by the operators 

S2 1, = exp (-i1/8) (pI exP ( -- i AQ 0 ) 100) . 
 (3.354) 

The evolution of the object's density matrix over a time interval 0 on the non-
selective level can thus be written as 

p(t + 0) = f dpQp  p(t)S21) .  (3.355) 

Substituting expression (3.354) and expanding the coherent part to first and the 
incoherent part to second order in 0 one obtains 

p(t + 0) = p(t) - i[H, p(t)] 0 - i [A, p(t)] (Q) 0 0 
1  1 

+ [24. p(t) A - -2  A 2  p(t) - -2  p(t) A21 (c2 2 ) 09 2 ,  (3.356) 

where we have defined 

(Q)0 = (001(2100), (C2 2 )0 = (001(22 00)•  (3.357) 

We now assume that (00 = O. This means that the drift contribution 
-i [A, p(t)] (Q)0 vanishes and, therefore, that the measuring device does not lead 
to a systematic back-action on the dynamics of the quantum object. Further-
more, it will be assumed that the limit 

al?  E lim 0(Q2 ) 9  (3.358) 
o-40 

exists and is finite. It follows that the stochastic back-action induced by the 
measurement device remains finite in the continuum limit 0  O. 
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In the continuum limit we therefore obtain the following equation of motion 
for the state of the object system, 

d  1  1 —dt p(t) = —i [H, 1)(0] + a6 [A p(t) A — A 2  p(t) — p(t)A 2 1 

1 = —i [H, p(t)] — ygl?  [A,  [A, p(t)]] . (3.359) 

The right-hand side of this equation obviously takes on the form of the genera-
tor of a quantum dynamical semigroup. The generator is of the form obtained 
in Section 3.3.3 for the singular-coupling limit. It involves a single Hermitian 
Lindblad operator A given by the observable being measured indirectly. 

The dissipator of the master equation describes the back-action on the object 
system induced by the measurement device. We observe that the strength of this 
back-action is related to the accuracy of the A-measurement. Namely, assuming 
(P)0 , 0 we have by virtue of the uncertainty relation 

ip2 \0  1  
\  f  e(Q 2 )0 ? 4 — . 0 

Taking the limit 19  0 one obtains 

2  1 2 -.., 

where we have defined 
= li1 p2)0 

 

a A2  rn ‘  , . 
0-40  bf 

(3.360) 

(3.361) 

(3.362) 

The quantity o - A is a measure for the uncertainty of the A-measurement (see Sec-
tion 2.4.6) and eqn (3.361) tells us that the back-action induced by the measure-
ment is the stronger the more accurate is the A-measurement. Equation (3.361) 
thus provides a kind of uncertainty relation for the accuracy of the monitoring 
and the resulting fluctuating back-action on the measured system. If we take A 
to be dimensionless the quantity o-6 has the dimension of an inverse time, 

To E [u]',  (3.363) 

which may be referred to as the Zeno time. In fact, the time To  is proportional 
to the accuracy of the A-measurement. For vanishing Zeno time, To  0, that 
is for an arbitrarily accurate A-measurement, one is led back to the quantum 
Zeno effect described above. 

The interplay between the characteristic time scale of the coherent motion of 
the object system and the Zeno time To  can be nicely illustrated by considering 
again a two-level system. The free object Hamiltonian is taken to be H = —  
describing coherent Rabi oscillations with frequency 51 . The measured quantity 
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is chosen to be A = o-3 , that is the measurement device is designed to monitor 
whether the system is in the upper level le) or in the ground state l g). The 
corresponding density matrix equation thus takes the form 

d  iS2 
dt

p(t) = —2 [ 0-1, P(t)] 
—1 

[0-3, [0-3, P(t)]]  (3.364) 
c,To 

which leads to the following system of differential equations for the components 
of the Bloch vector, 

d 
t

- (ai (t)) = 
To 

d 2 
—

dt

(a2(t)) = — (0-2 (t)) + Q( 0-3 (t)) 
TO 

d 
it (Gr3(t)) = — Q( 0-2(0)- 

(3.365) 

(3.366) 

(3.367) 

Let us consider the case that the object system is initially in the upper level. 
which means p(0) = le)(el  such that  (cri  (0)) = (cr2(0)) = 0 and (o-3 (0)) = 1. The 
corresponding solution of the above differential equations leads to 

(o- 3 (t)) =   1  (p2e — kti t  — Pie' t )  (3.368) 
tt2  to_ 

where the characteristic frequencies are given by 

tt1,2 = 
To  To 
 (3.369) 

With the help of these relations the population of the upper level is given by 
1 

pe (t) =  (1 + (cr3 (t))) . (3.370) 

Since the real parts of ,tt i ,2 are always positive the occupation probability 
1),(0 of the upper level approaches 1/2 in the long time limit. This means that 
the back-action of the measurement device drives the quantum object into a 
stationary state with equal populations of upper and lower level. In the under-
damped case S-27-0  > 1 the characteristic frequencies are complex. We write them 
as  /1 1,2 = 1/To ±  iv with 

v= Çl  (3.371) 

Then we have 
1 

(0-3(t)) = (cos vt + — sin vt) e —t/. 
VT0 

(3.372) 

This shows that 1),(0 follows an exponentially damped oscillation with frequency 
v. For QT0  » 1, that is for a Zeno time which is much larger than the inverse 
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FIG. 3.7. The occupation probability pe (t) (eqn (3.370)) as a function of time 
for three different values of the Zeno time To. 

of the Rabi frequency, the object system oscillates many times with a nearly 
unperturbed frequency y ',:.- Q. If the Zeno time is decreased the frequency y 
becomes smaller and the coherent oscillations die out at QT0  , 1. 

For the overdamped case QT0  < 1 one has a monotonic approach to the 
stationary state. Thus, for a sufficiently small Zeno time the coherent oscillations 
of the unperturbed motion are completely suppressed (see Fig. 3.7). In the case 
f27-0  < 1 one finds the approximate solution 

(o-3 (t))  

where the time constant T is given by 

2 
T =   Q2 To .  

(3.373) 

(3.374) 

The decay time of the upper level thus becomes inversely proportional to the 
Zeno time To . In the limit TO  0 we have T oc. This limit corresponds to 
infinite accuracy of the a3 -measurement and to the emergence of the quantum 
Zeno effect: The lifetime of the upper level becomes infinite, i.e. the object system 
remains frozen in its initial state. We remark that the occurrence of the quantum 
Zeno effect has been observed experimentally in a similar system (Itano, Heinzen, 
Bollinger and Wineland, 1990). 
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3.6 Quantum Brownian motion 

In the preceding sections we were mainly concerned with the investigation of 
master equations which arise in the quantum optical limit. In this limit the ro-
tating wave approximation enabled the derivation of Markovian density matrix 
equations defining a quantum dynamical semigroup. The physical condition un-
derlying the rotating wave approximation is that the systematic evolution of the 
reduced system is fast, which means that the coherent dynamics goes through 
many cycles during a typical relaxation time. In several physical applications 
involving strong system-environment couplings and low temperatures this con-
dition is violated. By contrast to the typical situation in quantum optics it may 
even happen that the systematic dynamics of the reduced system is slow com-
pared to the correlation times of the environment. This is the characteristic 
situation of quantum Brownian motion. Under such circumstances another type 
of master equation arises which requires an approximation scheme that differs 
from the quantum optical one. 

In this section we are going to introduce and discuss in detail a specific 
system-reservoir model which is appropriate for the study of several aspects of 
quantum Brownian motion. This is the famous Caldeira-Leggett model (Caldeira 
and Leggett, 1983) which is a prototype of a system-reservoir model for the de-
scription of dissipation phenomena in solid state physics (Weiss, 1999). In the 
high-temperature limit the model leads to a quantum master equation which is 
quite different from the ones obtained in the quantum optical case, but is still 
of Markovian nature. However, for low temperatures and/or strong couplings 
the reduced system dynamics exhibits a pronounced non-Markovian character 
and one must resort to different techniques in order to describe the reduced sys-
tem dynamics. We shall discuss here the use of the exact Heisenberg equations 
of motion for the coupled system, the fluctuation-dissipation theorem and the 
prominent Feynman-Vernon influence functional technique (Feynman and Ver-
non, 1963). More details on the treatment of non-Markovian processes and a 
systematic perturbation expansion are postponed to Part IV. 

3.6.1 The Caldeira-Leggett model 
The model describes a Brownian particle of mass m with coordinate x which 
moves in a potential V(x). The free Hamiltonian Hs of the particle is thus taken 
to be 

1 2  
HS  = —21nP  + 17(X)'  

where p is the particle momentum. The particle is assumed to be coupled to a 
bath consisting of a large number of harmonic oscillators with masses m i, and 
frequencies wi, described by the Hamiltonian 

(3.375) 

(3.376) 
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Here, the bn , bfn  denote the annihilation and creation operators of the bath 
modes, while the x n  and pn  are the corresponding coordinates and canonically 
conjugated momenta. 

In the model under consideration the coordinate x of the Brownian particle 
is assumed to be coupled linearly to the coordinates xn  of the bath oscillators. 
The corresponding interaction Hamiltonian HT takes the form 

H., = _x E Kn Xn  E —XB,  (3.377) 
n 

where the bath operator 

\I  B = E KnXn =  
h E Kn  (bn  + btn ) 

2711 n  Wn n  n 
(3.378) 

is a weighted sum over the coordinates x n  of the bath modes involving the 
corresponding coupling constants Kn . This type of interaction will be seen later 
to yield a renormalization of the potential V(x) of the Brownian particle. To 
compensate for this renormalization it is convenient to include a further term 
into the interaction Hamiltonian which is of the form 

2 Kn  H, = x2  E   2mn w,22  . n 
(3.379) 

This term, known as the counter- term, acts only in the Hilbert space 7-is of the 
Brownian particle. It ensures, as will be shown later, that the potential V (z) 
involves the physical frequencies of the motion of the Brownian particle. 

The total Hamiltonian of the combined system S + B is thus given by 

H = Hs + HB + HI ±  II, 
1  ■11  1 p2n  ± _ in n b.) 2 x2  _ 

X E KnXn • = 2—m

p' + V,(x) + E ( 1  
277-tn  2  n n  n  n 

(3.380) 

In the second expression we have included the counter-term H, into the potential 
of the particle, 

2 
Kn  Ve  (X) = V(X)  +z2  E 2m w2  • n n n 

(3.381) 

3.6.2 High- temperature master equation 
We start our discussion with an investigation of the simplest case, namely of 
the motion of the Brownian particle in the weak-coupling and high-temperature 
limit. This limit allows the derivation of a Markovian master equation for the 
reduced density matrix of the particle, which is known as the Caldeira—Leggett 
master equation. 



exp(—,3HB ) 
PB  — trB  exp( — OHB) . 

(3.384) 

2 
J(w) 

= v-■ Kn  6 (c.,)  — wri) 
 Z—i 2rnn wn  n 

(3.387) 
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3.6.2.1 Derivation of the master equation The starting point is the Born-
Markov approximation for the reduced density matrix of the Brownian particle 
which can be written in the Schrödinger picture as follows, 

d 
Ps(t) = —i [Hs + H, Ps  (t)]  ±  1CPs(t), h 

where we have introduced the super-operator 

CO 

(3.382) 

1 
/Cps (t) = —  dr trB [1-//, [11i(--r), ps (t) 0 ABU.  (3.383) 

o 

This expression may be derived easily by transforming eqn (3.118) back to the 
Schrödinger picture. Note that the counter-term Hc  must be treated as a term 
of second order in the coupling, while HI is of first order, such that (3.382) 
provides a consistent expansion of the equation of motion to second order in 
the coupling. Here and in the following, operators with a time argument such 
as 1-11(t) denote interaction picture operators with respect to the unperturbed 
Hamiltonian Ho  = Hs ±  HB. We shall assume factorizing initial conditions and 
that the bath is in a thermal equilibrium state pB at temperature T =11kBO. 

Again, averages with respect to pB are denoted by angular brackets. 
For the discussion of quantum Brownian motion it is convenient to introduce 

the following correlation functions,' 

D(T) E i([B, B(-7 ) ]) = i[B, B(-7 ) ],  (3.385) 
Di (T) E ({B , B (-- TM .  (3.386) 

For reasons which will become clear below, the functions D(r) and  D1  (T)  are 
often referred to as the dissipation and noise kernel, respectively. We note that 
the average over the bath may be omitted in the expression for the dissipation 
kernel D(r), since the commutator [B, B(--T)] is a c-number. Making use of the 
spectral density defined by 

we can express the bath correlation functions by 

8 We use a notation which is analogous to the usual notation for the corresponding correlation 
functions in QED, see Chapter 12. 
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00 

D(T) = 2h, f dw (co) sin WT,  (3.388) 

D i  (r) = 2h, f dw,/(w) coth(hwl2kBT) cos WT.  (3.389) 

After a little rearrangement the super-operator 1C can now be written as 
00 

1 
1Cps(t) = --h12  f dT GD(T)[x, {x( — r), Ps(t)}1 — D1(T)[x, [x( — T)) Ps (00 • 

(3.390) 
The properties of the generator 1C strongly depend on the behaviour of the 

dissipation and the noise kernel which, in turn, is determined by the spectral 
density J(w). In order to obtain true irreversible dynamics one introduces a 
continuous distribution of bath modes and replaces the spectral density by a 
smooth function of the frequency w of the bath modes. In phenomenological 
modelling one often introduces a frequency-independent damping constant 7 
and takes the spectral density to be proportional to the frequency for small w, 

2m7
JP) =   

 

W
' 

for w  0.  (3.391) 

It will be seen below that this form for the spectral density, which is known as 
the Ohmic spectral density, gives rise to frequency-independent damping with 
the rate -y. On the other hand, the high-frequency modes of the environment 
lead to a renormalization of the physical parameters in the particle potential. 
To account for this renormalization of the particle Hamiltonian one introduces 
a high-frequency cutoff 1 2 into the spectral density. To give an example we take 
an Ohmic spectral density with a Lorentz-Drude cutoff function, 

2m-y  2  
J(w) =  W  Q2 ±  (3.392) 

71   

For this type of spectral density the bath correlations can be determined ana-
lytically as 

D(T) = 2m-yh1 2 e -Q ITIsign T 

+" Qe— Ç2 ITI 
Di(T) = 4m7kBTS-2 2  E   112  v72i 

n=—co 

Here, the noise kernel D I  (T) is calculated by using the formula 

2kB T H‘2-.

0 

 

coth(hw 12kBT) =   w 2 
n=—oc 

(3.393) 

(3.394) 

(3.395) 

where the vn  = 271nkBT/h, are known as the Matsubara frequencies. The remain-
ing integrals are then determined with the help of the method of residues. 
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Table 3.1 Separation of the time scales in the quan-
tum optical limit and in quantum Brownian motion. 

quantum optical limit quantum Brownian motion 
TB << TR 
 

TB <TR 
Ts <TR  TB < TS 

We observe that the correlation functions involve the correlation times S-2 -1  
and 1 yid -1  for n 0. The largest correlation time is therefore equal to T B  = 
Max{12 -1 , h/27kBT} and the condition for the applicability of the Born-Markov 
approximation becomes 

 

hîy < Min{hn, 27kBT}.  (3.396) 

This condition corresponds to the condition TB < TR which has already been 
used in the derivation of the weak-coupling and the quantum optical master 
equations in Sections 3.3.1 and 3.4. However, in the quantum optical case one 
proceeds by performing the rotating wave approximation which requires that 
the systematic evolution of the reduced system is fast compared to the typical 
relaxation time, that is Ts - Pi- col -1  < TR. By contrast, here we investigate the 
case that the systematic system's evolution is slow in comparison to the bath 
correlation time. If we denote by wo  = TV a typical frequency of the system 
evolution the latter condition becomes 

 

hwo  < Min{ hf2, 2R- kB T}.  (3.397) 

The fundamental difference between the quantum optical and the quantum Brow-
nian motion case is summarized in Table 3.1. 

In order to simplify the expression for the generator IC we exploit condition 
(3.397) and approximate x(-y) by the free dynamics, 

C illsr/h Xe illsT/4  `,::.,' X — —

i

[Hs
'
47- = x - — T.  (3.398) h  Pm 

Substituting into eqn (3.390) the generator is seen to consist of four terms: 
00  oc 

 ICPs  f d  D(T)[x, fx,  Ps}]   T TD(T)fX, {p, ps)-] 2h2  T  2h,2 m f f d  

1  1 
- 

2h2 
f c/TD I  (T)[x, [x, ps]] + 

2h,m 
 f c/TTD i  (7) [x,[p, ps]].(3.399) 

2  

The first term on the right-hand side of this equation can be determined with 
the help of the relation 

00 
1 

f dr sin COT =  P.  
co 

13 

(3.400) 



00  DO 

f dTD(r) = 2h f dw j(w)  
co 

o  o 
(3.401) = 2h E 

n 27nnWn2  . 

2 Kn  
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Hence, we have 

Since, in addition, [x, {x,  Ps}]  =  [x2 , Ps] the first term on the right-hand side of 
eqn (3.399) can be cast into the form 

 [s2, psi = i 

h L-d 2m w2  J  fi [Hc, Ps]. 
n  n n 

Evidently, this term compensates the contribution from the counter-term to the 
Hamiltonian part of eqn (3.382). Thus we indeed see, as claimed earlier, that the 
interaction with the bath induces a renormalization of the free-particle Hamil-
tonian Hs which is exactly cancelled by the counter-term H. 

In order to determine the second term on the right-hand side of (3.399) we 
use 

 

0.  00  a f dry sin LOT = — —aw f dr COS WT =  (3.403) 

which yields 

o  o 

00 

 

f dTTD(r) = hli-Jt  (0) = 2m7h,  (3.404) 
o 

(3.402) 

and allows the second term to be written as 

i-y 
— -v,  [x, {P, Ps}]. 

Correspondingly, we find 
00  DO 

f ch-D i  (r) = 2h7i-  f dwJ(w) coth(hw/2kBT)6(w) 
o  o 

= h71- lim J(w)coth(tw.)/2kBT) = 4m-ykBT. 
w---yo 

The third term of (3.399) may thus be cast into the form 

2m-ykBT 
 h2  [x /  [x '  ps]]. 

(3.405) 

(3.406) 

(3.407) 

The fourth term of (3.399), finally, depends on the frequency cutoff SI and will 
be determined by use of the explicit expression (3.394) for the Ohmic spectral 
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density with Lorentz-Drude cutoff. In the limit of high temperatures such that 
kBT > h,S-/ we get 

co 

f dTTD i (7- ) 
 4Trryç2kBT .  

o 
Hence, the fourth term reads 

2-yk B T 
h2l  ' ' [x [P Ps]]. s    

(3.408) 

(3.409) 

To estimate the importance of this contribution we compare it with the third 
term (3.407). Since the momentum is of the order of p = rri, - mw ox, we see 
that the term (3.409) differs from the term (3.407) by a factor of co0 /S-2, which, 
by assumption, is very small. Thus we may neglect the fourth term in the master 
equation. 

Collecting our results we thus arrive finally at the Caldeira-Leggett master 
equation (Caldeira and Leggett, 1983) 

d  i  i-y 
 —Ps(t) = -- [1115)Ps(t)] dt  h  

— —h  {x, fp, ps (0  
2m-ylcB 

1]  
T

[x [x, ,  ps(t)]]. (3.410) h2  

The first term on the right-hand side of the master equation describes the free 
coherent dynamics of the system. The second term, which is proportional to 
the relaxation rate 7, is a dissipative term which stems from the contribution 
involving the dissipation kernel D ( r). The last term, which is proportional to 
the temperature, describes thermal fluctuations and will turn out, as we will see 
later on, to be of fundamental importance in the theoretical description of the 
phenomenon of decoherence. 

One might ask the question of whether the generator of the Brownian motion 
master equation (3.410) can be brought into Lindblad form. The answer to this 
question is negative. However, it can be written in Lindblad form by just adding 
a term which is small in the high-temperature limit. To see this we observe that 
(3.410) can be written in the form 

d  i  iry 
— Ps = --h {Hs, Ps] — — [xP + Px, Ps] +D(Ps). dt  2h 

The commutator [xp+ px,  PS]  gives a Hamiltonian contribution to the generator. 
while  V(p) is of the form of the dissipator in eqn (3.63) with F1  =  x ,  F2 = P 
and the coefficient matrix 

(3.411) 

(az3)  _ (4rrryk7BT/h 2  -i-y/h i/h  o ) . 

Thus, the generator of the Caldeira-Leggett master equation is of the first stan-
dard form (3.63) under the condition that the matrix aii is positive. This condi-
tion is obviously violated for det a = - (71 h) 2  < 0 . However, we could introduce 

(3.412) 
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a non-vanishing coefficient a22 which corresponds to an additional term of the 
form -a22h -p, psn12 in the generator of the master equation. With such a term 
the positivity condition reads 

det a = 4m7kBT 
a22 - (7/h) 2  > 0 . h2 (3.413) 

Let us employ a minimally invasive modification and require that det a = 0, 
which yields a22  = 7 I 47-nkBT . This amount to adding the term 

7  [7) 4 , PS 8mkBT 
(3.414) 

to the right-hand side of the master equation which makes the generator positive 
and allows the master equation to be written in Lindblad form (3.66) with a single 
relaxation rate -y and a single Lindblad operator 

      

A= V  zlinkBT.\11 
h2 X ± 2 4m kBT P.  (3.415) 

The term (3.414) is small compared to the term with the double x-commutator 
provided h I kBT < Lk) 0-1  . This shows that the term added above is in fact small 
under the conditions which were used to derive the master equation. 

3.6.2.2 Approximate stationary solution In the position representation the 
master equation (3.410) takes the form 

a  ,  [ ih  ( 02  
—atPsV ' x't) = 

2rn ,ax2  3l2)  h 
(V (x) - V (x'))  (3.416) 

( a 

 
9\ 2m7kBT 

 — x')  —  
h2  (x - x

,
)

2
1 ps(X, X i  t). 

 

,  )  

Introducing new variables r and q defined through 

 

x = r + hq, x' = r - hq,  (3.417) 

we obtain an equation for the function f (r,  q, t)  = ps(x, x' ,t), 

a —a f = [  
araq 

i  a2  i 
(V (r + h,q) - V (r - hq)) -  27q —

a q 
- 8-ymkBTq2 j f . at  2m,  h 

(3.418) 

On approximating 

V(r + hq) - V (r - hq) ',:.- 217' (r)h,q  (3.419) 

the stationary solution can be written 
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f (r, q) = N exp [- 
V(r)  
kBT 2mkBTq21, (3.420) 

such that an approximate stationary solution of the master equation (3.410) is 
found to be 

HV((x + x')12)  mkBT(x — x') 2 1 
P s (x , x' ) = N exp 

kBT  2h2  j 

with the normalization factor 

+Do 
N-1  = f dxexp [ V(x)1 

kBT ] ' 
—00 

, 
(3.421) 

(3.422) 

We see that the diagonal of the position space density matrix represents an 
equilibrium distribution proportional to exp[—V(x)/kBT] in accordance with 
the result of statistical mechanics. The off-diagonal elements decay exponentially 
with the distance Ix — x'I from the diagonal, where the relevant length scale is 
given by the thermal wavelength Ath = hIV2mkBT. Expanding the left-hand side 
of (3.419) to second order we thus see that (3.419) provides a good approximation 
as long as the thermal wavelength is small compared to V241V/1/1Vm1 1. 

We also note that (3.419) becomes an equality for a quadratic potential 
V(x) = -12-mw,3x 2 , in which case the stationary density is represented by a Gaus-
sian function 

1  [1  0.2 

exp  
(x  + x1)2  

] 

 (3.423) Ps(x, x') = 
-V27i- o-  2o-2  

 

x  2 

with corresponding expressions for the variances of position and momentum 
coordinates, 

(x 2 ) = 
"VO

/ 
kBT 

=   T 2 _ (7)2 )  _ rnkB  T.  ax2  2  P 

The product of position and momentum uncertainty is therefore 

kBT h 
ax • ap =  > —2 . 

wo 

(3.424) 

(3.425) 

Thus, in the present high-temperature approximation the product of the uncer-
tainties is large compared to the minimal possible value allowed by the uncer-
tainty relation. 

3.6.2.3 Equations of motion for mean values and variances With the help of 
the master equation (3.410) one easily obtains the following equations for the 
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first and second moments of the coordinate and the momentum of the Brownian 
particle, 

d 
lt (x)  = 
d 

(19)  = 
d2 

 = 
dt 

d 
Tt (13x  + xP)  = 

d2 
 = 

(3.426) 

(3.427) 

(3.428) 

(3.429) 

(3.430) 

—(17 1 (x)) — 

1 
— (px + xp) , 
m 

2712  (p2 ) — 2(xV ' (x)) — 2-y(px + xp) , 

—(PV 1  (x) + V' (x)p) — 47(P2 ) + 4m-ykB T. 

These are the Ehrenfest equations for the first and second moments of coordinate 
and momentum of a damped particle. They involve the friction force —2-yp. The 
corresponding classical equations of motion are given by the stochastic differen-
tial equations 

1 
dx(t) = —m p(t)dt,  (3.431) 

dP(t) = —171 (x(t))dt — 27p(t)dt + V 4m7kBT dW (t) .  (3.432) 

Let us solve the equations of motion (3.426)-(3.430) for a free Brownian 
particle, that is for V = O. The solutions for the first moments yield 

(x(t)) = (x(0)) +   1  (1—  e -214 ) (p(0)),  (3.433) 
2m-y 

(p(t)) = e -214 (p(0)).  (3.434) 

Thus, the initial momentum relaxes exponentially to zero over a time scale 1/2-y, 
while the average position is displaced asymptotically by the value ((0))/2-y. 
Defining 

a! (t) = (x2  (t)) — (x (t)) 2  ,  (3.435) 

4(0 = (P2  (0) — 
 (3.436) 

a px (t) = ({p(t) , x (OD —  (3.437) 

we can represent the solutions for the second moments as follows, 
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( 1 _ e -2-yt )  
+ 

2 g2 (0)  1 _ e -2-yt 
2  2 

 

ax  (t) = ax (0) +  P k  
27  m2  2m7 

+ m72  
_  [7t  — ( 1 _ e -2-y t) + _14  (1 _ e  -4-yt1 I 

j /  (3.438) 
kB T 

a p2  (t) = e-4'Y t up2  (0) + mkBT (1— e _ 4-t) ,  (3.439) 
1 

apx  (t) = e -21't u2  (0) +   px  (1 — e -214 ) —2t  e 1'o- (un) m7 
kB T 

+— (1 — e -21') 2 .  (3.440) 
7 

In the long time limit (7t » 1) we thus get the asymptotic expressions 

2  kBT  2  kBT 
Grx —+  t , a p -+ › . mkBT, apx —f .  (3.441) 

 

my  7 
Obviously, the process does not become stationary in the long time limit. The 
momentum uncertainty approaches a value which is equal to that given by the 
thermal equilibrium value (see eqn (3.424)). The position uncertainty, however. 
increases with the square root of time, exactly as in classical Brownian motion. 

For a pure Gaussian (minimal uncertainty) initial state we have o-p2 (0) = 
h2 /4o(0) and o-px  (0) = 0, which leads to 

ax2 (0)  +  h2  (1 – e -2-Yt  ) 2  

47/2 2(q (0)  2 ,y 
T r 

 

mpy  
t, + _ , i _ e _4.-11 
'  4 +

kB 
2  rt — ( 1  — e-2-Y  1  

h2 t2  4kB T 
g!(0) + 4m2 o-  (0) + 3m72 (-rt) 3 ,  

(3.442) 

where the second relation holds for 7t < 1. The second term of this second 
form describes the spreading of the Gaussian wave packet according to the free 
Schrödinger equation. For short times the influence of the environment is seen 
to yield an additional contribution to the spreading which is proportional to the 
third power of t. 

3.6.3 The exact Heisenberg equations of motion 
For a number of applications it is useful not to resort to an approximate master 
equation for the reduced density matrix, but to work instead directly with the 
Heisenberg equations of motion of the system. Since in the Caldeira—Leggett 
model the bath is a collection of harmonic oscillators and since the coupling 
to the reduced system in linear, one can eliminate the dynamics of the bath 
variables completely from the Heisenberg equations of motion for the variables 
pertaining to the reduced system. This will be done in the present subsection. 
The usage of the resulting Heisenberg equations of motion will be illustrated 
with the help of several examples for free Brownian motion and by means of the 
fluctuation—dissipation theorem. 



nintkon (bn  — b!,).  (3.449) 
2 

QUANTUM BROWNIAN MOTION  183 

3.6.3.1 Derivation of the Heisenberg equations The complete Caldeira—Leggett 
model leads to the following exact Heisenberg equations of motion for the Brow-
nian particle and the environmental oscillators, 

X(t) = [H, x(t)] = lp,  (3.443) 
h,  771 

 

=  x(t)1 =  (3.444) 
mn 

ii(t) = [H,p(t)} = —VAx(t)) + E Knxn  (t),  (3.445) 

 

ii(t) =  [FT  (t)] = —in,4,x(t)+Knx(t).  (3.446) 

The corresponding equation for the coordinate of the Brownian particles is thus 

m(t) + V(x(t)) — E Knxn (t) = 0,  (3.447) 
rt 

while the equations for the coordinates of the bath oscillators take the form 

Tertnn (t) + tnncon2 x, (t) — Kn x(t) = 0.  (3.448) 

The last equation shows that the n-th bath oscillator is driven by the force 
ix(t) which depends linearly on the coordinate of the Brownian particle. In 
order to get a closed equation of motion for x(t) one solves eqn (3.448) in terms 
of x(t) and of the initial conditions for the bath modes and substitutes the result 
into eqn (3.447). To this end, it is convenient to express the coordinates of the 
bath oscillators in terms of the creation and annihilation operators bt,, bn  as 

n(0) = 2innwn (bn  pn(0) = 

The solution of eqn (3.448) is then given by 

x n (t)= \I 2Tnnc,  jn ( e —iwnt br,  e icon t,+ + flj 

Im f ds sin[wn (t — 
rnnuln 

(3.450) 

Substituting into eqn (3.447) yields 

K 2 
771(t)  Vc1 (X(t)) —  n  f dS sin[in (t — s)]x(s) = B(t),  (3.451) 

nW n  
0 

where we recall that the operator B(t) which appears here on the right-hand 
side is the interaction picture operator 
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B(t) = E 
Kn  h 

(e i bn +eiwn t bI) (3.452) 

corresponding to the Schrödinger operator B =  Krix r, (o). With the help of 
the dissipation kernel we can write the equation of motion for the coordinate of 
the Brownian particle as 

1 
 (t)+ —V,1(x(t))— 

1 
 f  1 

dsD(t — s)x(s) = —B(t).  (3.453) 
o 

In the theory of quantum Brownian motion it is useful to express the dis-
sipation kernel in terms of another quantity which is known as the damping 
kernel 

CO 

ry(t — s) = 2712  dw j  ul(w)  cos[w(t — s)],  (3.454) 
0 

which satisfies 

and 

d  1 = --
hm

D(t — s), (3.455) 

-y(0) =  m  w 
o 

  

(3.456) 

With the help of this damping kernel we can write the dissipative term of 
eqn (3.453) as follows 

1 f dsD(t — s)x(s) = f ds—
d

-y(t — s)x(s) 
dt hm

j o 
(3.457) 

= —d 
f ds-y(t — s)x(s) — 7(0)x(t). dt 

In view of eqn (3.456) the last term — 7(0)x(t) is seen to cancel the contribution 
from the counter-term contained in the potential Ve (x). Thus we finally arrive 
at the following exact Heisenberg equation of motion, 

1 (t)+ —in V i (x(t)) + —d 
dt f ds  

—
1

B(t).  (3.458) -Y(t — s)x(s) = 771 
0 

Equation (3.458) is the desired equation of motion for the coordinate of 
the Brownian particle. It may be viewed as the quantum analogue of a clas-
sical stochastic differential equation, involving a damping kernel -y(t — s) and a 
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stochastic force B(t) whose statistical properties depend on the initial distribu-
tion at t = O. In the case of an environment with an Ohmic spectral density with 
an infinite cutoff, 12 oo, we get the damping kernel (see eqns (3.392) and 
(3.454)) 

 

7(0 = 4'y(t)  (3.459) 

such that the Heisenberg equations of motion take the form 

± (t) = --p(t),  (3.460) 

= -Triv/(x(0) - 2m-y&(t) + B(t).  (3.461) 

As in the classical stochastic differential equations (3.431) and (3.432) the friction 
force is equal to —2m,04. 

The statistics of the forcing term B(t) in eqn (3.458) is described by the 
quantum correlation function ({B(t), B(ti)}). We emphasize that the angular 
brackets denote here the average over the initial distribution p(0) of the total 
system since we are working in the Heisenberg picture. If we use an uncorrelated 
initial state of the form p(0) = ps (0) pB this correlation function is equal to the 
noise kernel Di  (t — t') introduced in eqn (3.386). For an Ohmic spectral density 
it is given by 

4m7h, 
Di (t — t') = ({B(t), B(e)f) =  7r  I d ww coth(hw I 2kBT) cos[w(t — t')]. 

(3.462) 

In the high-temperature limit one may assume that 2kBT >> ruo for all relevant 
frequencies u.) which gives 

00 

1 
—2  ({B(t),B(e)}) Pze

, 2911h2kBT  f  
cos[w(t — t`)] = 4nrykBT (t —  t').  

71" 
o  

(3.463) 

This shows that h drops out of the correlation function and that we obtain 
precisely the correlation function of the noise term in the classical stochastic 
differential equations (3.431) and (3.432). 

3.6.3.2 Quadratic potentials For a quadratic potential 

1 

 

V (x)  = -inw2 x2
2  °  

(3.464) 

the Heisenberg equation (3.458) becomes 



61(z) = 

62(z) =    Z2  +4 + z'-f(z)1  

z 
z2  + wci + z;y(z) ' 

1 
(3.469) 

1 
G1 (t) = 1, G2 (t) = — (1 — e -2''') , (3.471) 
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t 
d  1 

(t) + 4x(t) + —
dt 

f ds-y(t — s)x(s) = --B(t).  (3.465) 
o 

To solve this equation we introduce the fundamental solutions G i  (t) and G2 (t) of 
the homogeneous part of eqn (3.465), which is obtained by setting the right-hand 
side equal to zero. These solutions are defined through the initial conditions 

G 1 (0) = 1, 6 1 (0) = 0, 
G2(0) = 0, 62(0) = 1. 

Introducing the Laplace transformation 
00 

f(z) = f dte — z t  f (t), 
o 

(3.466) 
(3.467) 

(3.468) 

one can write the Laplace transforms of the fundamental solutions as follows, 

where ;y(z) is the Laplace transform of the damping kernel. 
In terms of the fundamental solutions one can write the general 

the Heisenberg equation (3.465) as 
t 

X(t) = Gi (t)X(0) -I-  G2 (t)± (0) + 717:1,  f dSG2 (t - s)B (s). 
0 

solution of 

(3.470) 

With the help of this solution all desired mean values, variances and correlation 
functions of the Brownian particle may be expressed in terms of averages over 
the initial distribution p(0) of the total system. 

3.6.3.3 Free Brownian motion As an example we study free Brownian mo-
tion, that is V = 0, for an Ohmic spectral density. For an infinite cutoff the 
fundamental solutions then take the form 

which yields 
t 1 _ e -2-yt  1 _ e_ 2 (t - 8 ) 

x(t) = x (0) +  
2  &(0) + f ds  

2m  
B (s),  (3.472) -y  ry 

o 
t 

p(t) = e -21(tp(0) + f dse -214t-5) B(s).  (3.473) 



QUANTUM BROWNIAN MOTION  187 

Let us consider a factorizing initial state p(0) = ps(0) pB. The initial coordi-
nates of the Brownian particle and of the bath oscillators are then uncorrelated 
and averages of the form (x(0)B(s)) and (p(0)B(s)) vanish. With the help of 
(3.473) the mean kinetic energy of the Brownian particle, for example, is found 
to be 

E(t) E 
1 
_ri(p2(t)) 
 

(3.474) 

t  t 
1  /7.12(0))e-4-yt  1 

f ds f ds'e-2-y(2t –8-8 1 )  (s  s/) 
2m,  4m, 

o  o 
I Q e t  _ e -2-yt 1 2  1  2  

=  (.7)- (0))e-4t +  f dww coth( h42kBT)   fli  ' 
it  W 2 + (2-y)2 , 

o 

where we have used expression (3.462) for the noise kernel. If we perform here 
the limit -yt  oo we find that the mean kinetic energy approaches the value 

E(CO) = —
27 f 

hw 
(N(w)  + 

= Eth Evac • 
it + (21) 2  

o 

(3.475) 

This equation provides a spectral representation of the mean kinetic energy of 
the Brownian particle: Each frequency component is given by the mean energy of 
the environmental oscillators at that frequency times a Lorentzian-type spectral 
density. 

The thermal contribution Eth to the kinetic energy is given by an integral 
which converges in the limit of an infinite cutoff, 

00 

I  ruo/VP) 
it 

Eth = — dcu 
+ (2

,
y) 2 ' 

o 

(3.476) 

In the high-temperature limit kB  T >> hry this expression leads to the well-known 
result of classical statistical mechanics, Eth r-Z-J -kBT. On the other hand, the 
vacuum contribution Eva, is seen to diverge logarithmically with the cutoff, 

Evac = f clw  2  + (2,y)2  = T ln7r  [1+ (y.j . 
7r  

2 rtWi 2  'Yh 

o  

(3.477) 

The interaction of the Brownian particle with the vacuum fluctuations of the 
high-frequency modes of the environment thus yields a logarithmically divergent 
contribution to its mean kinetic energy. 
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As a further example we determine the mean square displacement 

d2  (t , t') = ([x(t) — x (t` )] 2 ) (3.478) 

of the particle which is an important quantity in the theory of Brownian motion. 
On using eqns (3.472) and (3.462) one obtains 

d2  (t, t i ) =  1 
4m272 

(p -2-yt  (p2(0)) (3.479) 

2 
2-yh,  f  wcoth(hw/2kBT)  eiwt _ e iwt'  e-2ry t e -2-ye 

mir  J 14C4j  W 2  + (27) 2  hl) 
o 

The second term within the squared modulus leads to an integral which diverges 
in the limit of an infinite cutoff. In fact, the cutoff-dependent contribution to the 
mean squared displacement is found to be 

1 2 2Evac ../2  j.i\i  (e-2-yt  e Ct  »singular —  (3.480) 4-y 2  
This shows that the ultraviolet divergent vacuum part of the mean quadratic 
velocity 2Evac /m leads to a corresponding divergent contribution of the mean 
square displacement: The Brownian particle can absorb an arbitrary amount of 
energy from the high-frequency environmental modes and can travel an arbitrary 
distance within a finite time interval. 

This singular behaviour, known as initial jolts, is clearly a result of the ar-
tificial assumption of an uncorrelated initial state. Namely, if we let the times t 
and t' go to infinity, keeping fixed their difference T t —  t',  all transient terms 
vanish and the mean square displacement becomes a function of T which is given 
by the ultraviolet convergent integral 

co 
d2 (r) = 

2-yh, f _ c,4.)  coth(Tuo/2k 
CO 2  + 

(2 )2 BT) 4 sin2 
w2 

 P7/2) 
M7T 
— dw  (3.481) 

0 

For any finite temperature we can replace the second factor of the integrand by 
27 1T1 6 (w) which leads to the asymptotic expression 

kBT I  
d2  (T) rirt 

(3.482) 

This formula describes the well-known regime of classical diffusion which is valid 
for rYiTi » 1 and  TI  » h/kBT. The same result is found for a classical Brownian 
particle. On the other hand, for zero temperature the term w  coth(hw/kB T) in 
the integrand must be replaced by w and one obtains the asymptotic expression 

00  9  

d2  (T) =  f C/W Sin- (WT/2)  h  ln(7171), 77171"  chi (w2  (2,-02)  rn7 ry 
0  \ 

(3.483) 
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which is valid for *1 » 1. We observe a strong subdiffusive behaviour of the 
particle in the quantum regime. The mean square displacement increases only 
weakly with the logarithm  of time, the relevant length scale for the quantum 
diffusion being given by -/h/miry. 

3.6.3.4 Response function, equilibrium correlation function and the fluctuation-
dissipation theorem In order to determine the equilibrium fluctuations of the 
total system it is useful to invoke the fluctuation-dissipation theorem (FDT). 
Together with the exact solutions of the Heisenberg equations of motion the FDT 
allows us to determine all equilibrium correlations of the Brownian particle. To 
formulate the FDT we introduce the symmetrized autocorrelation function of 
some Heisenberg picture operator z(t) of the total system, 

1  1 
S(r) = -2- ({z(t + 7), z(t)}) = (3.484) 

For simplicity we assume that (z(0) = 0 and zt(t) = z(t). We emphasize that 
the angular brackets denote here the average over the equilibrium distribution 
of the total system given by 

exp(- )3H) 
p = tr exp(-0H) ' 

where we recall that H is the Hamiltonian of the combined system S + B. Due 
to the homogeneity in time the autocorrelation only depends on T and satisfies 
S*(r) = 8(7) = S(-7). The spectrum of the equilibrium fluctuations is given 
by the Fourier transform of the autocorrelation function, 

+co 

S' (w)  = f  dr cos c.JTS(T ). 
-00 

(3.486) 

We note that the spectrum has the property S'*(w) = :9- (co) = 
The response function pertaining to the variable z(t) is defined as 

x(r) = -i  0(7)([z(7), z(0)]).  (3.487) 
h 

It describes the linear response of the system to an external force F(t) which 
is applied for times t > 0 and is represented by a time-dependent perturbation 
of the form V(t) = -zF(t) in the Hamiltonian of the total system. First-order 
perturbation theory then yields the linear response of the system 

(6z(t)) = c  f dsx(t - s)F(s),  (3A88) 
o 

where (5 z (t) E Zi/ (t) - z (t) and  z(t) denotes the Heisenberg operator correspond- 
ing to the perturbed Hamiltonian H + V(t). The average first-order change of 

(3.485) 
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the variable z(t) is thus given by a linear integral transform of the applied force 
where the integral kernel is provided by the response function. We note that the 
linear response at time t only depends on the values of the force at times prior to 
t, showing the causal character of the system's response. The Fourier transform 
of the response function may be written as 

+00  +00 

= f dT,iwr f  \ ‘-' XM = f dreiwT ( ) 
-  X\T) E ,( 1 (w) ± iii(w) 1 (3.489) 

  

where we have decomposed i- (w) into real and imaginary parts. 
The fluctuation-dissipation theorem provides a relation between the linear 

response of the system to an external force and the fluctuations in equilibrium. 
In frequency language this relation is given by (see, e.g. Landau and Lifshitz. 
1958) 

(w) = h coth(tv„,)/2kBT)i ll (w),  (3.490) 

which expresses the spectrum of the equilibrium fluctuations in terms of the 
imaginary part of the Fourier transform of the response function. 

The fluctuation-dissipation theorem holds for a general system in thermal 
equilibrium and for any Heisenberg picture observable z(t). Let us now apply the 
theorem to the coordinate x(t) of a Brownian particle in a harmonic potential. 
Since the commutator [x(r), x(0)] is a c-number we can immediately determine 
the response function with the help of the exact solution (3.470) of the Heisenberg 
equation of motion (3.465), 

 

X(T) = •,i19(7)[x(7), x(0)] = 0 (r)G2(7)P(0), x(0)] = OW wil  G2(T)•  (3.491) 

This relation can also be inferred directly from (3.470). Namely, adding the 
perturbation -xF(t) to the total Hamiltonian of the system amounts to replacing 
B(t) by B(t)+F(t) in the equation of motion (3.465). This replacement yields the 
additional term ,g dsG2(t - s)F(s)Im on the right-hand side of (3.470), which 
shows that the response function is in fact related to the fundamental solution 
G2(7) by eqn (3.491). 

Expressing the Fourier transform of the response function in terms of its 
Laplace transform we therefore obtain 

+00 

1  -  .  1 
5C(w) = T71,  f drei"  

1
G2(r) = wi G2(-no) =   

1 
2 7/2 Wo  — CO 2  — iw;y( -ico) . (3.492) 

The imaginary part of the Fourier transform of the response function is thus 

1  wRVY(+iw)]  (w) = 
m (cuô - w 2  + wh'( - ic4))1) 2  + w2 (RM-iw)i) 2  ' 

o 

(3.493) 
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and the FDT (3.490) immediately leads to the following expression for the au-
tocorrelation function of the coordinate of the Brownian particle, 

+00 

S(T) = f —C1W  hCOth(r/LJ/2kBT)V 1 (L) cos  )Y.  
27r 

- 00 

(3.494) 

With the help of eqns (3.494) and (3.493) one can determine the exact equilib-
rium correlations in terms of the Laplace transform ri, (z) of the damping kernel. 
For example, we have by definition of the autocorrelation function 

(x 2 ) =  (3.495) 
(px + xp) =  = 0,  (3.496) 

(

92)  _m2 (0) ,  (3.497) 

and therefore 

+00 

s2 ) = f dW hCOth(hW/ 2kBT) II (W), 

 

27r  
(3.498) 

+cc dw 

 

(p2 ) = m2  f  coth (hoi/2kBT)"(w).  (3.499) 
- OC  

As an example, let us consider the Ohmic spectral density (3.392) with a 
Lorentz—Drude cutoff. According to definition (3.454) this leads to the damping 
kernel 

7(7) = 2-yfte — '1171 , 

with the Laplace transform 

2-yf/ ''y(z) =   

Thus, we have 

 

14-54E — ico)] = 2-y  92  2 ,y, w 2 
w  

:stryjE — iw)] = 27 1-2 1-12 w2 —* 0, 

(3.500) 

(3.501) 

(3.502) 

(3.503) 

where we have indicated the limits of an infinite cutoff, SI —* co. The Laplace 
transform of the damping kernel becomes real for an infinite cutoff and the 
spectrum of the fluctuations takes the form 
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2h-y (w) =  coth(h42kBT).  (3.504) m  (4)  _ (4 2)2 + (27(4)2 

For frequencies such that kBT »  twi the Planck constant drops out and the 
spectrum becomes 

47kB T  1 
=  m  _ (.4)2)2 +  (2 7(.0 )2 '  (3.505) 

which exactly corresponds to the classical fluctuation spectrum of a damped 
harmonic oscillator in thermal equilibrium. 

3.6.4 The influence functional 
In the case of the Caldeira—Leggett model it is possible to eliminate the environ-
mental variables exactly. This is due to the fact that the environment is supposed 
to be in a thermal state whose characteristic function is Gaussian, and because 
the reduced system couples linearly to the bath operators B(t) whose commuta-
tor represents a c-number. In the present subsection we are going to construct an 
exact super-operator representation for the reduced density matrix and derive 
from it the corresponding path integral representation. The path integral involves 
a certain functional, known as the Feynman—Vernon influence functional, which 
represents exactly the influence of the heat bath on the reduced system. 

3.6.4.1 The influence super -operator To obtain an exact representation for the 
reduced density matrix, let us assume factorizing initial conditions and that the 
initial environmental state is a Gaussian (thermal) state. We emphasize that the 
assumption of an uncorrelated initial state is made here only for simplicity; it is 
possible to carry out the derivation also for correlated initial states (for a review. 
see Grabert, Schramm and Ingold, 1988). 

An appropriate starting point of the derivation is the following exact repre-
sentation of the reduced density matrix ps(t f ) at time tf in terms of the total 
density p(t i ) at some initial time t i , 

Ps(tf) = trs {U(tf, ti)p(ti)Ut(tf,ti)} .  (3.506) 

Again, we are working in the interaction picture such that U(tf , t i ) is the inter-
action picture time-evolution operator of the total system. To eliminate the bath 
variables from this expression one can employ the following method of deriva-
tion. The interaction picture time-evolution operator involves a time-ordering of 
the reduced system as well as of the bath variables. First, one eliminates the 
time-ordering of the bath variables, which is easily done, for the commutator of 
the bath variables is a c-number. One is then left with a simple average taken 
over the state of the bath. In a second step this average is determined with the 
help of a cumulant expansion, which terminates at second order since the bath 
state is Gaussian. This procedure yields the final result 

ps(t f) = T exp (—hi  41.[X c , X a]) ps(t i ).  (3.507) 
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The details of the calculations leading to this result will be given in Section 12.2 
(see, in particular, eqn (12.99)) in a more general context and will thus be omitted 
here. In eqn (3.507) the symbol T, indicates, as usual, the chronological time 
ordering in the interaction picture. The phase of the time-ordered exponential 
represents a super-operator which is given by 

t f  

sal 
 

f dt,C,(t)  (3.508) 

tf  t 
1 

+ f f  {- 0D(t — t f )x,(t)x 0 (e)D1(t — t i )x,(t)x,(t 1 )} . 
—2h2   

t,  t, 
The first term on the right-hand side stems from the counter-term H, in the 
Hamiltonian of the total system and is defined in terms of the commutator 
super-operator 

i M 
,C e (t)ps E  [1-1,(t), ps] = --h -2 -y(0)[x 2 (t), ps ] .  (3.509) 

h, 

The second term on the right-hand side of (3.508) involves the commutator and 
the anticommutator super-operators 

x,(t)ps  [x(t),ps], x a (t)ps _= {x(t),ps},  (3.510) 

where all operators carrying a time argument are interaction picture operators 
with respect to the free Hamiltonian 1/0  = Hs + HB• 

The phase 4, [xe , Sa]  subsumes completely the influence of the environment 
on the reduced system's dynamics and may thus be called the influence phase 
functional. Formally, clqx e , xa ] is both a super-operator acting on the initial state 
Ps (tt) and a bilinear functional which involves the dissipation kernel D(t—e) and 
the noise kernel D i  (t — e). We note that the second-order generator (3.390) may 
be obtained from eqn (3.507) by expanding the exponential to first order in the 
influence phase and by taking into account that the time integrals in expression 
(3.508) for the influence phase are already time-ordered. 

3.6.4.2 Path integral representation Equation (3.507) gives rise to an equiva-
lent path integral representation for the reduced density matrix. It thus provides 
an operator formulation of the famous Feynman—Vernon influence functional. 
To construct the path integral representation we turn back to the Schrödinger 
picture and introduce the so-called propagator function J through the relation 

ps(x f,x 1f ,tf) = f dx i  f dx:: J(x f, X ipt  (3.511) 

Thus, the propagator function is simply the Green function for the reduced 
density matrix in the position representation. In terms of the influence super-
operator in eqn (3.507) it is given through the relation, 
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J(X f,X if,tf;Xj,  s , t i ) = (5 ftfl (T, exp  Cx,,x,,l)  ixiftf), 

(3.512) 

where 1st) is the eigenstate of the interaction picture operator x(t) belonging to 
the eigenvalue x, that is 

1st) = exp (+iHs(t — ti)1h)ex).  (3.513) 

We note that (3.512) leads to the following initial and normalization conditions. 

lim J(xf,x'f., tf; xi,  ti) = (5 flx j )(x ì lx (f ) t f  
= 6(x f  X i)(5 (X i  f  (3.514 ) 

f dX f J(X f X f ,t f; Xi, s , ti) = = (5(x1  — ( 3.515) 

We also observe that for vanishing system—environment coupling (4. = 0) the 
propagator function reduces to a product of the Green function G5  for the 
Schrödinger equation with Hamiltonian Hs, 

J (x f , f ,tf;x i ,  ti) = (x ft fix  f t f) 
= G s (x f ,t f ; x i ,t i )G*s (x f̀  ,t f ;  (3.516i 

The path integral representation of the influence functional is obtained by 
writing Cs  as a path integral: 

GS f t f; Xi, ti) — ( X f I exP (—iHS(tf ti) I h) kJ) = f D x exp  So[x]) 

(3.5171 

where 
tf 

S0[x] = f  So [x]=j  — V (x))  (3.518 ,  

is the classical action functional of the free Brownian particle. Here, the path 
integral is an integral over all paths x(t) subjected to the boundary conditiom.. 
x(t i ) = xi , and x(t f ) = xf. 

Now, if T,O[x(t)] is any time-ordered product, the corresponding matrix 
element can be obtained from the path integral as follows 

(x f t f IT ,O[x(t)]Ixiti) = f Dx exp ( hi  So[x]) O[x(t)].  (3.519 

In other words, the path integral performs the time ordering automatically if 
the time-ordered operator product is replaced by the corresponding classical 
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expression under the path integral. In a similar way the matrix elements of the 
commutator or the anticommutator super-operators x e , a (t) are given as double 
path integrals as follows, 

(5f  t f IX a ,c(t) (I x t1  (X litiOIX(t f) 
=  f t f IX MIX it i)  f) ±   f t f IX it i)  (t )I Xt  f t  f) 
= f Dx f Dx' exp  (So [s] — So EST) (x(t) x(e)) • 

 (3.520) 

Thus we see that the transition from the super-operator representation to the 
path integral representation may be achieved by performing the replacements 

sa  (t)  x(t) + x i (t), x(t)  x(t) — x 1 (t).  (3.521) 

A moment's thought shows that this prescription is also valid in the general 
case of an arbitrary time-ordered product of the super-operators x e , a (t). We are 
therefore led to the expression 

J(x1,x, t1; Xi,  ti) = f Dx f Dx` exp  'u ] ) .  (3.522) 

This is the double path integral representation for the propagator function which 
is well known from the Feynman—Vernon influence functional technique (Feyn-
man and Vernon, 1963). It involves an integration over all paths x(t) and x 1 (t) 
satisfying the boundary conditions 

x(t i ) = x i ,  x (t f  ) = xf,  x 1 (t1 ) = x ,  x i (tf) =  X.  (3.523) 

The weight factor of the paths is given by the effective action functional 

Aix  = So [x] — So [x'] +  ,  (3.524) 

where the path integral representation of the influence phase functional 4:, [x, 
is obtained from (3.508) with the help of the replacements (3.521), 

t f  

 

[x, x'] = 
 — f  dt-1712 7(0) [x 2  (t) — x 12  (t)]  (3.525) 

ti 
f  t 

f• dt f de —1
D(t — t 1 )[x(t) — x 1 (t)][x(e) + (e)] 2h 

ti  t z  
f  t 

f• dt f  2-- Di(t — t i )[x(t) — (t)][x(e) — (ti)]• 2h 
ti  ti 
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For the further discussion it is convenient to introduce new variables through 

q = x — , 
1 

r =  +  s'),  (3.526) 

and to consider the propagator function J as a function of (rf ,  q1,  t f  ;ri , qi ,t i ). 
The corresponding path integral representation reads 

 

J(r f,qf,t f;ri ,qi ,t i ) = f Dr f Dqexp  Alr, ql) ,  (3.527) 

which is a double path integral over all paths r(t), q(t) satisfying the boundary 
conditions 

r(t i ) = ri ,  r(t1) = r f ,  q(ti) = qi ,  q(t f) = q f .  (3.528) 

The initial and normalization conditions for the propagator function read 
follows, 

lim J(rf,qf,tf;ri ,qi ,t i ) =  f — r i )6(q1 — q i ),  (3.529 t f  

f dr f  J (r f  , qf  = 0, tf ; ri , qi ,ti ) = (qi ) .  (3.530i 

The effective action functional (3.524) is now given in the new variables by 

A[r , = f dt(mq — V (r + q/2) + V(r — q/2) — m-y(0)rq) 
 

(3.531 

tf  t 
1 f dt f {—D(t — t i )q(t)r(t i ) + —

2h
D1 (t —  

ti 

3.6.4.3 Classical equation of motion The action functional (3.531) leads to 
classical equations of motion which are found by setting the first variation of .4 
equal to zero. The variation with respect to q(t) gives the equation of motion for 
r(t), 

r(t) +  —
0 

(V (r + q 1 2) + V (r —  + —
d 
f  (t — )r (t i  ) 2m Or  dt 
ti 

tf 

2mh, =  f depi(t_ 
t, 

whereas the variation of r(t) leads to the equation for q(t), 

(3.532 
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t f  

 

4w+ —2 —  + q12) + V (r — q12)) — —
d 

f cle-y(t 1  — t)q(e) = 0. (3.533) 

 

m Oq  dt 

Here we have expressed the equations of motion through the damping kernel 
7(t — t') (eqn (3.454)) .  and the noise kernel D i  (t — t'). We note that for q = 0 
the dynamical equation for the path r(t) takes on the form of the homogeneous 
part of the Heisenberg equation of motion (3.458). 

3.6.4.4 Determining the path integral for harmonic potentials To illustrate the 
path integral technique we consider a harmonic potential 

1 
V (x)  = 

2  (3.534) 

which leads to the classical equations of motion 
t f  

d 

 

i:(t) + u,(2) r(t) + — f ,7(t — t i )r(ti ) = ann  f deD i (t — e)q(e),  (3.535) 
dt 

ti 
and 

tf 

4m+ cog q(t) — dt f dtiPY(ti t)q(e) = 0.  (3.536) 

Note that eqn (3.536) represents the backward equation of the homogeneous part 
of eqn (3.535), that is, if r(t) solves the homogeneous part of eqn (3.535), then 
q(t) E r(t f ti t) is a solution of eqn (3.536). 

Since the action functional is quadratic the double path integral (3.527) can 
be determined exactly by evaluating the action along the classical solution and 
by taking into account the Gaussian fluctuations around the classical paths. Let 
r(t), q(t) be a solution of the classical equations of motion (3.535) and (3.536) 
satisfying the boundary conditions (3.528). The value of the action functional 
(3.531) along this solution can be written as 

A[r, q] = m f q f  — 
t f  

d dt mq(t)  (t) + uigr + —dt  f de-y(t — t i )r(t i ) 
t,  t, 

tf  tf 

f dt f D i (t t')q(t)q(e) 

tf  tf 

= m(1 f qf  — i- i qi ) — —4i4  f dt f deD i (t — t i)q(t)q(t 1 ),  (3.537) 
t i  t, 

where the equation of motion (3.535) has been used in the second step. 

-f 



= m  1)  qf  1) \qi  ) + 4--zh  f dt f D i (t t')q(t)q(e). .(  2 

t, 

if  if 
• 
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Due to the inhomogeneous term in eqn (3.535) r(t) couples to q(t) through 
the noise kernel D 1  (t — t'). As a result the solution r(t) is, in general, complex. 
We decompose r(t) into real and imaginary parts, 

r(t) =  r 1  (t) + ir(2) (t).  (3.538) 

The real part r( 1 ) (t) solves the homogeneous part of eqn (3.535), while the imag-
inary part r( 2 ) (t) is a solution of the inhomogeneous equation 

t f  
d 1 

(2)  (t) + 47- (2)  (t) +  f -y(t — t 1 )r(2)  (t') = 
2mh, 

f  Di  (t — t 1)01 ). 
dt  

ti  ii 

(3.539) 

We now show the following useful property: In order to find the classical action 
it suffices to determine the real solution r(1 )(t) and to insert it into the action 
functional, which means that we have the relation 

A[r ,  = A [r. (1)  , q]  (3.540) 

To prove this statement one first uses the equations of motion for the imaginary 
part r (2 ) (t) and for q(t) to show that 

if  if i  f 
dt f dt' D i (t — t')q(t)q(e) = im (7- (f2)  qf  qi ) . 

2h, 
t,  t, 

(3.541) 

To obtain this equation one performs two integrations by part and uses the 
condition that r? )  = r (f2)  = 0, since the boundary conditions for the paths are 
real. Combining the last equation with (3.537) immediately leads to eqn (3.540 
which proves the statement. 

The procedure to determine the propagator function can thus be summarized 
as follows. One first solves the homogeneous classical equations of motion, 

d 

 

i(t) + 4r(t) + —
dt 

f Py(t t f )r(ti ) = 0,  (3.542i 
ti 

t f  
4(0 + c4q (t) — —d 

dt  
t)q(e) = 0,  (3.543 

under the boundary conditions (3.528). Substituting these solutions into the 
action functional then yields the propagator function 
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J(rf,qf,tf;ri ,qi,ti )=N(tf,ti)exp (—
i

.A[r,q1) 
 

(3.544) 

=N(tf ,ti )exp  (rf qf —r i qi )+F(qf,tf;qi ,ti )) 

where 
tf  tf 

F(qf ,t f ;qi ,ti)=--1  f dt f dt i D 1 (t—t 1)q(t)q(e). 
4h2  

t i  
(3.545) 

In eqn (3.544) N(tf, ti) is a  time-dependent ± ent ,n:712/

k,, 

 r2i ma :(t)tfi ,.)l)ization factor. Let us set 
t, = 0 for simplicity in the following. With the help of the fundamental solutions 
G 1  (t) and G2(t) (see eqns (3.466) and (3.467)) we can write the solutions of 
(3.542) and (3.543) as 

G(itf)

G2(ol r 

r(t) =[Gi(t)  i  
G2k. tf)  11_72tf rf  

(3.546)
l 

G2  (t f - t)  q(t) =  „  [G (t f t)  ,G2(t f — t)] q f .  (3.547) 
L.T2(.tf) 

Invoking the normalization condition (3.530) the normalization factor is found 
to be 

N(t f 1 0) =   (3.548) 271-hG 2 (tf ) 
With the above expressions the problem of determining the exact propagator 
function is solved completely. Obviously, the propagator function is a Gaussian 
function whose exponent is a quadratic form in the coordinates (rf ,qf , ri , qi ), 
which is determined by substituting (3.546) and (3.547) into (3.544). We also 
note that the normalization factor is directly related to the response function 
through N(t f , , 0) = 1/27rhx(tf). 

3.6.4.5 Solution of the Caldeira-Leggett master equation To give an example 
we consider free Brownian motion (coo  = 0) for an Ohmic environment. In the 
limit of an infinite cutoff we have the simple expressions  G 1  (t)  E 1 and G2 (t)= 
[1— exp(-2-yt)]/2-y which yields 

1 
=  „(rf   

G2(t1 ) 
62(tf)  — 

f  G2 (t f )  ri),  
(3.549) 

showing the translational invariance of the porpagator function. Thus we have 

J(rf ,qf ,t f ;ri ,qi ,t i )  (3.550) 
im 

=  
m 

27rnAL.72(tf) 
exp hG2(tf)  (rf  —ri)[d2(tf)qf — q i] r(qf,tf;qi3 O)) . 

This expression for the propagator function can be used to obtain the general 
solution of the Caldeira-Leggett master equation (3.410). To this end, we just 



27h,(1 - e-2-ytf ) 

X exp 2imy h 
1 _ e - 2-y t f  (r f - ri )(e -2`T t f qf  qi) 
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have to evaluate the function F(qf,tf; qi , 0) in the high-temperature limit which 
is provided by the expression 

t f 
2m-ykB T 

F(qf,tf;q i3 O)  f dtq 2  (t)  (3.551) 
o 

Substituting the solution q(t) (eqn (3.547)) and evaluating the time integral 
finally yields 

J(rf,qf,tf;ri ,qi , 0)  (3.552) 
2m-y 

-ytf  - 2mkBT f -ytf - (1 - e-2  (1 e -4ytf)   (qf  _ qi )2 
h2  1  (1  e -2-ytf )2 

f  _ 22; ( 1  _ e -2-yto 
1 _ e-2ytf  2qf(q f  - q i ) + Pyt fq . }) -   

This is an explicit expression for the propagator function of the Caldeira-Leggett 
master equation for free Brownian motion. With the help of the relations 

1 
PYti — -2 ( 1  - e -21/tf  ) = (7t1) 2  + O((Ytf) 3 ),  (3 . 553 ) 

7tf  _ (1  _ e-2-ytf ) + -4-1  (1 - e -4`Y t f ) = (ryt1) 3  + 0((yt f) 4 ),  (3.554) 

one easily shows that in the limit -ytf  0 the propagator function approaches 

im 

 

J(r f ,qf , t f  ; ri , qi , 0) —*  exp(r f  - r i ) (q f - q i )) ,  (3.555) 
f  (It f 

which is recognized as the Green function corresponding to the von Neumann 
equation for a free Schrödinger particle. 

Let us finally consider the so-called recoilless limit of the master equation. 
This is the limit of a heavy particle which is studied over times which are short 
in comparison to the relaxation time. It corresponds to the Caldeira-Leggett 
master equation (3.410) without the friction term -i-y[x, {p, p}]/h. Thus we set 
A = 2m-ykB T/h2  and perform the limit -ytf —* 0, keeping A fixed. Making use 
of eqns (3.553), (3.554) the propagator function is found to be 

rn  im 
J(xf,x'f ,tf;  0) =   

27rhtf exP  2h,tf {(xf s1)2  (xi/  )2}  (3.556  
A3tf  {(xf x ,f)2  ± (xi  i ) 2  (xf  _ x :f )(xi  _ 

where we have again used the original coordinates. 
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3.7 Non-linear quantum master equations 
In classical statistical mechanics the dynamics of a many-particle system may 
often be approximated in terms of a non-linear kinetic equation for the time-
dependent distribution function Pp', I ,t) on one-particle phase space (Reichl, 
1998). The most prominent example for such a kinetic equation is the Boltz-
mann equation. For the corresponding approximation of a quantum mechanical 
many-body system one has to replace the classical distribution  f(13; I , t) by the 
one-particle density matrix 0). The latter is then expected to satisfy a non-
linear master equation which provides a mean-field type description of the dy-
namics of the many-body system. Within this framework it is also possible to 
consider many-body systems interacting with external reservoirs. The coupling 
to an external reservoir may be performed either on the level of the mean-field 
approximation or else on the level of the many-particle system. A number of 
examples for the resulting non-linear master equations, such as the quantum 
Boltzmann equation, the time-dependent Hartree equation, and the non-linear 
Schrödinger equation, will be discussed below (Alicki and Messer, 1983). 

The general structure of a non-linear quantum master equation may be pos-
tulated to be of the following form, 

d 
—
dt

p(t) = L[P(t)]P(t), P(0) = Po. (3.557) 

Here,  L[u]  is a super-operator which is in Lindblad form for each fixed den-
sity matrix u. Thus, eqn (3.557) is a Lindblad-type quantum master equation 
whose generator depends parametrically on the density matrix. Under certain 
conditions eqn (3.557) has a unique solution 

0) = Vt (p0 ), t > 0,  (3.558) 

where { 14 1t > 01 is a one-parameter family of non-linear maps satisfying the 
semigroup property 

Vt(Vs(P)) =--- Vt+s(P), Iii =---  

Equation (3.557) is therefore said to be in parametric Lindblad form. 

3.7.1 Quantum Boltzmann equation 
The discrete quantum Boltzmann equation is an example of a non-linear quan-
tum master equation of the form (3.557). In a phenomenological way this equa-
tion can be obtained by exploiting the formal analogy to the classical Boltzmann 
equation for the one-particle density  f(13, I ,t), 

a 
—

at 

f (g, Y, t) =-- — {h, f(134,Y, t) + C[f](g, I , t) . (3.560) 

Here, h = 112  I 2m is the one-particle Hamiltonian of a particle with momentum 
/I and mass m, the curly brackets denote the Poisson bracket and C[f] is the 
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Boltzmann collision operator, which is a bilinear functional of the one-particle 
density f.  

To be specific we consider a system of N identical particles. The internal 
degrees of freedom of the particles are described by a one-particle Hamiltonian h 
with a discrete spectrum. The particles interact through collisions during which 
they may exchange internal energy, whereby the total energy is conserved. An ap-
propriate master equation analogous to the classical Boltzmann equation (3.560) 
is given by 

cip(t) = —i[h, p(t)] +D(p(t)), dt (3.561) 

which may be called the quantum Boltzmann equation. The dissipator D(p) 
which replaces the collision operator of the classical Boltzmann equation is pos-
tulated to be given by the bilinear expression 

D(p) = tr2 {C(p 0 p)} ,  (3.562) 

where k is a Lindblad generator which acts on the two-particle space Ri 0 R2 
as follows, 

k(R) , E {T,R71,1 — —21  TctT,R — -1-  RT,t,,T,„} .  (3.563) 
a 

We have further used the symbol tr 2  to denote the partial trace taken over the 
second Hilbert space R2. 

The operators To, introduced in eqn (3.563) act on the two-particle space 
R1 0 R2. They describe the exchange of energy between the particles during the 
collisions and have to satisfy certain conditions. First, to guarantee the conser-
vation of energy one demands 

[T,„ h i  + h2] =-- 0.  (3.564) 

Second, micro-reversibility requires that 

TIT, = 7-1,71,t,  (3.565) 

and, third, the To  are supposed to be invariant under permutations 7(1, 2) of 
the particles, 

[7(1,2),T] = 0.  (3.566) 

It is easy to show that eqn (3.561) is of parametric Lindblad form (3.557). 
We note further that the quantum Boltzmann equation, in close analogy to the 
classical Boltzmann equation, has the following properties. It conserves energy 

—d 
tr(hp(t)) = 0, dt (3.567) 
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the H-theorem holds which states that the von Neumann entropy S(p) is non-
decreasing, 

—d S(p(t)) > 0,  (3.568) dt 
and the canonical distribution pth = exp(-0h)/tr exp(-01/) is a stationary so-
lution, that is D(pth ) = 0. These properties can be verified with the help of the 
conditions (3.564)—(3.566). 

3.7.2 Mean field master equations 
We consider N identical quantum systems associated with certain sites j 
1, 2, ... ,N of a lattice, a spin lattice for example. The Hilbert space of the j-th 
particle is denoted by Ri  and its self-Hamiltonian by h = hi  regarded as an 
operator acting on 'Hi . The systems at two different sites i and j interact via a 
two-particle potential V =  which is considered to be an operator on  0 

 The Hamiltonian of the total system thus takes the form 

1 H N = hi  + 
j.1 

and acts on the Hilbert space 

(3.569) 

(3.570) 

of the total system. The interaction is scaled by a factor 1/N to ensure that the 
total Hamiltonian scales with the particle number (HN) — N. 

Let us denote by tr n  the partial trace over the n-th Hilbert space Rn  and let 
us introduce the shorthand notation 

tr[ n ,N]  trntrn±i  . trN  (3.571) 

for the partial trace taken over the Hilbert spaces labelled by n, n + 1, , N. 
Then the following theorem on the mean-field or Hartree approximation holds 
(Spohn, 1980). Suppose that the initial state of the system is taken to be a 
product state 

PN =--p0•••Op (N factors).  (3.572) 

Then one has in the limit of an infinite particle number 
t  tHN t lim tr[n+1,N]  PNe  = p(t) 0 • • • 0 p(t) (n factors),  (3.573) N—oo 

where p(t) is the solution of the Hartree equation 

—
d p(t) = — i[h,p(t)] — itr2 [Vi2  +  V i ,  P(t)  o  P(t)]  (3.574) dt 

corresponding to the initial condition p(0) =--- p. The relation (3.573) holds for all 
n and the convergence is to be understood as a convergence in the trace norm. 
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Essentially, the mean-field approximation consists in performing the approxima-
tion p2 (t) p(t) p(t) in the hierarchy of coupled equations of motion for the 
n-particle density matrices 

Pr), (t ) = t r [n  ± 1  PN (t) 
 

(3.575) 

where 

P N (t) = exP( — iliNt)PN exP(±iHNt)  (3.576) 

represents the exact dynamics of the total system. The above theorem shows 
that this approximation holds in the limit N --+  oc.  

We will not present the detailed proof of eqn (3.573). Let us demonstrate. 
however, that the Hartree equation (3.574) is obtained as a consequence of 
(3.573). To this end, we first observe that for n = 1 eqn (3.573) yields 

p(t) = lim tr [2  Ni p N (t),  (3.577) 
N—oo 

from which we get 

—

dt

Plt =  lim tr[2,N] 
N—oo  

[h»  p A (0] + —
1 E [V, pN(t)] • 

d „ (3.578) 

The first term on the right-hand side can be written as 

lim tr[2 N]  [hi,  P N (t)]  E[11  j P N (t)] 
N co j =2 

=  —i  [h, lim tr [2  N] pN(t)]  i lim  tr [2 , N] [hi, pN (0] 
N oo  N co 

:7=2 

=--- —i[h, p(t)],  (3.579) 

where we made use of the fact that the partial trace tr[2 , N][hi , pN (t )] vanishes 
for j = 2,3, ... ,  N.  Hence, we can write the equation of motion for the density 
matrix p(t) in the form 

—
d 

p(t) = —i[h , p(t)] — i lim —
1 E tr [2 , N]  [, p N  (3.580) 

dt  N co N 

Due to the trace over R2 0 • • • 0 RN only those terms in the second term on the 
right-hand side of (3.580) survive for which either i = 1 or j =  1. The second 
term in eqn (3.580) is thus equal to 

1 
liM — E tr[2 ,N][17ii + Vii 5 P N ( t )] • N—oo N j 

(3.581 
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Because of the symmetry of pN and pN(t) all terms of the sum over j are equal 
to each other. Hence, expression (3.581) can be written as 

N-1  
lirfl  tr[2  04 2 ± 172 1 p N (0]  —itr2 [171 2 + V21 p(t) 0 p(0], (3.582) N—oo N  ' 

where we have used tr[2 ,N] = tr2tr[3 ,N] and eqn (3.573) for n = 2, that is 

p(t) 0 p(t) = lim tr [3  mpN(t).  (3.583) 
N—oo 

This shows that the Hartree equation (3.574) follows from the mean-field ap-
proximation (3.573). 

3.7.3 Mean field laser equations 
As an example of the application of the Hartree equation with linear dissipation 
we consider a simple model for the laser, namely the model developed by Haken 
(1984), Lax (1966), Louisell (1990), and Gordon (1967). To this end, we first 
derive the mean-field equation governing the atom-laser mode dynamics, and 
then couple external reservoirs to the system to describe the pumping of the 
atoms and the field losses. 

The atoms are described as two-level systems with transition frequency co 
living in the Hilbert space 'HA C2 . The atoms are coupled to a laser mode 
described by creation and annihilation operators at, a acting on the single-mode 
Fock space 'HF. Employing the rotating wave approximation and assuming exact 
resonance we can write the atom-laser mode Hamiltonian as 

(.43 
(3.584) 

2 
3=1  1=1 

HA and HF are the free Hamiltonians for the atoms and for the laser mode, re-
spectively, and cq, aï, 0; are the j-th atom's 3-component of the Pauli matrices 
and the corresponding raising and lowering operators in the usual notation. The 
atom-field interaction is given by HAF with coupling constant 

In order to bring the Hamiltonian of the system into the form (3.569) required 
to apply the mean-field theory we make use of the following trick. We introduce 
N identical copies ai  of the field mode, satisfying the commutation relations 
[ai , at] = 6ii , and perform the following replacements, 

1 
a —+ \TN.  a ata --+  ata, 3 3 ' (3.585) 

If we also scale the coupling constant as 

g  g = 
VN 

(3.586) 



206  QUANTUM MASTER EQUATIONS 

we can write the atom-laser mode Hamiltonian as 

ig 

 

wat.a- + E  _ E (ato-7 — a ia 3 3  2 3  N  3  3 • 

 

j=1  iO3 

(3.587) 

This representation allows us to exploit the following identification, 

h3  = wata + 
3  2 3  

Vij = ig (alcq — a ioJ) 

Hence, the Hartree equation (3.574) becomes 

d 
—dt P(t)  [wata  u3 ' PM ] 

+g [tr(o-- p(Mat tr(o-±  p(t))a, p(t)1 

+g [tr(at p(t))o--  tr(ap(t))o-±   , p(t)] . 

(3.588) 

(3.589) 

(3.590) 

This is the mean-field approximation of the atom-laser mode dynamics. 
The next step is to consider the losses of the radiation field and the pumping 

of the two-level atoms. To this end, the laser mode and the atoms are coupled to 
two different reservoirs. These couplings are modelled within the weak-coupling 
approximation and lead to two Lindblad generators which must be added to the 
right-hand side of the mean-field equation: 

d —dt p(t) = —i[wat a +  

+g [tr(o--  p(t))at — tr(o-+ p(t))a, p(t)1 

+g [tr(at p(t))o--  — tr(ap(t))u±  , p(t)1 

+2K (ap(t)at — at ap(t) — p(t)at 

+14' 2 1 (o--  p(t)o-±   — a +  cr-  p(t) —  

+W12 (o-±  p(t)o--  —  .7+ p(t) — P(t)a- ci-+)  (3.591 

The damping of the laser mode through losses and output is described by the 
Lindblad operator a and by a damping constant 2K. The reservoir for the atom!. 
leads to the Lindblad operators u and  a+,  where we have written W21 and 11 -1 .) 
for the rates of downward and upward transitions, respectively. To account for 
the pumping the reservoir of the atoms is taken to be a reservoir with negative 
temperature, that is W12 > W21 
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207 

It is now easy to verify that eqn (3.591) leads to the following closed system 
of equations for the mean values (a(t)) = tr(ap(t)), (a-  (t)) = tr(o--  p(t)) and 
(o-3  (t)) = tr(o-3  p(t)), 

(-iw - K) (a(t)) + g (o--  (t)) ,  (3.592) 

(-iw - -y)(o --  (t)) + g (a(t))(o-3  (t)) ,  (3.593) 

-2g ((at (t))(o--  (t)) + (a(t))(o-±  (t))) 

—2-y ((o-3 (t)) — d) .  (3.594) 

Here, we have introduced the abbreviations 

1 , 
-Y  -2 04/12 ±  14721), (3.595) 

and 

d 14712 - W21  
, , . 

VV 12 ± VV21 
(3.596) 

Introducing as new variables the negative frequency part of the laser field 

(3.597) 

(3.598) 

(3.599) 

(3.600) 

(3.601) 

(3.602) 

A(t) = (a(t)) exp(+iwt) , 

the negative frequency part of the polarization 

S(t)  (t)) exp(+icot), 

and the inversion 

D (t) = (o-3  (t)), 

may write the system of differential equations (3.592) - (3.594) as 

d —
dt

A(t) = KA(t) + gS (t), 

—
d S (t) = --y S (t) + g A(t)D(t), 
dt 
d 

(t)  = -2g 
(A* (OS (t) + A(t)S(t)*)  - 27(D (t) - d). 

we 

These are the mean-field laser equations. With the help of an appropriate 
transformation of the variables A,  S,  and D this non-linear system of differential 
equations can be shown to be equivalent to the famous Lorentz equations of 
fluid dynamics (Haken, 1975). We note that the non-linear terms are the terms 
which are proportional to g. These terms stem from the mean-field coupling 
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-<- 

FIG. 3.8. Bifurcation diagram of the non-linear equation (3.604) for the laser 
field amplitude A. 

between the field and the atoms. As is easily seen the system (3.600)-(3.602) 
has a non-trivial stationary solution A 0 0 corresponding to the emergence of a 
mean coherent field (lasing action) provided the so-called pump parameter 

dg2  
(3.603) 

7K 

 

satisfies C > 1. This is obviously possible only for g  0, i.e. lasing action may 
be viewed as a collective mean-field coupling. 

The system (3.600)-(3.602) is determined through the three time constants 
K -1  , g- ', and -y - '. Since -y -3-  is the smallest time in the problem we may adi-
abatically eliminate the fast variables S and D. Setting ,./ = ..6 = 0 we find a 
differential equation for the field amplitude, 

dA  C 
dt — —

KA (1   
1  +1AP/no) '  

(3.604) 
 

where no  = 72 /2g2 . From this equation we read off the stationary solutions as 
well as their stability properties. The stationary solution A =- 0 is unique and 
stable for C G 1. At C = 1 a Hopf bifurcation occurs: For C > 1 the state 
A = 0 becomes unstable, while a new one-parameter family of stationary states 
emerges which is determined by 1Al 2  = no(C — 1) (see Fig. 3.8). 

3.7.4 Non-linear Schrödinger equation 
In the previous example of the laser equations we first performed the mean-field 
approximation and then added linear Lindblad generators to describe the cou-
pling to the reservoirs. This procedure corresponds to a weak-coupling approx-
imation on the mean-field level. In the following we consider the case in which 
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the weak-coupling approximation is performed first on the level of the N-particle 
system, and then the mean-field approximation is made. This approximation pro-
cedure leads to non-linear dissipative terms in the master equation and gives rise 
to a  non-linear Schrödinger-type equation. 

The starting point is again a total Hamiltonian of the form (3.569). The total 
system of N particles is coupled to some reservoir. In the weak-coupling approx-
imation the interaction with the reservoir is supposed to lead to a Lindblad-type 
generator in the master equation for the total density matrix pN(t), 

d  1 
P N (t)  =  3  Evil , PN(t) N j  

{wapo)wat _
2

W atW apN(t) –2 PN(t)W at W'} 
1  1  1 

a 

The operators Wa in this equation are supposed to be collective Lindblad oper-
ators of the form 

wa  vza ,  (3,606) 

where the Via are single-particle operators acting on the Hilbert space of the 
i-th particle. An example for such a master equation will be given in the next 
subsection. 

The mean-field approximation of the above master equation is obtained in a 
similar way as in Section 3.7.2. Namely, in the limit of large N one obtains the 
mean-field master equation 

d 
—dt P(t) = —i[h, p(t)] — itr2[Vi2 + V21, P(t) g P(t)]  [VD (P(t)), P(t)]  (3.607) 

The first two terms on the right-hand side provide the Hartree approximation, 
while the third term describes collective dissipative processes through a non-
linear potential given by 

 

vp(p)  E ftr(vatp)Va _ tr(vap)Vat} .  (3.608) 
2 

To demonstrate the emergence of this potential we determine the quantity 

1  1 a  1  a  
hm tr[2,N] 2 2 {Vja PNVa  — V

t 
 Vi aPN  PN V

.I.
.  } (3.609) 

N cc  v  3  2 3  2  3  
a ij 

a  
= lirrl  tr[2 ,N] {172c' pNV 1't — 

1 
-2 V1  tV  

1 
2a pN — -

2
pN VtV,a} + (1  2). 

a 

(3,605) 
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The symbol (1  2) indicates that the terms with indices 1 and 2 interchanged 
must be added. Invoking the mean-field approximation (3.573) for n =-- 2 we now 
get 

a t  a  E tr2 {V2ap 0 pVi  — - 
1  ï û  1

7i  V2 P 0 p — ? 0 pVrt  V? } + (1 2) 
a 

1  1 — -tr(Vap)17'tp — -tr(17'p)pV't 

+tr(V'tp)V'p — -tr(V'tp)V'p — - tr (V c't p) pV ' 1 
1  1 

ftr(17Qtp)[17', p] — tr (V ' p)[1 7 't , p]} 
a 

= -i[vp (p), P(t) ] , 

 (3.610) 

This shows that the master equation (3.605) gives rise to the non-linear potential 
(3.608) on the mean-field level. 

The non-linear mean-field master equation (3.607) has the property that it 
can be written in the form of a non-linear  Schrödinger   equation. Namely, if the 
state vector OW satisfies the non-linear Schrödinger-type equation 

 

d 
(t)  = —i [h + 1711 (°) + vD(0)] OM 

 
(3.611) 

then the pure state density matrix 

p(t ) = 10 (t) ) K O (t ) I 
 

(3.612) 

is a solution of eqn (3.607). In eqn (3.611) h is the one-particle Hamiltonian. 
VH(7,b)=  (011712 + 172110) represents the Hartree potential and VD(0) denotes 
the non-linear potential 

{ (0 117c! 1 0) va — (0 I va I 0) vn . (3.613) 
a 

  

Obviously, the non-linear Schrödinger equation (3.611) preserves the norm of the 
state vector since trp(t) = hb(01 2  = 1 . 
3.7.5 Super-radiance 
As an example of the non-linear dissipative processes and the non-linear Schrödin-
ger equation (3.611) we study here the phenomenon of super-radiance (Gross and 
Haroche, 1982). To this end, we consider N identical two-level atoms with tran-
sition frequency co interacting with the vacuum of the electromagnetic field. The 

= E {tr(Vap)pVat 
a 

1 
= 2 



NON-LINEAR QUANTUM MASTER EQUATIONS  211 

atoms are located at fixed positions 7:41) , j = 1, 2 5 ... ,  N.  The Pauli matrices as-
sociated with the j-th atom are again denoted by GI, crat. The Hamiltonian of 
the atoms is taken to be 

3 
HA -  

j=1 
(3.614) 

while the interaction of the atoms with the radiation field will be described in 
the dipole approximation, 

H,  (0-; (-14.  .  (3.615) 
j=1 

The vector  cr(o--jF  +  UT)  represents the dipole operator of the j-th atom, â 
being the dipole matrix element of the atomic transition. Finally, the Schrödinger 
picture operator for the electric field at position i  is (compare eqn (3.180)) 

27rvwk  6,(k) (b),()exp(ik .71 — bfA Ck) exp( —d • t4)) .  (3.616) 
fc,), 

From the general form (3.143) of the dissipator for the weak-coupling limit 
we immediately obtain the following master equation for the N-atom system, 

d 
—dt p N (t) = -iw[u , p N (0] 

i= 
1 + _

PN - PN 
1  ± _ 

 

± E aii  cri pNcr;F  — -
2 a • a-  •  -2 O-i Uj {  t j 

ij 
.  (3.617) 

The coefficients aii  are given by 

00 

 

 

=f 
 dt exp(iwt)(J*  , t)cr  , 0)) .  (3.618) 

-00 

In eqn (3.617) Lamb shift contributions have been neglected and the temperature 
of the radiation field was supposed to be zero. Thus, the correlation functions in 
eqn (3.618) are vacuum expectation values. 

The Fourier transforms of the reservoir correlation functions can be deter-
mined explicitly. Performing the continuum limit of the radiation modes and 
proceeding as in Section 3.4.1.2 one gets 

f 
• 6r— (k d- (i;  di))  exp(ifc(i'i  (3.619) 

27r  k2  
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The angular integration can be carried out to yield 

4 
a -  = -w3 1d1 2  fio(x'•) + P2 (COS Oij) (Xij)} 3  

where we have introduced the Bessel functions 

(3.620) 

sin x  3  1) .  3 
j0 (x) =  i2(x) =-- x-3 -  sin x - 

x
-

2 
COS X, (3.621) 

and the Legendre polynomial 

P2 (COS 9) = -
2 

(3 cos2  0 - 1) ,  (3.622) 

and defined 

xii = w14  cos2  0ii  = (Tii -77'i)1 2  (3.623) 
1dP • lei - 

The eigenvalues of the N x N matrix aii  determine the relaxation rates of the 
system. The diagonals of this matrix are equal to the spontaneous emission rate 
for a single atom, 

4  --0 2  
a . ' = - L03 1 6/ it  3  (3.624) 

Let us suppose that all atoms are initially in the excited state which yields 
the initial state 

'Po) =  e, • • • e) (N factors)  (3.625) 

for the N-atom system. According to eqns (3.620) the matrix aii  is approximately 
diagonal provided the mean distance between the atoms is large compared to the 
wavelength A 1/w of the radiation. Hence, in this case we have aii  -yo bij . The 
atoms therefore radiate essentially independently of each other and the radiated 
intensity follows an exponential decay law 

1 (t) = eyo wNe-Y° I .  (3.626) 

The radiation emitted by the atoms adds incoherently which leads to a total 
intensity proportional to N. 

We denote by r the linear dimension of the N-atom system. For r < the 
matrix elements are approximately equal to each other, i.e. a ii  z•-• yo.  One then 
finds a qualitatively different behaviour: After a certain delay time TD the emitted 
radiation occurs in a short burst whose maximal intensity is proportional to N2 . 
while its width scales with N-1 . This phenomenon is called super-radiance (see 
Fig. 3.9). 
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FIG. 3.9. Qualitative picture of the radiation intensity 1(t) of a system of N 
two-level atoms. Dashed line: Independent spontaneous emission processes 
lead to the exponential decay law (3.626). Solid line: The emission of su-
per-radiance occurs in a short burst with a width proportional to N-1  and 
a height proportional to N2 . The super-radiance intensity profile was taken 
from the mean-field result (3.643) with N = 10 and -yo tp =  0.4. 

To understand this behaviour qualitatively we first note that due to the con-
dition r < Yk the coupling (3.615) is approximately symmetric under exchanges 
of the atoms. Therefore, we may assume that the wave function 141(t)) of the 
total system stays symmetric under the time evolution. Identifying the two-level 
atoms with spin-i  particles we may introduce the total 'angular momentum' 
operator 

1 f  _2 63 . 

2=1 

Its 3-component is proportional to the atomic Hamiltonian HA, 

(3.627) 

J3  = 
j= 1 

1  1 3 
w -HA. (3.628) 

The corresponding raising and lowering operators take the form 

(3.629) 
j=1 
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With the help of these operators the energy eigenstates of HA may be char-
acterized by the simultaneous eigenstates J, M) of f2 and J3 , where J = 
0, 1, 2, ... , N/2 and M = — J,... ,+J. These states are known as Dicke states 
(see, e.g. Mandel and Wolf, 1995). As is well known the subspace which is to-
tally symmetric under permutations of the atoms is spanned by the states with 
maximal angular momentum J = NI2. We can thus order the totally symmetric 
eigenstates of the system with decreasing energy as follows, 

1 ,1,M= J) = le,e, • • • ,e) 
1J,M= J -1 ) = S19,e, • • • ,e) 
I J, M =-- J — 2) = Slg,g,e,... ,e) 

• • • • • • • • • 

1 ,1, m - -J) - Ig, ...  , g),  
where S is the symmetrization operator. In view of this scheme super-radiance 
can be considered as a cascade emission along a ladder of 'angular momentum' 
eigenstates. The emission rate W(M) for the transition 1J, M) —+ 1J, M — 1) is 
given by the square of a certain Clebsch-Gordan coefficient, 

(3.630) 

Thus we see that the emission rate increases from the initial value W(M = J) = 
2-y0 J = -yo N to a maximal value 

W(M = 0,1) = -y0J(J + 1) = ± N(N + 2), for N even,  (3.631) 

W(M = 1/2) = 70 (J + 1/2) 2  = T(N + 1) 2 , for N odd,  (3.632) 

which scales with the square N2  of the number of atoms. Finally, the rate de-
creases again to W(M = — J) = 0. 

Let us now apply the mean-field theory. For r < Yt we get the master equation 

d 
—dt pN(t) = -iw[J3  , pN(0] 

1  1 
+-YID (J pN(t)J+  - -J+ J-  pN(t) - -2 pN(t)J+  J- ) . (3.633) 

2 

This equation is of the form of the mean-field master equation (3.605) with 
the collective Lindblad operator J-  and we can immediately write down the 
corresponding non-linear Schr6dinger equation (3.611), 

w —d OM = -i-2 cr 3 0(t) — iVD (0(0)0(0, dt (3.634) 

where 
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i N;° 
 

(3.635) 

is the non-linear potential. Introducing the parametrization 

OM =-- ( 01(0 _ ( 1p(t) exp(i0(t)) ) 
02(0 ) — V1 — p(t) exp(i0(t)) ) 

 (3.636) 

and using the representations (3.213) and (3.214) of the Pauli matrices one finds 
the system of differential equations 

/5 + 2ip8 = —kip — N70p(1 —p),  (3.637) 
---- —ich)(1 — p) — N-y op(1 — p).  (3.638) 

Separating real and imaginary parts we obtain 2é , —w and 2q5 =---- +c.o. The 
phases 0 and q5 of the mean-field wave function thus evolve according to the free 
dynamics. 

Since OM represents the mean-field approximation of the N-particle system 
the quantity  Np(t) = N kb' (t)1 2  must be interpreted as the mean number of 
atoms in the excited state. Hence, 

/(t) = —Nc.o—ddt p(t)  (3.639) 

is the mean intensity of the radiation. From the system of differential equations 
(3.637) and (3.638) we obtain a differential equation for p(t) , 

15 = -N70p(1 - p) , 

which has the solution 

1 — p(t) 1 — pp 

We identify tEi with the delay time of the super-radiance and p(t =---- t D) =---- pp is 
the mean occupation probability of the excited state le) at time t = t p , i.e. at 
the time of maximal intensity. The above interpretation in terms of the cascade 
process (see eqns (3.631) and (3.632)) yields pp -,-z:,' 1/2, such that we finally 
obtain 

p(t)  PD exp[--yo N(t — tD)]. 

(3.640) 

(3.641) 

(3.642) p(t) = 
exp[-yo N(t — tD)] + 1 .  

The intensity of the radiation is therefore given by 

0(  1-  (t) =  4 OWN2  [cosh ( NN  -2 

2  (t — tD))]  • 

1 

(3.643) 

We note that this formula already describes the characteristic features of super- 
radiance (Gross and Haroche, 1982) as shown in Fig. 3.9: The intensity is pro- 
portional to N 2 , the maximal intensity is reached after a delay time tp, and the 
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width of the radiation pulse scales with N-1 . It must be noted, however, that 
the delay time exhibits strong fluctuations which are determined by the quan-
tum fluctuations in the initial phase of the super-radiance process. The simple 
mean-field description given above cannot account for the statistics of the delay 
time. 
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4 

DECOHERENCE 

The interaction of an open quantum system with its surroundings creates correla-
tions between the states of the system and of the environment. The environment 
carries information on the open system in the form of these correlations. For 
certain system—environment interactions the environment behaves similarly to a 
quantum probe performing a kind of indirect measurement on the open system: 
After tracing over the environmental degrees of freedom a certain set of states of 
the open system's Hilbert space exhibits strong stability properties, while super-
positions of these states are destroyed in the course of time, often very rapidly or 
even nearly instantaneously. This environment-induced, dynamical destruction 
of quantum coherence is called decoherence. It leads to a dynamical selection 
of a distinguished set of pure states of the open system and counteracts the 
superposition principle in the Hilbert space of the open system. 

The theory of decoherence allows a number of interesting physical applica-
tions, ranging from fundamental questions of quantum mechanics to technolog-
ical applications in quantum information processing. Moreover, modern experi-
mental techniques enable the observation and control of decoherence phenomena 
and a quantitative comparison with the theoretical analysis. An important ap-
plication of decoherence is the explanation of the extreme sensitivity of coherent 
superpositions of macroscopically distinguishable states to the influence of their 
surroundings. 

In a variety of theoretical models it turns out that the environmental interac-
tion leads to a decay of the coherences of such superpositions on extremely short 
time scales, much shorter than the corresponding relaxation time scales of the 
open system. Thus, the environment induces the emergence of effective super-
selection sectors. The latter give rise to a decomposition of the reduced system's 
Hilbert space into coherent subspaces in such a way that coherences between dif-
ferent subspaces are no longer observable locally, that is through measurements 
on the reduced system. This destruction of quantum coherences is of particular 
relevance for the formulation of dynamical models of quantum measurements. 
It provides a physical mechanism for the selection of a preferred pointer basis, 
that is for a definite set of apparatus states which designate classical alternative 
outcomes. 

We start in Section 4.1 with a general discussion of the dynamical structure 
which leads to what may be called ideal environment-induced decoherence, that 
is to the destruction of quantum coherence without damping. The basic concepts 
developed, such as the dynamical selection of a preferred basis, the decoherence 
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time, and the emergence of coherent subspaces, are illustrated with the help 
of a simple, analytically solvable model in Section 4.2. Section 4.3 is devoted 
to a discussion of various fundamental physical decoherence mechanisms that 
lead to the space localization of composite quantum objects. These are high-
temperature quantum Brownian motion, decoherence through excitation and de-
excitation of internal degrees of freedom and decoherence through the scattering 
of particles. The localization in space will be seen to occur almost instantaneously 
for macroscopic objects. 

The interplay between decoherence and dissipation is investigated in Section 
4.4 by means of the example of the damped harmonic oscillator. The central topic 
will be the determination of the time it takes for the destruction of quantum co-
herences through a reservoir in the vacuum state and in the presence of thermal 
noise. As an application of the theoretical analysis we study in Section 4.5 an 
experiment on the decoherence of electromagnetic field states which was per-
formed by Haroche and coworkers. This experiment enabled them to observe the 
progression of the decoherence in a mesoscopic variant of Schr6dinger's famous 
gedanken experiment involving the superposition of a dead and alive cat. 

An exact treatment of decoherence in the Caldeira-Leggett model, including 
the full non-Markovian dynamics, is presented in Section 4.6. Finally, we dis-
cuss in Section 4.7 the rôle of environment-induced decoherence in the quantum 
theory of measurement. 

4.1 The decoherence function 
In its purest form decoherence arises for certain types of system-reservoir inter-
actions. These are measurement-type interactions which are used to describe an 
ideal, indirect measurement (see Section 2.4.6) on the open system whereby the 
environment plays the rôle of the quantum probe.' The characteristic feature of 
this type of interaction is that the reduced system affects the environment in 
a way that leads to certain system-reservoir correlations whereby, however, the 
back-action of the reservoir on certain system states is negligibly small. As a 
result the damping of the populations of the reduced density matrix in a specific 
basis representation is small, while the coherences are often found to be strongly 
decaying on extremely short time scales. 

The starting point of our discussion is thus a microscopic Hamiltonian of the 
form 

H = HS ± IIB ±  kli = Ho ±  Hi,  (4.1) 

where the interaction Hamiltonian is taken to be 

I// = E in)(ni 0 BnE--- >An ® B ? .  (4.2) 
n  n 

9 1t must be emphasized that we are not talking here about a real quantum measurement 
involving a reduction of the state vector, but only about a certain type of system—reservoir 
interaction whose form is that of an indirect measurement. 
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This interaction Hamiltonian singles out a specific set of orthonormal basis vec-
tors ?),) of the reduced system, while the B„ = B;, are arbitrary reservoir oper-
ators. We assume further that the system Hamiltonian Hs commutes with the 
projections An  = 1 n) (n 1 which yields 

[H0  + HI , An ] = [H0 , An } = 0,  (4.3) 

such that the system operators A, are conserved quantities. As a consequence 
the mean energy is constant in time, that is 

d 
T-It (Hs(t))  = 0.  

(4.4) 

The interaction picture interaction Hamiltonian therefore takes the form 

H1(t) = e illot Hie—iHot 
= E In)(T/ 0 B(t), B(t) = e iHo t Bne —ixot , (4 . 5) 

n 

while the interaction picture time-evolution operator for the combined system 
can be written as 

t 
U(t) = T, exp Ei f 

o n 
I X ØB(s) .  (4.6) 

This expressions shows that, as an immediate consequence of the commutation 
relation (4.3), the basis states In) are not affected by the coupled dynamics and 
that the initial state 

41(0)) = (4.7) 
n 

where 10 is an arbitrary reservoir state, evolves into 

(4.8) 
n 

where 

= Texp [  
t 

kbn (t))  ,  —i f dsB n (s) 10) E V(t)ç».  (4.9) 
o 

The state (4.8) is an entangled system—reservoir state given by a superposition 
of the states In) 0 ,IOn (t)). The latter represent perfect correlations between the 
various system states In) and corresponding reservoir states lOn (t)). Due to the 
measurement-type interaction the reservoir carries information on the system 
state. However, OM) is still a superposition involving all system states In) 
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already present in the initial state 1*(0)). As a consequence the coherences are 
still present in the reduced system's density matrix which is given by 

Ps(t) = trB {1 41(0)( 41(t)} =  c c7,,Ingin I ( Om ( 01 On ( t )) •  (4.10) 
n ,m 

It follows from unitarity that (0„(t)kbn (t)) , 1, and, thus, the diagonal ele-
ments of  PS  (t)  are constant in time. The off-diagonal elements of ps(t), however. 
do change with time, in general. The time dependence of the matrix element 
(n I Ps (t) I In) is given by the overlap of the corresponding reservoir states On (t)) 
and 10,,(t)) which will be written as 

= exp [Fnm (t)] , F„,,,(t) < 0.  (4.11) 

For n m the quantity r„,,(t) describes the behaviour of the off-diagonals of 
the reduced density matrix and will be called the decoherence function in the 
following. 

The time dependence of the decoherence function Enn,(t) strongly depends. 
in general, on the specific form of the system—reservoir coupling, on the various 
parameters of the underlying microscopic model, and also on the properties of 
the initial state. For many physical systems it turns out that the irreversible 
dynamics induced by the system—reservoir interaction leads to a rapid decrease 
of the overlap (0„(t)10,,(t)) when n m. Several examples of this behaviour 
will be discussed in the following sections. Let us consider here the extreme case 
that for n m the overlap of the states ç(t)) and 10,,(t)) decreases to zero 
after times which are large compared to a typical time scale TD, the decoherence 
time, 

(On(t)10m (t))  (5nm  for t >> TD-  (4.12) 

This leads to the reduced system's density matrix 

Ps(t) 

  

I  1 2 1n)(nl. (4.13) 

 

n 

The coherences of the density matrix in the basis In) have disappeared as a 
result of the interaction with the environment: After times t »TD the state 
p5(t) of the reduced system behaves as an incoherent mixture of the states In) 
in the sense that interference terms of the form (mlAn), n m, no longer 
appear in the expectation value of any system observable A. Superpositions of 
the states In) are therefore effectively destroyed locally which means that they 
are unobservable for all measurements performed solely on the system S. 

The dynamical transition expressed by (4.13) is called decoherence. According 
to this relation the reduced density matrix becomes diagonal in a particular set of 
basis states In) which is sometimes called the preferred basis. It is clear that these 
basis states are distinguished by the form of the interaction (4.2) between system 



THE DEC OHERENCE FUNCTION  223 

and environment and by the behaviour of the decoherence function embodied in 
(4.12). Moreover, by virtue of the condition (4.3) the preferred basis consists of 
those states which are not affected during the time evolution. These states are 
thus stable with respect to the system—environment interaction. 

More generally, one can study an initial state of the combined total system 
of the form 

P(0 ) == k5 (0 )) (0(0)1 0 i9B (0),  (4.14) 

where 

10(0)) —  C 
 

In) 
 

(4.15) 
n 

is the system's initial state and pB(0) may be any reservoir density matrix, a 
thermal equilibrium state, for example. The reduced system's density at time t 
can then be written as 

Ps(t) ,  cm cIn)(ml trB {V7,7 1 (t)Vn(t)PB(°)} , 
 (4.16) 

mm  

such that the decoherence function takes the form 

rnm  (t) = in 1 07177 ' (t)vn (t) ) I.  (4.17) 

Here, the angular brackets denote the expectation value taken over the initial 
density pB(0) of the reservoir. 

As we have seen in eqn (4.4) the mean system energy is constant in time for 
the simple class of models studied here. By contrast, the entropy of the reduced 
system does depend on time, in general, since the initial pure state is transformed 
into a statistical mixture in the course of time. Let us determine the behaviour 
of the linear entropy (2.127), 

St (OS (t)) =  1—  cn 2 cm 2  exP [ 21-1nrn(01 •  (4.18) 
nm 

This shows that the linear entropy can be expressed in terms of the initial pop-
ulations lcm 1 2  and of the decoherence function F mm (t). Note that Si  (ps(0)) = 0 
since we started out from a pure initial state. For complete decoherence in the 
long time limit we get 

st  (ps (+00) = 1 —  (4.19) 
n 

For example, if the initial state (4.15) is maximally entangled, that is if all 
non-vanishing amplitudes cm  are equal in magnitude, 1 cm l = 1/a) for n = 
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1, 2, ...  , D,  we find that the linear entropy attains its maximal possible value in 
a D-dimensional space, 

(ps (+00) = 1  —  (4.20) 

The interaction Hamiltonian (4.2) distinguishes a specific set of basis states 
n) It is precisely this basis of states which is not influenced by the environ-

mental interaction since the projections An  = In) (n1 are conserved quantities. 
By contrast, superpositions of these basis states react, in general, extremely 
sensitively to this interaction. Let us consider again an interaction of the form 

= >  An  Bn , where now the operators 

dn  

rt.i)(n.11 
 

(4.21) 
i=1 

single out an orthogonal decomposition of the system's state spacel-is into linear 
subspaces A nl-is of dimensions dn  > 1. The solution of the time-dependent 
Schr6dinger equation corresponding to the initial condition 

10(0)) =  10),  (4.22) 

then immediately yields the reduced density matrix 

ps(t)  ni)(mi'(07n(t)kbn(t))-  (4.23) 
nm jj ,  

Under the condition of complete decoherence expressed by (4.12) this becomes 

ps(t)  E E  Inj)(nfl for i i»  TD 
 (4.24) 

n jj/ 

Thus we see that the coherences between the states nj) for different j and a 
fixed n are still visible in the reduced system's density matrix. In other words. 
coherences referring to one and the same subspace A nl-ls are not affected by the 
environmental interaction. The latter thus gives rise to an orthogonal decomposi-
tion of the systems Hilbert space into coherent subspaces A nl-t s , or superselection 
sectors, 

=  An1-is,  (4.25) 

such that coherences are only observable locally within one and the same sub-
space. The measurement of any system observable of the form A  =  En  

that is of any system observable which commutes with the projections An , consti-
tutes a QND measurement on the state (4.24). This is the general framework for 
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an environment-induced superselection rule, which has been called einselection 
by Zurek (1998). 

We close this section with an investigation of the short-time behaviour of the 
decoherence function. To this end, we consider for simplicity the important case 
that the average of the reservoir operators Bn  taken over the initial state pB(0) 
are equal to zero, that is  (B(t)) = O. Using then the short-time expansion of 
the unitary evolution operator V(t) introduced in eqn (4.9) one easily deduces 

t2  Fn,n (t) — —2  ((Bn  — 13,0 2 ) ,  (4.26) 

showing that  F(t) is proportional to the square of t for short times. Corre-
spondingly, the short-time behaviour of the linear entropy (4.18) is found to 
be 

Si(ps(t)) t 2 E len1 2 11 cm,1 2  ((Br, —  B,n ) 2 ) ,  (4.27)  
Th^  7m 

which grows with the square of the time. 

4.2 An exactly solvable model 

The general discussion of the preceding section can be illustrated with the help 
of a specific system—reservoir model (Unruh, 1995; Palma, Suominen and Ekert, 
1996). The advantage of this model is that, on the one hand, it shows several 
important features of decoherence and that, on the other hand, it is simple 
enough to allow for an exact analytic solution. As will be seen the model exhibits 
decoherence in its purest form, namely the destruction of quantum coherence 
without decay of populations. 

4.2.1 Time evolution of the total system 

We consider a two-state system which is coupled to a reservoir of harmonic 
oscillators. The total Hamiltonian in the Schrödinger picture is taken to be 

H = Hs +  HI 

= 110 ±  
WO = —0-3  ±   Wkbtkbk 2 3 (9kbtk  + g 4k̀ bk) ,  (4.28) 

where wo  is the level spacing of the two-state system and k labels the reservoir 
modes with frequencies Wk  and bosonic creation and annihilation operators btk  
and bk, satisfying 

[bk , bte ] =  -  (4.29) 

The gk are coupling constants which describe the coupling of the two-state sys- 
tem to the reservoir modes bk through the Pauli matrix u3 . The Hamiltonian 
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(4.28) provides a particularly simple example of a spin-boson model. Originally, 
the model was introduced to study the influence of decoherence in quantum com-
puters (DiVincenzo, 1995). In this context the two-state system is referred to as 
a qubit , the elementary building block of a quantum computer (Steane, 1998: 
Bouwmeester, Ekert and Zeilinger, 2000). 

Let us introduce a basis of states vectors of the qubit through o-310) = —10) 
and 0-34) = +11). In the usual representation we thus have 

(1 0 
C73  = (]1  -i)'  1::1)  = ( 131) 1 11)  = CO) ' 

The Hamiltonian (4.28) is of the form (4.1) and (4.2) used in our general discus-
sion. In particular, the Pauli matrix o-3  is a conserved quantity for this model. 
since it commutes with the total Hamiltonian, [H,  o-3 ] = 0. It follows that the 
populations 

Pi' = trs+B {1 1 )(11P(t)} = (1Ips(t)1), 
Poo = trs+B {1 0)(01P(t)} = (01Ps(010), 

(4.31) 
(4.32) 

are constant in time, where p(t) is the density matrix of the total system. To 
determine the decoherence function for this model we first observe that the 
interaction picture interaction Hamiltonian is given by 

Hi(t)  = e iHot Hire _iRot = E (73 (gkek e iw k t  + gk* b ke) 
k 

, (4.33) 

and the unitary time-evolution operator in the interaction picture can be written 

U(t) = T, exp [—i f dslii (8)] .  (4.34) 
t 

Since the commutator of the interaction Hamiltonian at two different times is a 
c-number function, 

[Hi(t),III (e )] = — 

[

g k 2  sin cuk (t — t') EE —2i(p(t — t'),  (4.35) 
k 

we obtain, 

(4.30) 

O 

 

t  t 

 

U(t) = exp — —2 f  ds f  ds' [Ili- (s), II I (8')} 0 (s — sr )  
{  t 

exp —i f ds.///(s) 

[ 

1 

 

o  o o 
t  t 

 

= exp i f ds  f ds' ,o(s — 8' )0 (s — s') V (t),  (4.36) 
0  0 



AN EXACTLY SOLVABLE MODEL  227 

where the unitary operator V(t) is defined by, 

[1 
V(t) = exp —2 o- 

]

akbtk  —  (4.37) 

with the amplitudes 

ak = 2gk 
1 — e iwk t  

(4.38) 

 

Wk 

Thus, we see that apart from an overall, time-dependent phase factor, the time 
evolution of the total system is governed by the operator V(t) defined above. The 
time development is exactly of the form given in the preceding section. Namely, 
we find for an arbitrary reservoir state 0), 

V (t) (10) 0 kb))  13) 011D ( — ak 2 ) kb) E  1 0) 0  100(0)1  (4.39) 

v(t) (11)  kb)) =  HD (+a/c/2) kb)  1 1 ) 0101(0),  (4.40) 

where 

D(ak) = exp [akbtk  — a*kbk]  (4.41) 

is the coherent state generator. Thus, the interaction of the system with its en-
vironment creates correlations between the system states 10) and 11) and certain 
reservoir states 00 (t)) and AM), respectively. If the reservoir is in the vacuum 
state initially, we find that the reservoir states 

100(0) =  — ak/ 2), 195 1(t)) = 11 I + ak/ 2 )  (4.42)  fl  
are products of coherent states with amplitudes +ak/2, where the sign of the 
shift generated by D(ak) is triggered by the quantum number of the system 
state. 

4.2.2 Decay of coherences and the decoherence factor 

Let us suppose that the initial state of the total system is given by 

p(0) = ps(0) ®pB,  pB =  (4.43) 

Here, the reservoir is in a thermal equilibrium state at temperature T, where 
3 = 11kBT and ZB is the reservoir partition function. The matrix elements of 
the system's density matrix can be determined from the relation 

p(t) = (ilPs(01.i) = (iltrB {VMP(0)17-1 (01 
 

(4.44) 
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where i,j = 0,1. As is easily verified, the populations stay constant in time. 
Pt r (t) = Pi 1 (0)) Poo (t) = Poo (0), while the coherences behave as 

Plo(t) = Pot (t) *  = P100(0)e r(t) .  (4.43 

With the help of eqns (4.37) and (4.44) the decoherence function is found to be 

F(t) = ln trB  {ex  p [E (a kbtk  — alb k)] p B} L-- E ln (exp [cekbtk  - 
k  k 

(4.46 

The angular brackets denote the expectation value with respect to the thermal 
distribution pB  . The expectation value 

X (ak, aZ)E.--- (exp [akbtk  — aZbk])  (4.47 

is the Wigner characteristic function of the bath mode k. It can easily be de-
termined by noting that it represents a Gaussian function, which immediately  
leads to the expression 

x (ak  , al,) = exp [---21 1ak 1 2  ({b k ,btk })] .  (4.48' 

Thus, we find 

lak 2  (t bk, btk  1 ) = `Ok 1 2  
 2 coth (wkl2kBT) (1 — cos w k t) . 

Wk 

(4.49 

We now perform the continuum limit of the bath modes. Introducing th( 
density f(w) of the modes of frequency w and defining the spectral density as 

Au)) = 4f(w) I g(w) 1 2  ,  (4.50 

we can write the decoherence function as 
. 

1 — cos wt 
F(t) = — f dwAw) coth (w/2kBT)   (4.51 

C4J 2 

0 

Thus, we have obtained an explicit expression for the decoherence function for 
the present model. Obviously, r(t) depends on the temperature T of the environ-
ment and on the form of the spectral density J(w). To illustrate the dynamical 
behaviour of the decoherence function let us take a spectral density of the form 

J(w) ,-- Awe -4° .  (4.52 

We assume a linear increase of J(w) for small frequencies and an exponential 
frequency cutoff at the cutoff frequency Q. Such a form for the spectral density 
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is typically obtained in the quantum optical regime, where g(w) — \AT.; and by 
assuming a one-dimensional field of bath modes with a constant mode density, 
f (w) = constant. Note also that for this case we have a dimensionless coupling 
constant, that is, the constant prefactor A of the spectral density is dimensionless 
and will be taken to be equal to 1. 

In order to determine the decoherence function it is helpful to split it into a 
vacuum part F,e (t) and a thermal part F th(t) as follows, 

F(t) = rvac (t) +rth(t). 

The vacuum contribution can be determined explicitly, 

co 

rvac (t) EZ — f dwe-4s21  —  cos cut  1 
w  = -- ln (1 ± Q2 t2 ) . 

a 

(4.53) 

(4.54) 

It is independent of the temperature and describes how the fluctuations of the 
field vacuum affect the coherence of the open system. This part depends on the 
cutoff frequency Q. The thermal contribution to the decoherence function is given 
by 

00 

F th(t) EE — f &le' IQ  [coth (w12kBT) — 1] 1 — cos  wt 

0 
t 

1  ks  = — -a  f ds f dx e—Tx/O  [coth(x/2) — 1] sin(sx/O).  (4.55) 
'•-- o  o 

If we assume that kB  T < 12 the thermal contribution is found to be 

t  co 

rth (t) 'r:' — T31  f ds f dx[coth(x / 2) — 1] sin(sx/0) 
o  o 

= _ 1n  [sinh (t/TB)1 
L OTB ] 

Here we have carried out the x-integration with the help of the formula 

idx[coth(x/2) — 1] sin(ax) = 7r coth(rra) — --(: 
o 

and we have introduced the thermal correlation time 

(4.56) 

(4.57) 

)3  1 2.43 10 
1 9 5 

---   
7r  7rkB T  T [K] • 

(4.58) 
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FIG. 4.1. Semilogarithmic plot of the decoherence function F(t) according to 
eqn (4.59) as a function of the dimensionless time variable T = t / TB, where 
S2 TB  = 20 (solid line). The three approximations given in eqns (4.60), (4.61 
and (4.62) are also indicated (dashed lines). 

Summarizing these results, we can write the decoherence function as 

1 rs inh (t/TB )1 F(t) = --2 ln (1 + S22 t2 ) [  t/TB  • (4.59 

One clearly recognizes three different regimes of time: 

1. The short-time regime t < Sr i  : In this regime the magnitude of F increases 
with the square of t, 

F(t)  --2 Q2 t2 ,  (4.60 

which also follows directly from the short-time expansion of the time-
evolution operator (see eqn 4.26). Note that the short-time behaviour in 
this regime is fully determined by the vacuum contribution Fvac . 

2. The vacuum regime Sr' « t  < TB: Here, we may approximate the deco-
herence function as 

F(t)  — ln Qt.  (4.61 

In this range of time, decoherence effects are mainly due to the vacuum 
fluctuations of the field. 
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3. The thermal regime TB t: This regime may also be called the Markovian 
regime since the magnitude of the decoherence function increases linearly 
with time, 

(4.62) 

which means that the off-diagonals of the reduced density matrix decay 
exponentially with a rate given by 77,6 1 •  

A plot of the decoherence function F(t) is shown in Fig. 4.1 together with these 
approximations. 

4.2.3 Coherent subspaces and system-size dependence 
The above simple model can also be used to illustrate the emergence of coherent 
subspaces and the dependence of the decoherence function on the system size 
(Palma, Suominen and Ekert, 1996). To this end, we consider N qubits, labelled 
by an index j, which interact with the reservoir through an interaction of the 
form used in eqn (4.28). Thus, the total Hamiltonian reads 

H = — 
2 kb tkb k E E  (gkib tk  + g;i bk) .  (4.63) 

k 

We assume here that the qubits do not interact directly with each other. The 
coupling constant gki  describes the coupling of the j-th qubit with mode k. We 
further suppose that the qubits take on fixed positions FO) in space and that the 
reservoir may be characterized through a certain correlation length r e . We can 
then distinguish two extreme situations. 

First, we consider the case that the minimal distance between the qubits is 
large compared to the correlation length r e  of the reservoir. The qubits may 
then be supposed to interact with independent reservoirs, one for each qubit. 
Denoting a specific qubit configuration by {in(i ) }, where the m(i )  take on the 
values 0 or 1, we have for the matrix elements of the N-qubit density matrix 

({ 15-1(i) } 1PS  f in(i) })  ({ 171(i) } S  {m(i)}) 
 

(4.64) 

x 11 (exp [(mu) _ mu)) E akek  — a*k bk)1) • 

The decoherence function can therefore be written as 

_ m (i )  F(t),  (4.65) 
:1=1 

where F(t) is the decoherence function for a single qubit, given by eqn (4.46). 
Thus, the decoherence function is an integer multiple of the decoherence function 
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of a single qubit. It vanishes if and only if fri (j )  rn(i )  for all qubits, that is on 
the diagonal of the N-qubit density matrix. If exactly two single-qubit quantum 
numbers are different from each other it is given by the expression for a single 
qubit, while it is proportional to the total number of qubits if the quantum 
numbers of all qubits are different. In the latter case we have 

= N • F (t) ,  (4.66) 

corresponding to maximal decoherence. 
Let us now consider the case that the linear dimension of the total N-qubit 

system is small in comparison to the correlation length r e . The qubits then inter-
act collectively with the reservoir, that is we may assume that for a fixed mode 
k all g ki  are equal to each other. The system of qubits therefore effectively inter- 
acts with the reservoir through the collective operator E o.  decoherence 

 

.7  3  
function is thus found to be 

Feih(3 ), m (i ) ,  —  F(t),  (4.67) 

where M = E . mu) and M = E in (  . This shows that the decoherence func-
tion for the NAubit system is proportional to the square of the difference of the 
sums M and M of the quantum numbers { m (j ) } and Wn (i ) }. 

The coherent subspaces are defined by the condition M =  M,  that is a specific 
coherent subspace is spanned by the basis states 1{m(-1) 1) with a fixed value for 
the sum M = E . mu). For example, if N = 2 the two-qubit states 110) and 101) 
form a non-trivial, two-dimensional coherent subspace. 

The formula (4.67) demonstrates that collective interactions may lead to a 
strong amplification of decoherence. The case of maximal decoherence is obtained 
for M = N M = 0, or for M = 0,  M= N,  which yields 

= N2  • F (t) 
 

(4.68) 

Summarizing, in the case of independent reservoir interactions the maximal de-
coherence increases linearly with the system size N,  while it grows with the 
square N2  of the system size in the case of collective interaction. 

4.3 Markovian mechanisms of decoherence 

A number of important physical processes leading to decoherence can already 
be analysed with the help of simple Markovian models. Here we discuss some 
basic physical mechanisms which cause the decoherence of the centre of mass 
coordinate of a composite quantum object and, thus, lead to a localization of 
the object in position space. To make the discussion as simple as possible we 
restrict ourselves here to the recoilless limit, that is we neglect damping effects. 
The generalizations to include these and, in addition, non-Markovian effects will 
be developed in the following sections. 
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4.3.1 The decoherence rate 

We consider a master equation of the following general form, 

d 
Ps(t) =  [11s, Ps(t)] — A [Z, [Z, Ps (t)]i 

where 

1 ,2  
HS = -2m P 

(4.69) 

(4.70) 

generates the free evolution of the centre-of-mass coordinate Y of the quantum 
object with total mass in. As will be shown in the next sections, the decay of 
the off-diagonals in the position representation of the reduced density matrix Ps  
often occurs on an extremely short time scale, much shorter than those corre-
sponding to the damping of the diagonals and those of the free evolution of the 
reduced system. To a first approximation we may thus neglect the free evolution 
altogether and solve the master equation by disregarding the Hamiltonian part. 
This yields 

ps(t,Y,  exp [—A (Y Y`) 2  ps(0,Z,P),  (4.71) 

showing that the off-diagonals are damped by a factor exp [—AAx2 t] , where 

Ax  (4.72) 

measures the distance to the diagonal of the density matrix. The quantity A 
is referred to as the decoherence rate with dimension (time) — ' x (length) -2 . 
The decoherence function introduced in the preceding section therefore takes 
the form °  

F(t) = —AAx 2 t.  (4.73) 

This allows us to define a corresponding decoherence time as 

1 =   AAx 2  
(4.74) 

In the following we discuss three basic physical mechanisms which may be 
described by a Markovian master equation of the form (4.69). These are quan-
tum Brownian motion in the high-temperature limit, decoherence through spon-
taneous and thermally induced transitions of internal degrees of freedom, and 
decoherence by scattering of an incoming particle flux. It will be seen that in all 

1 °The above argument of neglecting the free evolution will be made more rigorous in the 
next sections, see in particular eqn (4.234). 
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cases the decoherence rate typically takes the form of a product of a characteristic 
rate and a squared wavenumber, 

A — (rate) x (wavenumber) 2 .  (4.75) 

The rate characterizes the physical process causing the decoherence, i.e. it is equal 
to the relaxation, to the transition, or to the scattering rate. The wavenumber 
is determined by the thermal wavelength of the decohering object, by the wave-
length of the emitted radiation, or by the de Broglie wavelength of the scattered 
particles. 

4.3.2 Quantum Brownian motion 
As our first case we discuss the emergence of decoherence in those situations 
in which the motion of the collective degree of freedom can be described by 
the Caldeira—Leggett quantum master equation (3.410). In the recoilless limit 
(see the end of Section 3.6.4.5) the master equation for the collective degree of 
freedom reduces to the form (4.69), where the decoherence rate is given by 
(reintroducing factors of h) 

A = 2m-ykBT 
h2  • (4.76) 

Introducing the thermal wavelength 

h 
Ath - V217/kBT 

and the corresponding wavenumber kth = 1/Ath we can cast the decoherence 
rate into the general form (4.75), 

A = -yqh .  (4.78) 

As expected, the relevant rate here is the relaxation rate -y while the characteristic 
wavenumber is given by the thermal wavelength of the object. 

Due to the neglect of the free evolution and of damping effects, the diagonal 
elements of the density matrix are not affected in the course of the time evolution 
whereas the off-diagonal elements are strongly decaying. We generally define the 
relaxation time TR to be the decay time of the square of the momentum of the 
particle. According to eqn (3.427) the momentum of a free Brownian particle 
relaxes as exp(-27t) which gives TR = 1/4-y. From eqns (4.74) and (4.78) we 
thus infer that the ratio of decoherence time to relaxation time may be written 
as 

TD  = 4  (  2Ath) 
Ax 

(4.79 ) 

(4.77) 

Since for macroscopic objects the thermal wavelength is extremely small thi!-) 
estimate shows that the decoherence time can differ from the relaxation time by 
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many orders of magnitude (Caldeira and Leggett, 1985; Unruh and Zurek, 1989). 
For example, if we consider a particle of mass in = 1 g at room temperature, 
T = 300 K, and assume that Ax = 1 cm, we find that the ratio of the two time 
scales TD and TR is of the order TD/TR — 10-40  (Zurek, 1991). Thus, even if 
we choose TR to be of the order of the age of the universe (TR — 10 17  s) the 
decoherence time scale is found to be extremely small, namely TD 10-23  S. 

4.3.3 Internal degrees of freedom 
The destruction of coherences of the centre-of-mass density matrix can be caused 
by spontaneous or induced transitions involving internal degrees of freedom of the 
composite object. Again we denote the centre-of-mass coordinate of the object by 
ff  and concentrate on two internal energy levels le) (excited state) and g) (ground 
state) separated by a transition frequency cuo. The environment is taken to be a 
thermal radiation field at temperature T.  Thus, we have spontaneous emissions 
with a rate -yo and thermally induced emission and absorption processes. The 
Markovian master equation for the density matrix p(t) of the object, including 
the centre-of-mass as well as the internal degree of freedom, takes the form of a 
Lindblad equation 

d 
—dt

p(t) =  [Hs + wo le)(el,P(t)]  (4.80) 

+7°(N  ±  1)  f d9 [A(rc)P(t)A t  — {A t  (rc)  P(t)}] 4ir  2 

+  d  [At AP(t)A(k) — —1  {A(k)At (k),P(t)}] 47r  2 

Here, N = N (w o ) is the Planck distribution and the integration is performed 
over the solid angle element c/12 into the directions ic7lizt l of the photon emission, 
which, for simplicity, is taken to be isotropic. 

The Lindblad operator  A(k) provides both the transition e  g of the 
internal state and the momentum recoil caused by the emission of a photon with 
wave vector rc. The momentum recoil is described by the operator exp(—i)  
which changes the momentum of the object by Hence we have 

A(k) = At(k) = ei"  o-±  (4.81) 

where u_ = 1g)(el and a+  = le)(gl. We remark that in the master equation (4.80) 
the frequency shifts induced by Doppler effect and recoil are neglected, which is 
justified in the limit of a large total mass in of the object. 

Our aim is now to derive an effective master equation for the reduced density 
matrix of the centre-of-mass coordinate, 

ps(t) = trint  {p(t)} ,  (4.82) 

where the trace is taken over the internal degrees of freedom. On using p 
PS  0 pint  we immediately find with the help of eqn (4.80), 
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d Ps(t) =  [II s Ps(t)] 
 

(4.83) 

+ 1)  p e (t) f d 12[e-4-Î  ps(t)e i" — ps(0] 47r 
± 70N  p  f  [eik • g ps(t ) e — tk'.d _ ps(t)] 

47r g  

where pe (t) = (elpint (t)le) and 1) 9 (0 = 1 — p(t) are the populations of the 
excited and ground state levels, respectively. These populations are to be deter-
mined from the internal density matrix pint (t), which is obtained from p(t) by 
taking the trace over the centre-of-mass coordinate. Since the dynamics govern-
ing the internal degrees of freedom decouples from the centre-of-mass motion 
one immediately finds 

d „ 
p e (t) = 'Yo(2N 1)p(t) 'y o N. (4.84) 

If the object is initially in the excited state, pe  (0) = 1, for example, we get the 
solution 

N + 1 p e (t) =  exp[ -yo (2N + 1)t] +  • 2N + 1  2N + 1 (4.85) 

Performing the angular integration in (4.83) now yields the following position 
space representation for the master equation governing the centre-of-mass density 
matrix, 

d 
—dt ps(t,Y ' ± ") = — i41[11s,Ps(t)11± ") (4.86) 

(N + pe  (0) [1 sin  (kV _x  1)1  
1  ,1  

Ps(t,x,x ). 

This is the master equation which describes the motion of the centre-of-mass co-
ordinate of the composite object, where k = w0 / c = 1/ is the wavenum-
ber of the emitted radiation. 

We can distinguish two important limiting cases. First, we suppose that 
kAx >> 1, that is Ax »  À. In this limit the second term in (4.86) approaches 

— 110 (N + Pe (0)Ps(t,  (4.87) 

showing that the decay rate of the off-diagonals becomes independent of Ax. 
The decoherence thus saturates for distances from the diagonal which are large 
compared to the wavelength of the radiation. Moreover, we note that the de-
coherence rate is approximately equal to the sum of the rates for spontaneous 
emission (contribution -yope ), for induced emission (contribution -yo Npe ), and for 
induced absorption (contribution -yo Np g ). The rate given in eqn (4.87) depends 
on time through the internal dynamics given by eqn (4.84). However, for small 
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times, -yo (2N+ 1)t < 1, and with the initial condition pe (0) = 1 the decoherence 
time is found to be 

1 
70  (N +1) .  (4.88) 

For example, at zero temperature, N = 0, we simply get TD -= 1/-yo. This is an 
obvious result: If the wavelength of the radiation is small compared to the dis-
tance Ax =Ii—'1  between two superimposed localized wave packets describing 
the centre-of-mass coordinate, the emission of a single photon already enables 
an approximate localization of the object and thus leads to partial destruction 
of the coherence of the superposition. At zero temperature the decoherence time 
must therefore be equal to the average time for the emission of a photon, that 
is to the inverse of the spontaneous emission rate. 

Let us now consider the other extreme case, namely kAx <1 which means 
Ax < 3t. An expansion of the term 1 — sin(kAx)/kAx in eqn (4.86), yields a 
master equation of the general form (4.69) with the following expression for the 
decoherence rate, 

1 
A es,' —6 70 (N + pe (t))k 2 . (4.89) 

Again, the decoherence rate depends on time. However, for high temperatures, 
N»  1, we get a time-independent rate, 

1  1 kB T 
A R.,' —6 -yo Nk2  R', 6  -yo  riwo  k 2 

 .  (4.90) 

This decoherence rate is again of the general form (4.75): The characteristic 
wavenumber k is that of the transition radiation, while the characteristic rate is 
provided by the rate of thermally induced processes. 

On the other hand, at low temperatures and for times t satisfying -yo t < 1 
the decoherence rate is found to be 

1 
A R,' —6 -yo k2  (4.91) 

if the system is initially in the excited state. To give an example, let us consider 
the 2p  1s transition of hydrogen. For a hydrogen atom we have -yo  — a3 coo , 
where a = e 2  Ihc is the fine structure constant. This leads to the simple estimate 

1  1 
A — —c(al3  2o   c) , io  

6  cm2 s 
for the decoherence rate of the atomic transition. 

(4.92) 

4.3.4 Scattering of particles 
We consider finally the destruction of coherence through the scattering of an 
incoming flux of particles off the composite object. In general, many types of 
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scattering reactions contribute to the decoherence. In the case of an incoming 
photon flux, for example, we could have Thomson scattering, elastic Rayleigh or 
inelastic Raman scattering. To derive a master equation for the reduced density 
matrix of the centre-of-mass motion (Gallis and Fleming, 1990; Joos and Zeh. 
1985; Joos, 1996) we shall use here the assumptions that the scattering is elastic 
and that recoil may again be neglected. This means that only the state of the 
scattered particles changes during the scattering reaction, while the state of a 
localized target object is left unchanged. 

If we take the centre-of-mass coordinate of the object to be a position eigen-
state 4') we may thus write for the scattering reaction 

4')Çb)  S (0) =1410z),  (4.93) 

where 10) is the incoming wave function and S the scattering matrix. The out-
going wave function is denoted by 10i). It represents the scattered wave for a 
scattering centre located at Y. Note that it is assumed here that the scattering 
time Tsca,tt is small compared to the typical time scale for the systematic system 
evolution. As a result of a single scattering reaction the density matrix of the 
centre-of-mass coordinate of the object then undergoes the transition: 

Ps (i, Z 1 )  Ps (Y, ±")(Og'10i)•  (4.94) 

Thus, the matrix element ps (i,Z') is multiplied by the overlap of the waves 
scattered by Y' and i'. 

To determine the overlap of the scattered waves we invoke the assumption 
that the S-matrix commutes with the total momentum, that is with the sum of 
the object's momentum ./7 and of the momentum 4.' of the scattered particle, 

[S,g+ 41 = 0.  (4.95) 

On writing the initial state as 

14 kb) = exP( — ig' Z)4' = 0)10 = exP [ — i(g+ 0 . 4 4' = 0) exp(q. ) kb) 
(4.96) 

the conservation of total momentum thus gives 

S (0))  
= exp [ — i(g+ 0 ' 4 W = 0)S (exip(iT• 414 5)) 
= 1Y) exP [ — iOE -  4 so (exP(q . z)10)) 
E lz)100 , (4.97) 

where So denotes the S-matrix for the scattering at Z = 0. The overlap of the 
scattered waves can therefore be written as 

exp(—q. z')s(c; exp [—i4'. (i — i')] so exp(iq'. z) 0) .  (4.98) Ksbi ,  Is/50 = KO 
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Next we suppose that the incoming particle state çl)) represents a momentum 
eigenstatelk) which is normalized to 1 in a quantization volume L3 . Introducing 
the T-matrix through 

So = I + iTo  (4.99) 

and employing the unitarity of the S-matrix one easily deduces 

100 = 1+ E (exp [i (k _ rci) _ it)] -  I (re IT01 2 
 

(4.100) 

We perform the continuum limit, replacing 

(T
27)3 f 

d3 k t  = ( i )3 fdkk12 f dif , (4.101) 

and 

1 6 (k'  k)1 2  LS(k i  — k).  (4.102)  

The scattering amplitude f(i', ict) is then defined in terms of the T-matrix as 

 

(k''Tolk)  27ri k  f (k'  r (ki  k),  (4.103) 

such that the overlap of the scattered waves can be cast into the form, 

= 1+  L272  f c/S/' (exp [i(k' — re)(Z — — 01.0, 14 2 . (4.104) 

With this expression we can write the change Aps  of the density matrix during 
a time interval At as a result of a single scattering event as follows, 

 

APs  (Oirkb -i) —1  Ps.  (4.105) 

 

At  At  

Let us now suppose that many scattering reactions take place during the 
time interval At, which implies that the interval At must be chosen in such a 
way that it is much larger than • scatt and much smaller than the characteristic 
time scale of the free evolution of the system. In addition, we also assume that 
the incoming state may be described by an incoherent mixture of momentum 
eigenstates 11-c) and that the corresponding distribution of incoming momenta 
is isotropic. To describe the incoming state we define dk  1(k)  to be the flux of 
incoming momenta in the interval [k,  k + dk], that is the quantity dk  1(k)  1.2  At 
is the number of incoming particles during the time interval At and having 
momenta lying in the interval [k,  k + dk]. The total rate of change of the density 
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matrix is obtained with the help of an integral over all momenta and by an 
average over all directions. Hence, we have 

dPs  f dk f df2  I (k) L 2  At  Ps  .  (4.106) 
dt  47r  At 

Substituting expression (4.105) and adding the free evolution, we thus obtain 
the density matrix equation (Gallis and Fleming, 1990) 

where 

—d ps(t, , Y 1 ) 
dt =  [He ps(t )]  ) – F (Y ± ")ps (t, (4.107) 

F —  = f dk I (k) f df2df2 1  (1 exp [i(rc — rci )(Y —  ) 1 f  (I? , k)1 2 . 
(4.108) 

As in the preceding subsection we may distinguish two important limiting 
cases. Suppose first that koAx >> 1, where ko is a typical wavenumber of the 
scattered particles. The exponential in expression (4.108) then averages to zero 
and we get 

1 
F f dk I (k) f df2df2 1  —

2

1 f (le , lc) =  271 f  dk I (k)u(k) = 27r-y /scatt,  (4.109) 

where a(k) is the total cross-section and 'N Jscatt the total scattering rate. Similarly 
to the decoherence through transitions between internal levels, the decoherence 
induced by scattering thus saturates for large distances Ax and occurs at a 
rate which is equal to 271 times the total scattering rate. The saturation of the 
decoherence function is easily understood: For ko Ax >> 1 the wavelength of the 
scattered particles is small compared to the distance Ax. A single scattering 
reaction thus provides sufficient information to localize the object. Increasing 
Ax any further cannot enhance this information. 

On the other hand, for small distances, ko Ax < 1, we find 

F( —  R.,' f dk I (k) f df2df2 1  4-1  [(k  —  – ±")] 2  f  k)I2  (4.1101 

Introducing spherical coordinates such that cif/ = d cos 84 , (K2' = d cos 0 1  dcio' we 
find 

F (Y –  f dk I (k)o-eff (k)k 2  (Y Y 1 ) 2  , (4.111 

where 

C eff (k) = f dildf 11 1  711  (cos – cos 01)2  f(1 itc) 1 2 
 

(4.1121 
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may be viewed as an effective cross-section. For example, if the differential cross-
section is isotropic one obtains 

27r 
aeff(k) = —3 0- (k). (4.113) 

These expressions reveal that the decoherence rate describing the decoherence 
through scattering off the object may be written 

A=  f dkI(k)Gr eff(k)k 2  7scattka2v .  (4.114) 

This is an expression which is again of the general form (4.75). Obviously the 
relevant wavenumber is here equal to an appropriate average ka, of the de Broglie 
wavenumber of the scattered particles and the characteristic rate is given by the 
total scattering rate 'Y ,scatt • 

As a specific example we consider the decoherence through scattering in a 
photon gas at temperature T (Joos and Zeh, 1985). If the thermal wavelength 
of the photons in the gas is large compared to the radius a of the object we may 
assume that the scattering cross-section is given by the Rayleigh cross-section. 
The evaluation of the formula (4.114), employing an average over the Planck 
distribution of the photon gas, yields the following estimate for the decoherence 
rate, 

A — 102°  (---T ) 9  (  a
cm  )

6  1  
 cm2 s 

(4.115) 

Note the extremely strong dependence on the size a of the object and on the 
temperature of the gas. The decoherence rate increases with the sixth power of 
a which is due to the a-dependence of the Rayleigh cross-section in the limit of 
large wavelengths. The increase of A with the nineth power of the temperature T 
can be understood as follows. First, the photon flux I is proportional to the third 
power of  T,  which is just the Stefan—Boltzmann law of black-body radiation. In 
addition, the average of the product a(k)k 2  increases with the sixth power of the 
thermal wavenumber kth = kBT !he since the Rayleigh cross-section increases 
with the fourth power of the wavenumber. For example, for an object of size 
a = 10-6  cm corresponding to a large molecule we get A =  10_ 12  cril -2 s—i 
at T = 3 K (cosmic background radiation), and A = 106  cm-2  s -1  at T = 
300 K (room temperature). For a small dust particle, say a = 10-5  cm, the 
corresponding decoherence rates increase to A = 10-6  cm-2-1  s (T = 3 K) and 
A = 10 12  cm-2  s -1  (T = 300 K). 

For objects whose size is large compared to the wavelength the cross-section 
is approximately equal to the geometric cross-section. The decoherence rate may 
then be estimated from 

(71 ) 5 ( a ) 2  1 
1()  cm) cm

2 
 s 

A — 5 10" (4.116) 
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In this range A increases with the second power of a and with the fifth power of 
T. For an object of size a = 10-1  cm this yields A --, 10 25  cm-2  s -1  at T = 300 
K. Further examples of the decoherence caused by scattering have been discussed 
by Tegmark (1993). 

4.4 The damped harmonic oscillator 

In the foregoing section we have treated the simplest case, namely the destruc-
tion of quantum coherence without damping. In more realistic physical models 
decoherence occurs together with a decay of populations. To study the effects of 
the combination of both phenomena we first investigate the damped harmonic 
oscillator in the quantum optical limit given by the master equation (3.307). 

Let us consider as initial state a superposition of two coherent states, 

 

OM ) = Ar (la) + IS)) . 

 (4.117) 

In reference to Schr6dinger's famous gedanken experiment (Schr6dinger, 1935) 
such a superposition is sometimes called a Schr6dinger cat state. The super-
posed states c)z) and 1,(3) are considered to be macroscopically distinct with an 
extremely small overlap, representing the dead and the alive cat, respectively. 
The normalization factor ./1/-  reads 

 

A( = (2 + 2R(aP)) 1/2  ' 
 (4.118) 

where the overlap (alfi)  is given by eqn (3.321). The corresponding initial density 
matrix of the oscillator is thus 

PS( 0) = Af2  (1a)(a l + 1/3)(S ± la)(SI + Ma l) •  (4.119) 

Our aim is to determine the time evolution of this initial state and to define the 
decoherence function through the behaviour of the interference term la)(fil + 
1S)(al in this equation. In the following Section 4.4.1 we present the solution to 
this problem for zero temperature. The general finite temperature case will be 
discussed in Section 4.4.2. 

4.4.1 Vacuum decalterence 
At zero temperature the master equation (3.307) can be written as 

—
d 

ps(t) = (-iwo  - 1°-) at aps(t) + (+ 0  - —7 ) ps(t)at a + -yo aps Mat 
dt  2  2 

Lps(t).  (4.120) 

As we know already, a coherent state remains a coherent state under time evolu-
tion, which makes the solution of the problem particularly simple for the vacuum 
optical case. We therefore try the ansatz 

a (t) E exp[Lt]la)(3 1 = f (t)la(t))(fi(t)I,  (4.121) 
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where a(0) a and NO) 0 and f (t) is a c-number function with f(0) = 1, 
such that o- (0) = la)(OL On using 

d 
Tt  ict(t)) = 

(eil
,cv

(
(t
t

))a
f
a  — 

1 
Tit
d ct(t)12) la(t)) (4.122) 

as well as the fact that the coherent states are eigenstates of the annihilation 
operator, one verifies that o- (t) given by (4.121) indeed solves the master equation 
(4.120) provided the differential equations 

6(0 _ t (t)  .  'Yo 
a(t)  OM  zw°  2 ' 

f (t)  2 dt 0(01 2  + 1t3  (t) 2 ) + 700 * ( t ) a ( t ) 

are satisfied. These equations are easily solved to yield 

a(t) 

/3 ( t)  

= a exp (_iwo  _ 'Yot) 
2  , 

= fi exp (_iwo  _ -Yot) 
2  , 

= exp [(1 _ e —yot) L 1ial2 

= (Sla)[1—exP(--Y0t)]. 

 

(4.125) 

(4.126) 

f (t) 

(4.127) 

Summarizing, the solution of the master equation (4.120) corresponding to 
the initial state (4.119) takes the following form, 

PS(t) = AP  (1 a ( t))( Ct (t )1 + 0(t))(0(0 + f(t)a(t))(/3(t) 1 + f* (t)Ifi(t))(a(01) • 
(4.128) 

The decoherence function r(t) can now be defined as the logarithm of the mod-
ulus of the factor  f(t) multiplying the off-diagonals in the coherent state repre-
sentation, 

1  2 f  ,y  \ IT(t) = lnlf(t)1= - - a— r(3-  0- — e '''
t 
 ) • (4.129) 

One observes that r(t) is proportional to the square of the distance of the initial 
coherent state amplitudes a and 0 in the complex plane. For --yot >> 1 the deco-
herence function approaches the value —la —,31 2 /2, that is exp(r) approaches the 
absolute value (43)1 of the overlap of the initial states. For widely separated 
coherent states this overlap is extremely small which means that the coherences 
practically vanish in the long time limit. 

(4.123) 

(4.124) 
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FIG. 4.2. Wigner distribution corresponding to the superposition (4.117) of two 
coherent states with a = ao  exp[i0] and ,3 = ao  exp[—i0], where ao = fib 
and 0 = 0.7. 

On the other hand, for -yo t < 1 the decoherence function is proportional to 
time, 

1 r(t) ,,-- -a  — /3 1 2 7ot. 

This allows us to define a decoherence time TD through 
TD  2 
— = ,   

where we make use of the relaxation time TR = -y(V. . One observes that the ratio 
of the decoherence time to the relaxation time is inversely proportional to the 
square of the distance of the initial states in the complex plane. Equation (4.131) 
is an important relation which is encountered in many microscopic models of de-
coherence. It tells us that for widely separated initial states the decoherence time. 
that is the time over which coherences are destroyed through the interaction with 
the environment, is much smaller than the relaxation time, which characterizes 
the time after which the system loses its energy through dissipative effects. 

The difference of relaxation and decoherence time is illustrated in Figs. 
4.2 and 4.3, where we have taken the initial superposition (4.117) with a = 
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FIG. 4.3. Wigner distribution of the state which evolves from the initial state 
(4.117) shown in Fig. 4.2 after time t = 0.15-yo— ' according to the master 
equation (4.120). 

ao  exP{i0i, = ao exp[—i0] and a()  real. The initial phase components are thus 
separated by an angle 20 in the complex plane, such that la — /312 = 4a8 sin 2  
Figure 4.2 shows the interaction picture Wigner distribution (2.81) of this initial 
state while Fig. 4.3 shows the corresponding state at time t = 0.15TR . The time 
TR characterizes the time scale it takes for the two phase components to merge 
at the origin of the phase plane. We observe that the coherences of the initial 
state rapidly decay over a time which is much shorter than the relaxation time. 

To interpret the result (4.131) physically (Caldeira and Leggett, 1985) we 
assume for simplicity that 0 = 0, which means that one of the superposed states 
is the ground state of the oscillator. Equation (4.131) then yields 

TD  = 2  _ 
TR n (4.132) 

where 1a1 2  =  a1a) n » 1. The question is then, why is the decoherence 
time obtained above smaller than the relaxation time by the factor n, that is 
by the average number of quanta in the initial state? First, we note that at 
zero temperature the environment is in the ground state vacuum which will be 
denoted by 10)B. Thus we have the following initial state of the combined system 
(neglecting the overlap (al0)), 
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1  

(la ) + 1 0  ) ) 0 10)B. 
..■/- 

(4.133) 

The rate for emission of a quantum of energy from this initial state is approxi-
mately equal to W = -yon/2. Accordingly, the time it takes for the emission of a 
quantum is of the order 1/W = 2TRIn. After this time the initial state evolves 
approximately into the state 

1 
IT .f) -'•:-:, —fr.-, (la') OMB +1 0) 0  1 0 )B) •  (4.134) 

v z 

Here, la') is the state 1a) after the emission of one quantum, while 11) B  denotes 
a state of the reservoir containing one quantum of energy. The reduced density 
matrix of the oscillator is then given by 

1 
PS  = trB{ I llif Of 11-z-'-,  (1a 1 ) (ct 'l +  0) (0l),  (4.135) 

since the reservoir states 10)B and 11) B  are orthogonal. This shows that coher-
ences are already destroyed after the emission of one quantum, that is already 
after a time of order 27-R /n, whereas the dissipation of energy takes the emission 
of n quanta, that is a time of order TR. This is what is expressed by eqn (4.132). 

4.4.2 Thermal noise 
It must be expected that thermal noise leads to an enhancement of decoherence. 
To determine the decoherence time in the case of finite temperatures we write 
the solution of the master equation (3.307) corresponding to the initial state 
(4.119) as 

PS(t) = Ar2  (Pact(t) + POO(t)+ p(t)  + P0a(t)) ) 

where we have introduced 

p(t) = exp [ft]Ict)(al, 

p(t) = exP [0]10)011 
p 0 (t) = pli 3 a (t) = exp [Ct] la)(31. 

Our strategy is to investigate the probability density in position space 

P(X, t)  (XIPS(t)1X) 

= Ar2  [pace  (X, t) + poo(x,t)+ pc,o(x,t)-F po,(x,t)], 

involving the matrix elements 

(4.136) 

(4.137) 
(4.138) 
(4.139) 

(4.140) 

rocta(x)t) = (x1Pcycy(t)lx), POO(x,t) = (x1/9,30(t)lx),  (4.141) 
po(x,t) = (xlp ao(t)lx) = A(x,t),  (4.142) 
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FIG. 4.4. The probability density p(x , t) according to eqns (4.143), (4.160) and 
(4.161). The x-coordinate increases from left to right and time increases from 
back to front. The picture shows the time evolution over 1.5 periods of the 
oscillator. The initial distance between the centres of the superposed wave 
packets is equal to 12a0 . Parameters: 27r-yo/wo = 0.05 and N = 0.5. 

and to determine the decoherence function from the reduction of the interference 
terms occurring in the expression for p(x , t). In fact, it will be shown that p(x , t) 
can be written as 

p(x , t) =  (4.143) 

.A1‘ 2  [pa ,a (x, t) + A@ 0 (x ,t) + 2 N/p„(x, Opoo(x, t) exp[F(t)] cos (p(x ,t)1 . 

The density p(x , t) exhibits the typical structure of an interference pattern shown 
in Fig. 4.4. The first two contributions in eqn (4.143) represent an incoherent sum 
of the superposed wave packets, while the third term describes the interference 
pattern. As will be seen, the coupling to the environment yields a time and 
temperature dependent modulation of the pattern given by the phase cp(x, t) , as 
well as a reduction of the interference contrast (or the visibility of the pattern) 
which is determined by the factor exp F(t) in eqn (4.143). Figure 4.4 shows a plot 
of the function p(x I t) , where we use the analytical expressions for r(t) and (p(x ,t) 
which will be derived below. The figure shows the decrease of the interference 
contrast with increasing time, while damping effects are still negligible over the 
time interval shown in the figure. 

The task is now to determine the quantities defined in (4.141) and (4.142). 
This can be done, of course, by determining the solution of the master equation 
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(3.307) corresponding to the initial condition (4.119). However, we are going to 
employ a more direct method which turns out to be useful for the treatment of 
other models as well. The key point is that p„(x, 0), poo(x, 0) and po(x, 0) 
are Gaussian functions. Since the system considered here is linear this Gaussian 
property is preserved under time evolution. We thus conclude that the quantities 
defined in (4.141) and (4.142) must take on the form of Gaussian functions of x 
and all we have to do is to evaluate their mean and their variance. For example, 
the function p„(x,t) may be written 

1  exp [ (x —  x a  (0) 2 ]  p„(x,t) =   , V27ro-,i (t)  2o-,i (t)  (4.144) 

where 

and 

x(t) = f dxxp„(x,t) = trs {xPace(t)} = (alx(t)la), 

(7 (t) = (alx 2 (t)la) — (04(010) 2  . 
Here, x(t) and x 2 (t) are Heisenberg picture operators which have to be deter-
mined from the adjoint master equation (see below). Of course, analogous ex-
pressions hold for poo(x,t). Note that both p„(x,t) and poo(x,t) are correctly 
normalized to 1. Finally, the function pao (x, t) must be written as 

with 

pco (x, t) = (Ma) exp  r (x — xao(t)) 2 1 
V2 71- 0-20 (t) [ 2o-2  (t) c i 0 , 

(4.147) 

1 (lx(t)a) x(t) = (sloe)  f dxxpo(x,t) =  (fila)  ,  (4.148) 

and 

a2 (t)  (S1 X2 (t)l a)  (/3X (t ) l a) 2  
(M a)  (fil a) 2  • 

Note that (4.147) is a complex-valued Gaussian function and that it is correctly 
normalized to the overlap of the initial coherent states, 

f dxpo(x,t) = trs {p(t)} = (01a).  (4.150) 

(4.149) 

Our next step is to calculate the mean values and variances introduced in the 
above formulae. To this end we solve the adjoint master equation with the initial 
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condition that at t = 0 the Heisenberg and Schrödinger operators coincide. This 
yields 

1  x(t) =   (e—"ta  + e iw° tat) e —Y0t/2  (4.151) 
V2mwo  

1   (e -2icu o t a2  e2icu0t a f 2  

 

X2  (t) = 
2mwo  

2ata) e --" t  

1 
+

2 
  [2N (1 — e --Y° t ) ± 1] •  (4.152) 

mwo   

where at, a are Schrödinger operators and N =[exp(c.Jo lkBT) 1]'. With the 
help of these relations the desired quantities are easily found to be 

x(t) =  
1 

V2mwo (e—i'"ta eiw°ta*)  e—

'Yot/2

'  
(4.153) 

x o  (t) =  
1 

V2mwo (e—iw  t  
e iccots*) _---yot/2 (4.154) 

 

x(t) = .v22121  coo  + e t/*)  e —t/ 2 ,  (4.155) 

o-2  (t) (t) = o-20  (t) = o-20  (t) =  u [2N(1 e — Y° t ) +1] . (4.156) 

We observe that the variances introduced are equal to each other and that o-2 (0) 
equals the initial width of the wave packets, 

u2(0) = 0.?  1 (4.157) • 2mwo  

As our final step we substitute the expressions found for p„(x,t), poo(x,t), 
and p,o(x,t) into eqn (4.140). After a little rearrangement one obtains the de-
coherence function 

F(t) =  2o-2(t) R [(x — x, o (t)) 2  — (x x,(t)) 2  — (x — x fi (t)) 2 ] 

(4.158) 

and the phase 

(x, t) =  
[S*a 
 

20.21(t) 

{
(x—x, o (t)) 2 —(x —  (t) ) 2  (x x0(t)) 2 }] • 

(4.159) 

If we insert here the relations (4.153)—(4.156) we finally get 

Ap(t) • x (x, t)  = 
2N (1— e —yot) + 1 +  Yo(t) ,  (4.160) 

and 



2 TD — =- 
TR  — 01 2 (2N + 1) .  (4.167) 
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1  2N + 1  F(t) =   (1 — e — "fc' t ) . 2N (1 — e --rot) + 1 (4.161) 

The quantity yo(t) in eqn (4.160) is a space-independent phase given by 

1  e — l'ot 
Sao (t) =  Tm  [fi*cv    (e —i wt) ta + 2 2N (1 — e —Yot) + 1 

while 

AO) E (CdP(t)la) (01P(t)10) 

(4.162) 

(4.163) 

e iw0t )(3*)] irtwo e —yo t/2 {( e —iw o t a  _ e iwotal _ (e- 0t 
2 

is the difference of the average momenta of the superposed wave packets. 
These equations describe the modulation of the phase and the reduction of 

the interference contrast through the interaction with the environment (Savage 
and Walls, 1985a). For -yo t < 1 we have from eqns (4.160) and (4.162) 

1 
cp (x, t)  Ap(t) • s  —2 .(1'' [e-2iwota2  e2iwot 1:3*21 

 

j  (4.164) 

This expression describes the usual interference pattern as it occurs for the case 
of a vanishing system—environment coupling. Equation (4.161) shows that r(t) 
reduces to expression (4.129) in the limit of zero temperature (N = 0). In the 
long time limit expression (4.161) approaches the temperature-independent value 
given by the overlap of the initial states of the superposition, 

F(t)  -  $12,  'YOt 

For small times, -yo t < 1, we find 

1  1  wo  F(t) R-- --la - 01 2 (2N + 1)-y0 t = --la - 01 2  coth (2kBT  ) 70t. 2  2  

Thus, the ratio of decoherence time to relaxation time becomes 

(4.165) 

(4.166) 

Comparing this expression with eqn (4.131) we see that in the presence of thermal 
noise the decoherence time TD is reduced by an additional factor of 1/(2N + 1). 

Let us assume that a and fi  are real. This means that the initial momenta of 
the superposed states vanish and that 

(a 0)2   
4ag (4.168) 
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where 

Ax E Xa (0) — x0(0)  (4.169) 

represents the initial space distance between the centres of the superposed states. 
We then find with the help of eqn (4.167) in the high-temperature limit, kB T >> 
hwo , 

-,  2 
TD  2  hwo  Ath ) 
TR la — M 2  2kB T  ( 

(4.170) 

Here, we have included factors of h and in the second equation we have intro-
duced the thermal wavelength Ath = h/V2772,k1371 . The same result has been 
obtained previously from the high-temperature Brownian motion master equa-
tion (compare with eqn (4.79)). 

4.5 Electromagnetic field states 

Having discussed some basic features of the theory, let us take a look at experi-
ments on decoherence. Present day experimental technology is not only capable 
of investigating and controlling decoherence phenomena, but also to resolve them 
in time as dynamical processes and to verify results of the theory in quantitative 
terms. For example, it has been shown to be possible to prepare a superposition 
of two motional states of the centre-of-mass coordinate of a Be+  ion stored in 
a Paul-trap and to measure its decoherence in controllable environments (My-
att et al., 2000; Turchette et al., 2000). Moreover, experimental evidences for a 
coherent superposition of two macroscopically distinct magnetic-flux states in a 
superconducting quantum interference device have been reported by Friedman 
et al. (2000). 

In another famous experiment, which was performed by Brune et al. (1996), 
the progression of the decoherence of a mesoscopic superposition of two coherent 
field states in a high-Q cavity has been observed for the first time. The decohering 
field state observed in the experiment was of the form of the Schrödinger cat 
state (4.117). In the present section we wish to discuss this experiment in some 
detail. For our discussion the most important feature of the experiment is that 
it enabled a direct measurement of the decoherence function F(t) and, thus, a 
direct comparison with the theoretical analysis (Maitre et al., 1997). 

4.5.1 Atoms interacting with a cavity field mode 

The experimental setup is sketched in Fig. 4.5. With a variable time delay T, two 
atoms A 1  and A2 traverse the setup which consists of two microwave resonators 
R1  and R2 and a superconducting microwave cavity C with cavity frequency v. 
The high cavity quality factor of Q = 5 • 107  leads to a cavity relaxation rate of 
-yo  = (160 us) — '. The atoms are described by two circular Rydberg levels (with 
principal quantum numbers n = 51 and n = 50) which will be denoted by le) 
and Ig), respectively. The corresponding transition frequency w is detuned from 
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TR TRC  TC  TCR TR TRD IT» 
FIG. 4.5. Schematic setup of the experiment performed by Brune et al. The 

atoms A i  and A2 move along the dashed horizontal line with a time delay T 
and cross the resonator R 1 ,  the cavity C, the resonator R2 and detectors De  
and Dg . The times of flight between and within the different components are 
also indicated. 

the cavity frequency by an amount A. The resonators Ri  and R2 are fed by the 
same classical microwave source of frequency coR . Finally, the state of the atoms 
is analysed in field ionization detectors De  and Dg . The atomic level scheme is 
depicted in Fig. 4.6. 

To begin with let us briefly describe the basic idea underlying the experiment. 
The first resonator Ri  serves to prepare the atoms in a certain superposition of 
the states le) and lg). Initially, the cavity C contains a small coherent field la) as 
shown in Fig. 4.7. As will be demonstrated below, the interaction of the atoms 
with the field in C effectively induces a phase shift of ±0 on the field state whose 
sign is triggered by the atomic state. Thus, the interaction of the first atom A1 
with the field in C leads to an entanglement between the two atomic states 
and the two phase components la exp(±i0)). The second resonator R2 induces a 
further mixing of the states of A i  such that the final measurement of the atomic 
states in the field emission detector De  and Dg  does not give any information on 
the state in which A i  has passed cavity C. As a result, the state measurement on 
A i  projects the field in C onto a Schr6dinger cat-type superposition of two phase 
components which are separated by an angle 20 in the complex plane (see Fig. 
4.8). Ignoring for a moment field damping, normalization factors, and further 
phase factors this state essentially takes the form (for details see the following 
subsection) 

+  (4.171) 

where xi = 0 if A i  was found to be in the state Ig) and x i  = 7r if it was found 
to be in the state le). 

A similar transformation is then induced by the interaction of the second 
atom with the cavity field. The final state of the cavity field is thus 

lac- 220) + ei(xi+x2+20) lae2içb ) + (e ix1  + 64' 12 ) ekb  (4.172) 
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I••• 4  ..... • 1n,.• 

e (71 = 51 , / = m = 50) 

427 = 51.099 GHz 

1g) (n 50 , / m = 49) 

FIG. 4.6. Two-level scheme displaying the atomic transition frequency w, the 
frequency v of the field in the cavity C and the frequency c.oft  of the fields in 
the resonators Ri  and R2. 

where x2 again takes on the values 0 or 7r, depending on the outcome of the 
measurement on  A2.  Thus, if both atoms are found to be in the same state 
(xi  = x2 ) the field state (4.172) becomes (see Fig. 4.9) 

while it takes the form 

lac-2i° ) + c2ilac2i°) ± 2c0), 

lac -21° ) - c2i° lac2° ) 

if the atoms are found to be in different states (xi  x2). We see that the 
interaction of the field with both atoms leads to some kind of constructive inter-
ference of the phase component la) if both atoms are detected in the same state. 
If the atoms are detected in different states the phase component la) interferes 
destructively and disappears from the final state. 

In the experiment the conditional probabilities W„, are measured. These 
are defined to be the probabilities of finding atom A2 in state lE 1 ) under the 
condition that atom A i  has been found to be in state Is), where s = e, g. The 
detailed analysis reveals that in the absence of any field damping the probability 
of finding both atoms in the same state (i.e. to have constructive interference) 
is larger than that of finding them in different states (destructive interference). 
If field damping and, therefore, the decoherence of the Schrödinger cat state 
(4.171) is taken into account this difference of conditional probabilities decays 
to zero for increasing delay time T. Thus, by measuring a certain difference of 
conditional probabilities as a function of the time delay T between the two atoms, 
it is possible to measure the decoherence of the Schn5dinger cat state. 

Before presenting the detailed theoretical analysis of the experiment in the 
next subsection, we investigate the dynamics induced by the interaction of the 
atoms in the central cavity C. The atom-field interaction in C may be described 
by the Jaynes-Cummings Hamiltonian, 

li  WR  
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-4 -2 2 4 

FIG. 4.7. Schematic representation and Wigner distribution of the initial coher-
ent field in the central cavity C for a real and a2  -= 6. The quadratures x 
and p have been scaled such that s = Re a and p =  Tm a. 

Hjc(t) = —
1

coo-3  + vat + 1-2(t) [au+  + at a_]. 
2 (4.175) 

Note that the Rabi frequency SI(t), providing the coupling of the field mode a to 
the atomic raising and lowering operators u+, depends on time. This is due to 
the space-dependence of the mode function, given by a Gaussian envelope, that 
describes the field mode in C. When traversing the cavity the atoms thus feel 
a time-varying coupling to the field mode and the Hamiltonian Hjc (t) depends 
parametrically on time. 
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FIG. 4.8. Schematic representation and Wigner distribution of the superposition 
of coherent fields in the cavity C after the first atom has crossed C and was 
detected in the ground state. Parameters: a 2  = 6, 0 = 0.7 and cpo  = 0. 

For a fixed time, that is for a fixed position of the atom within the cavity, 
the dressed energy eigenvalues of the Jaynes—Cummings Hamiltonian are given 
in linear approximation by 

1 )  A  S1 2  (t)(n, + 1)  = (n + —2  + —2  ±   A   ,  (4.176) v  

with the corresponding dressed states (we consider without restriction the case 
of positive detuning, A w —  y>  0) 
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FIG. 4.9. Schematic representation and Wigner distribution of the superposition 
of coherent fields in the cavity C after detection of the second atom in the 
ground state. Parameters: a' = 6, 0 = 0.7 and po := 0. 

+,rt) =  1).  (4.177) 

Under the given experimental circumstances the off-resonant atom—field inter-
action in C is predominantly adiabatic, which means that real transitions be-
tween the dressed atomic states may be neglected and that only virtual pro-
cesses must be taken into account. Applying the adiabatic theorem of quantum 
mechanics we then see that the dressed states of an atom that traverses the 
cavity take up a phase factor which is given by the integrated dynamical phase 



ELECTROMAGNETIC FIELD STATES  257 

exp[-i f dtE± ,n (t)]. Thus, in addition to the contribution from the unperturbed 
energies, the interaction of the atom with the field mode a leads to the phase 
shifts given by 

—> exp(ic,o e )e, n) , g, n) —> exp(icpg )Ig,n),  (4.178) 

where 

S-  
exp(ipe ) = exp  dt 

2 2 (t)(n + 1)1 
A  exp [0(n + 1)] , 

ç2 (t) m 1 exp(icpg ) = exp [-i ± f dt   = exp[-iOn] , (4.179) A 
- 00 

and 
+00 

E f dt-92(t)  (4.180) A 
- 

Accordingly, we may write the transformations of the states e)la) and 1g)la) in 
the form 

I ea)  eXp  (ata + 1)] le)Ice)  ezçble)laekb),  (4.181) 

g)ct)  exp {-i0ata]Ig)la) = g)Icte — z` )  (4.182) 

This result will be used in the next subsection to describe the preparation of the 
superposition of field states whose decoherence is studied in the experiment. 

4.5.2 Schradinger cat states 
We now turn to a detailed analysis of the experiment. Our man intention is to 
derive a formula for the difference W6  — Wge  of the conditional probabilities 
measured in the experiment and to relate it to the decoherence function pertain-
ing to the Schrödinger cat. The experiment may be described as a succession of 
seven steps as follows. 

4.5.2.1 Initial state of A1 and interaction in R1 First, atom A 1  is prepared in 
state le) and undergoes a 7r/2-pulse in resonator R 1 , yielding the following state 
of the atom-field system prior to the interaction in C, 

1 
(le) + 19)) la).  (4.183) 

4.5.2.2 Atom -field interaction in C Atom A 1  enters the central cavity C. The 
field mode in C induces a phase shift which can be described by the transfor-
mations (4.181) and (4.182) such that the state (4.183) is transformed into the 
state 

-00 

1  .  . 
(eiçb ncte4) ) +19)1cve -4b )) • (4.184) 
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4.5.2.3 Interaction in R2 and measurement on A 1  The second 7/2-pulse in 
R2 induces the transformations 

1  1 
le) —>  (l

^ ̂

e) + e7470 19))  19)  i  

^^

 ( - e -i7°  le) + 19))  (4.185) 
v z  v z 

of the states of atom A 1 , where cpo  -= (R -4r  is the dynamical phase difference 
acquired during the time of flight T between R1  and R2. Thus, the atom-field 
state takes the following form after atom A 1  has left resonator R2, 

1 r  / 
Llg)  (6 ) + e (0)  e))  e 0 e)  (la  ç() )  ei(çb-H°°) Iete i ))] • 

(4.186) 

The measurement of the state of atom A 1  projects the field state onto the states 

Ar(X)1  (lae 

 0) + ei(x+0+ 4,0 o )1 i0)) (4.187) 

where the measurement of g) implies x = 0, while the measurement of 1e) means 
x = 7r. The normalization factor is given by 

 

A((X) = -V2  (1 + exp [-21a1 2  sin2  0] cos [x +  + + 1a1 2  sin 20]).  (4.188) 

4.5.2.4 Field damping in C The state (4.187) corresponds to the density ma-
trix 

i(6)(ae - i(61  Ictei(4)(cteiç61  eilaei(6)(  14'1  h.c.] 

(4.189) 

with =  X  + cpo + 0. Here and in the following h.c. means that the Hermitian 
conjugate of the last term must be added to the expression. We denote the 
time delay between the first and the second atom by T. In the experiment the 
temperature of the environment corresponds to a mean number N = 0.05 of 
thermal photons in the field mode, such that we may use the vacuum optical 
master equation (4.120). During the time interval T the field mode thus evolves 
into the density matrix 

1 pF(T,x)= 
Al2  (x) 

[1a(T))(a(T)1  10(71))(0(T)1  f(T)1[3(T))(a(T)1± h.c.], 

(4.190) 

where (compare with eqns (4.125)-(4.127)) 

a(T) = exP( -NT/2  - 
fi(T) = exP( -NT/2  + 45), 
f (T) = ez exp [-1a1 2  (1 - e 2 )  (1 - e -110T )] 

=e k(cee -i(licte i0 ) (1- e - "°T) . 

(4.191) 
(4.192) 

(4.193) 

1  
pF(0,x) =  A[2 (x)  {Ict 
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Note that dynamical phase factors are absent since we are working in the inter-
action picture. We see that the decoherence function is given by 

F(T) = 1n1f (T) =  -21a1 2 sin2  0 (1 - e- " T ),  (4.194) 

which leads to a decoherence time of the form 

TD   (4.195) = 
2 1 (1  2 sin2  0 .  

4.5.2.5 Initial state of A2 and interaction in R 1  Atom A2 is prepared into the 
initial state le) and subjected to a 7r/2-pulse in R1  such that the state of atom 
A2 and the field, just before the atom enters the cavity, is given by 

1 
-2 [10(6 + 1001+ 10(g1 + 19)(ell PF(T, X).  (4.196) 

4.5.2.6 Atom -field interaction in C The interaction of atom A2 with the field 
in C yields the state 

1 ex e l e i0 (at a+1) p F  (T1 x ) e —ic/,(at a+1)  g) (g l e— io at a pF  x)e ioat a 

+ ex g e  ic/y (a t a+ 1 ) pF  (T, x ) e i0a t a + h.c] .  (4.197) 

4.5.2.7 Interaction in R2 and measurement on A2 Atom A2 traverses reso-
nantor R2, which transforms the state (4.197) into the state 

1  . 
PAF(T, X) = -4 (le) + eiv019)) ((e1+ e -iv0 (g1) eio(ata+1 ) pF (T, x)e —io(ata+i) 

1 
+ 4—  (19) — e —" le)) ((gl — e 0 (e)  a  pF(T X)e zcl'at a  

1 
+ -4 (1 e) + ew0 19)) (01 - v° (el) e 45(ata+1) pF(T,x)e t  a 

1 
+ -4 (19) e° e))  ((el + e° (g) e-

ioata pF(T, x)e_0( a t a+i ) .  

Finally, the state of atom A2 is measured and the conditional probabilities Wee  
and Wge  are determined. Here, WE , is defined to be the probability of finding 
atom A2 in the state le) under the condition that atom A 1  was detected in the 
state 1s), where E = e, g, depending on the outcome of the measurement on atom 
Al . 

According to the obtained expression for PAF  we now have 

We  = trAF {1e)(e1PAF(T X)} 
 

(4.198) 

=  El —  e z( v° ±(6)  trF e2zç'at a  PF(T,X)}] • 

In the first expression the trace is taken over atom A2 and the field mode, while 
in the second expression the trace is taken over the field mode only. Furthermore, 
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we have to set x = 0 if E = g and x = 7r if E = e. With the help of the field 
density matrix (4.190) we find 

1 trF { e2ioata pF (T,  x ) 

which yields 

where 

= Ar2(x) [(a(T)1a(T) exp 20) + (T)0(T) exp 245) 

f* (T)(,3(T) (7') exp 20) 
+eiV(T)(a(T)10(T) exp2i0)]  (4.199) 

— [1 2 
 1 2B+Ccosx+Dcosi  

2 1 + A cos x 
1 (4.200) 

A = exp [-2 al 2  sin2  (1)] cos Roo  + + laI 2  sin  2ç],  (4.201) 
B = exp [-2.ct12 e oT s•n2  r— Y  pi cos L (PCI (/) + a 2 e - T  sin 20] ,  (4.202) 

0 T) sin2 0] cos  [1 (1 12(i _ e - C = exp [-2la1 2 (1 —  l'° T ) sin 20] , (4.203) 
D = exp [-21ct2e--y0T sin2 20  _ 2 k:1 12 (1  _ c --yo T ) sin 2 

x cos [2,00  + 20 +1(11 2  e — Y° T  sin40+  2  (1 — e ----Y°T ) sin 20] . (4.204) 

The term 1 + A cos x in eqn (4.200) stems from the normalization factor of 
the field density matrix, while the quantities B,  C, and D arise from the four 
scalar products that contribute to the trace in eqn (4.199). Namely, the term B 
is due to the product 

(a(T) a(T)exp2i0) = (i3(T)10(T)exp2i0) = (o(T)8(T)) 
= exp {-1a 2 e -11° T  (1 —  e2 )].  (4.205) 

Thus, B is determined by the overlap of the two phase components of the original 
superposition created by the first atom. These phase components are separated 
by an angle 20 (see Fig. 4.8). The contribution C stems from the product 

(i3(T)la(T)exp 2i(/)) = ([3(T)1 /3(T)) = 1,  (4.206) 

whereas D is determined by the product 

(a(T)10(T) exp 2i0) = exp  (1—  e4i0)]  (4.207) 

The term D is therefore determined by the overlap of two phase components 
which are separated by an angle of 40, while C is obtained from the overlap 
of two phase components corresponding to the same angle. The term C thus 
describes the contribution from the recombination of the phase components at 
the location of the original coherent field state la) (see Fig. 4.9). 
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FIG. 4.10. Top: The conditional probabilities Wge  and W„, their difference 
n , and the probability WeD as a function of the delay time T for (po  = 0, 

= 0.7 and  a 2  = 6. To make visible the difference between decoherence 
and relaxation of the photon number we also show the function 0.5 exp[-NT]. 
Bottom: The same quantities averaged over the angle (Po. 

It may be seen from the relations (4.201)-(4.204) that A, B and D are expo-
nentially small in la12  for NT < 1, provided the angle 0 is not too close to 0, 
7r/2, or 7r. Thus we have 

TI
ree 

1 [  1 
-
2 

1 - -
2

C] . (4.208) 

In the experiment the following difference of the conditional probabilities is de-
termined, 
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n(71  , WO) = Wee  g e 1 

or rather the angle-averaged one 
ir 

1 
11( 71 ) = —7r f (490 17( 71 ) WO)* 

o 
With the help of eqn (4.200) one finds 

1C+D-2AB 
11( 71 ,490 =   2  1 — A2  

(4.209) 

(4.210) 

(4.211) 

Since C represents the dominant contribution in ri(T, (p0) and since it is inde- 
pendent of (po we find that ri(T, (p0) P-.,' fi (T)s-.,,  C/2. The expression (4.203) for 
C shows that it is equal to the real part of the quantity f (T) (see eqn (4.193)) 
which multiplies the interference term of the Schrödinger cat state (4.190). Hence 
we get 

71(71 , (PO 
1 
Ref (T) 

= —
1 

exp [r(T)] cos [H 2 ( 1  — e —Y° T ) sin 20] . 2 (4.212) 

This is the desired expression which relates the experimentally observed quantity 
fi(T) to the decoherence function F(T). 

We show in Fig. 4.10 the conditional probabilities Wge  and Wee  and their 
difference 17  as a function of the delay time T.  For comparison we also depict the 
corresponding angle-averaged quantities, the function exp[—NT]/2, and 

WeD  = —21  (1 — B) ,  (4.213) 

which is defined to be the probability of detecting A2 in the excited state under 
the assumption of complete decoherence, that is under the condition that the 
interference terms of the field density matrix are put equal to zero. 

According to eqn (4.212) the difference ri of the conditional probabilities is 
directly related to the relevant off-diagonal element of the field density matrix 
and thus also to the decoherence function F(t). As was demonstrated in the 
experiment performed by Haroche and coworkers this relation enabled the direct 
observation of the decoherence of the Schrödinger cat and a nice quantitative 
verification of the theory. A more detailed theoretical analysis of the experiment 
was given by Breuer, Dorner and Petruccione (2001). 

4.6 Caldeira—Leggett model 
Up to now we have discussed decoherence and dissipation for Markovian dynam- 
ics defined by the quantum optical or by the quantum Brownian motion master 
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equation. The use of these equations presupposes the weak coupling and/or the 
high-temperature limit to be valid. In order to investigate effects from non-
Markovian dynamics and from strong system—environment coupling we study 
here the destruction of quantum coherence arising in the full Caldeira—Leggett 
model for the damped harmonic oscillator discussed in Section 3.6 (Caldeira and 
Leggett, 1985; Unruh and Zurek, 1989). 

4.6.1 General decoherenee formula 
To determine the decoherence function F(t) corresponding to the superposition 
of two Gaussian wave packets la) and 1 13) we apply the same technique as in 
Section 4.4. A simple consideration reveals that eqn (4.158) can also be used for 
an exact treatment of the Caldeira—Leggett model for arbitrary spectral densities, 
temperatures and coupling strengths. The reason is that the derivation for this 
equation relies solely on the Gaussian property of the initial states and of the 
propagator function. Thus, eqn (4.158) holds also in the general case with the 
only modification that the quantities x,(t), xo(t), x o (t) and  a2  (t)  are now 
defined in terms of expectation values of the exact Heisenberg picture operator 
x(t) through 

XŒ(t) = tr fx(t)la)(a1PB} ) 
x(t) = tr fx(00)(MPB} , 

x(t) = 
tr fx(t)la)(filPB}  

(0 cE)  ' 
0-2 (t) = tr fx 2 (t)a)(ctIPB } — [tr -{x(t) a)(a PB 1] 2  ' 

(4.214) 
(4.215) 

(4.216) 

(4.217) 

Here the trace is taken over the total system. We also note that o- ci (t) = o-20 (t) = 
o-c,2 0  (t) E  a2  (t),  as in the case of the quantum optical master equation. We may 
therefore determine the variance  a2  (t) with the help of the state a), for example. 
It is assumed for simplicity that initially there are no system—bath correlations. 
A similar technique may be used, however, if correlations are present in the initial 
state. 

To determine the decoherence function we first express the quantity a — V 
used in eqn (4.158) in terms of the initial separation of the superposed wave 
packets in position space, 

Ax E X0  (0) - 

and in momentum space, 

Ap E Tri± 0  (0) - 7/10 (0). 

This yields the identity 
2  _ Ax2 + 4442 

4o-g 

We know already that the Heisenberg picture position operator x(t) and the 
corresponding momentum operator p(t) obey the equations of motion p(t) = 

Vi-13 l 

(4.218) 

(4.219) 

(4.220) 
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m(t) and (3.465). As in Section 3.6.3.2 we introduce the fundamental solutions 
G 1 (t) and G2(t) of the homogeneous part of eqn (3.465) satisfying G 1 (0) = 
d2(0) = 1 and G 1 (0) = G2 (0) = 0 and write the Heisenberg operator x(t) as 

X(t) = G i (t)x(0) + G2 (t)±(0) ,171n  f d8G2 (t — s)B (s) 

E x h(t) +  1(t),  (4.221) 

where xh(t) denotes the solution of the homogeneous equation, while /(t) is a 
solution of the inhomogeneous equation satisfying 1 (0) =  1 (0) = O. 

With the help of eqn (4.221) it is now an easy task to evaluate the required 
quantities. We find that 

1 [(x -  (t)) 2  - -21  (x - x,(t)) 2  - -2  (x - xo (t)) 2 1 

=  - /3 1 2  (crôGi(t) + 4Grn%.t)g ) 

and that the variance is given by 

G(t)  2 
u2  (t) = c)-(3GT (t)  4772 2 17 2  ±  (t))'  0 

where 

(4.222) 

(4.223) 

 

t  t 

 

(12 (t)) = 2m1  2  f  ds f  ds' G 2(t - s)G 2 (t - ) D (s -  s'),  (4.224) 

 

o  o 

  

2 00 

1 
=  f dc o (w) coth ( 2:BT) 

o I dsG 2  (s)e iw 

   

We recall that 
00 

CA) 
D (S —  =  2 f  dw J (w) coth ( 2kBT ) cos w(s - s')  (4.225) 

o 

is the noise kernel expressed here in terms of the spectral density J (w) of the 
underlying model. 

Substituting eqns (4.220), (4.222) and (4.223) into (4.158) we arrive at 

Ax2  + 40-g  Ap2  (12  (t»  r(t)  (4.226) 80-g  (12(0) + 0-gGT(t) + G(t) I 4m 2  

This equation provides a general expression for the decoherence function  F(t). It 
may be used for all linear models with coordinate-coordinate coupling, involving 
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Gaussian initial states, arbitrary coupling strengths and spectral densities. In eqn 
(4.226) the decoherence function has been expressed in terms of the initial width 
a-F, of the superposed wave packets. If ug is taken to be related to the oscillator 
frequency through eqn (4.157) the superposed wave packets represent coherent 
states of the oscillator. However, since ag may be chosen arbitrarily eqn (4.226) 
is also valid for squeezed initial states. 

Obviously, r(0) = 0 and r(t) tends to the value given by the initial overlap 
in the long time limit provided (1 2 (t)) » o-gG21 (t) + G3(t)/4m 2 o-ci in this limit. 
Moreover, we have the following limits 

2  ( -12  (t))  2  (4.227) 2G(t)/m2  0,  

F(t)  

2GT (t) 
The problem of determining the decoherence function I'm is thus reduced to the 
determination of the fundamental solutions  G 1  (t)  and  G2 (t)  of the homogeneous 
part of the Heisenberg equation of motion, and of the reservoir average (12 (t)) 
of the square of the inhomogeneous part. 

4.6.2 Ohmic environments 
Let us discuss in some detail the case of an Ohmic spectral density J(w) = 
2m/ywe(1 — w)/7r with some cutoff frequency ft 

4.6.2.1 High-temperature limit In the high-temperature limit, that is in the 
case 2k13 T »  I  » wo,'Y, we get (see eqns (3.462) and (3.463)) 

D i  (s — s')  8rrrykBTS(s — s'),  (4.229) 
which gives, by virtue of eqn (4.224), 

(I2(0)  47rnkB T 
 
f dsG(8).  (4.230) 

To give an example we study free Brownian motion for which we have the fun-
damental solutions  G 1  (t) = 1 and G2 (t) = (1 - exp(-27t))/27. This leads to 

B T 
(1-2  (t))  k  Eyt — [1 — exp( —270] + —1 [1 — exp(-47t)]) .  (4.231) 

17/7  4 
Substitution of these relations into eqn (4.226) yields the decoherence function 
for high-temperature free Brownian motion. Let us investigate times such that 
2-yt < 1. Introducing A = 2m-ykBT we find 

AX2  ± 40-g AP2  3 Tn 2 V 
2A +3 

  

(4.232) 

  

8ci-g 2A  t3  u2  t 2  ' 

3m2  0 4m2 
0 

(4.228) 

This shows that the behaviour of the decoherence function depends crucially 
on the initial width of the superposed wave packets. For example, if the noise 
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contribution to the variance o-2 (t) is small compared to the initial width cig of 
the wave packets and if the free spreading t2 /4m2 o-g may be neglected, we get 

F(t)  
Ax2  + 4o- p2  2A 

3m2u2 t
3

1  (4.2331 8o-g 

showing that the magnitude of r(t) increases as the third power of t. 
In the limit of vanishing initial width (see eqn (4.227)) eqn (4.232) leads to 

3
AAx2t. (4.234) 

Apart from the factor this relation was already used in the estimation of the 
decoherence rate in Section 4.3.1. On the other hand, if we let the initial width 
tend to infinity (see eqn (4.228)) we get 

F(t) -
1
-
A

Ap2 t3 . 
3m  (4.235 ,  

Again, the magnitude of the decoherence function grows with the third power 
of time. This result corresponds to the case of an interference device involving 
plane waves which has been discussed by Savage and Walls (1985 b). 

4.6.2.2 Harmonic oscillator The homogeneous part of the Heisenberg equa-
tion of motion, 

+  + 2-)4 = 0,  (4.236 

is easily solved to yield the fundamental solutions 

G 1  (t) = [ 2  sin ut  + cos vt]  e t ,  (4.237 

G2(t) = —
1 

sin vte -14  (4.238 r 

where 

2  V = VW°  - 72  ,  < w 0 ,  (4.2391 

is the characteristic frequency in the underdamped case. In the overdamped case 
v becomes imaginary and we write 

(4.240' 

such that the fundamental solutions take the form 

iG1 (t) = [ 2_ s nh  It  + cosh r)t]  e,  

G2 (t) = sinh -Vte -7t  (4.242, 
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We use the spectral representation of the noise kernel (4.225) and carry out the 
s-integration in eqn (4.224) to get 

+Q 
(12 (t)) =  7 

2 
 f &ow coth ( 2:137,) h(c.o), 

7m1v1 - -0  

with the function 

(4.243) 

2 
(4.244) 

These expressions are valid for both the overdamped and the underdamped case. 
Inserting eqn (4.243) and eqns (4.237), (4.238) or (4.241), (4.242) into (4.226) 
yields the decoherence function for the harmonic oscillator (Caldeira and Leggett, 
1985). The obtained expression is valid for arbitrary coupling strengths and 
temperatures. It turns out, however, that a general analysis of the frequency 
integral in eqn (4.243) is extremely difficult. In particular, the integral depends 
logarithmically on St for large cutoff frequencies. However, simple statements 
may be obtained for certain limiting cases. For the following discussion we set 
al, = 1/2mw4  corresponding to an initial superposition of coherent states. 

In the weak damping limit we have -y < wo  and vP.,,  wo . The function h(w) has 
thus two sharp peaks at w -A.,-' ±wo and in the limit -y —4 0 we may approximate 

pm)  ,.,..,., 7(2N + 1)  + (  f 
27rmwo  

-00 
where we have introduced the Planck distribution N = N (w o ) through the re-
lation 2N(wo ) + 1 = coth(w0 /2kBT). The remaining frequency integral may be 
determined with the help of the method of residues which leads to 

2N + 1 (1-2  (t)) P,,  2mw  [1 - exp(-2-yt)] .  (4.246) 
o 

Substituting into the general decoherence formula (4.226) and noting that 
1  1 

0-(3G(t) +  4m2o-0 2  G(t) = 2mwo exp ( -2-yt)  (4.247) 

in the weak damping limit we see, as expected, that the expression for the deco-
herence function reduces to (4.161) which was obtained in the quantum optical 
limit. Note that the relaxation constants are related through -yo  E 2-y. 

Let us also discuss the high-temperature limit for arbitrary couplings. Em-
ploying eqn (4.230) yields 

(I2  (t)) r-z,, kBT  
fftwO 

[1 - e -2-Yt  (1 + - -7- - sin 2vt + 2-v2  sin2  ut  2  V 
(4.248) 

 

00dwh(w),  (4.245) 

The corresponding high-temperature decoherence function F(t) is provided by 
inserting this expression into the general formula (4.226). The result is valid for 
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FIG. 4.11. Semilogarithmic plot of the underdamped high-temperature deco-
herence function I'm as given by eqns (4.226) and (4.248) (solid line), and of 
the corresponding quantum optical result (4.161) (dashed line) as a function 
of T = 2-yt. Parameters: 2kBT/tao0 = 10, -y/wo  = 0.1. 

both the underdamped and the overdamped case. As far as the underdamped 
case is concerned we observe, as expected, that the exact decoherence function 
differs from the quantum optical one by terms of order 7/wo. Figures 4.11 and 
4.12 show I'm for two different values of 7/wo  and a comparison with the cor-
responding quantum optical result (4.161) in the high-temperature limit. The 
exact decoherence function oscillates around the quantum optical one for short 
times. With growing time these oscillations die out and I'm converges to the 
quantum optical limit. 

The weak damping limit leads to 

Ax2  + 44,42  2kB  T 2t ,y F(t)  (4.249) 8ag  coo 

for times satisfying 27t < 1 and (2kBT)(27t)/wo < 1. Accordingly, the ratio of 
the decoherence time TD to the relaxation time TR = 1/27 is 

Let us compare this result with the strongly overdamped case. This case is defined 
by the limit -y » wo  such that i) 7. The decoherence function is determined 
by substituting y = in eqn (4.248). Let us investigate times t satisfying 



DECOHERENCE AND QUANTUM MEASUREMENT  269 

FIG. 4.12. The same as Fig. 4.11 but for 7/wo  = 0.01. 

w2 
2(7 - ) 7t« 1,  2(7 + i))t 4-yt >> 1.  (4.251) 

7 
The decoherence function for the strongly overdamped particle then becomes 

Ax2  + 44,42  2kB T co 27t g (4.252) sag  Wo 272  

We note that this expression differs from the weak damping result (4.249) by the 
factor wg /2-y 2 . It must be noted, however, that the relaxation rate is TR = 1/27 
in the weak damping case, while it takes the form 

1   7  272 
TR = 2(7 - f)) r-r"'  W0 =  TR  (4.253) 

in the strong damping limit. It follows that the strong damping decoherence time 
I)  satisfies 

(4.254) 
TR TR 

Thus we arrive at the remarkable result that the quotient of decoherence time 
and relaxation time is the same for the weak and for the strong damping case, 
and that it coincides with the result (4.170) found in the quantum optical limit. 

4.7 Decoherence and quantum measurement 

The quantum theory of measurement provides an important application of envi- 
ronment-induced decoherence. The destruction of quantum coherence through 
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the influence of an environment singles out a specific basis set, known as the 
pointer basis, in the Hilbert space of some quantum apparatus M which is em-
ployed to measure a quantum object S. Since decoherence, as it is understood 
here, is ultimately linked to the tracing over degrees of freedom of the environ-
ment, it cannot, of course, solve the measurement problem. This means that 
decoherence cannot be used to deduce the reduction of the state vector and the 
statistical interpretation of quantum mechanics from the unitary evolution given 
by the Schrödinger equation. However, in any realistic measurement scheme the 
coupling of a macroscopic apparatus to its environment can be shown to lead, 
under quite general physical circumstances, to a dynamical selection of a specific 
pointer basis and, thus, to a unique definition of what is being measured by the 
apparatus (Zurek, 1981, 1982). 

4.7.1 Dynamical selection of a pointer basis 

We investigate a quantum system S which is coupled to an apparatus or meter 
M through an interaction Hamiltonian Hsm(t). The meter degree of freedom 
will be described fully quantum mechanically such that the Hilbert space of the 
combined system is the tensor product space = 'Hs m  . We further denote 
the interaction Hamiltonian in the interaction picture by 

H M (t) = e  in t Hsm  (t) e  —tHot  (4.255) 

where Ho  = Hs  + Hill is the sum of the self-Hamiltonians of system and meter. 
As in Section 4.1 the system—meter interaction is supposed to lead, in the ideal 
case, to perfect correlations between certain orthogonal basis states Sn ) of S 
and meter states Mn ) such that the time evolution over a time interval T takes 
the form (see eqns (4.7) and (4.8)) 

losm(0)) = E  0 1m) —4 losm(T)) = E cnds.) 1Mn).  (4.256) 

This is precisely the type of dynamics underlying an indirect, QND measurement 
scheme: The system S represents the quantum object, while the meter M pro-
vides the quantum probe. The initial probe state is _it4- ) and the quantity being 
measured is 

=  ank9n)(Snl, 
 (4.257) 

or some function f ()  thereof. In eqn (4.256) it is assumed that the back-action 
evasion condition holds, 

[§, 11-L m  (t)] = 0.  (4.258) 
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This ensures, as we know, that the basis states 1Sn ) are unaffected by the system—
meter interaction. Let us suppose that the meter states are, at least approxi-
mately, orthogonal (see also the example treated in Section 4.7.2), such that we 
have" 

(511 1Sn' ) = (5 mm,  (Mn1 114-m) = (5nrn• 
 (4.259) 

The application of the projection postulate to the meter quantity 

b IMO (-114-711, 
 (4.260) 

n 

then yields that the readout bn  is found with probability 1c,n 1 2  and that the 
system's wave function conditioned on this event is subsequently given by 1Sn). 
Within the framework of an indirect measurement scheme we may thus say that 
a measurement carried out on the meter system leads to a measurement of a 
system's quantity f(§) and induces the reduction of the system's state vector 
in accordance with the projection postulate. After the measurement the reduced 
density matrix of S takes the form, 

Ps(T ) =  1 2 Isn)(snl,  (4.261) 
n 

describing the measurement on the non-selective level. 
Although being strongly suggested by the decomposition of 17,bsm (T)) in 

(4.256), the above interpretation is incomplete for the following reason. After 
the system—meter interaction the combined system ends up in an entangled state 
l'Osm(T)), describing perfect correlations between the system states 1 5n ) and the 
meter states 1 Mn).  However, 1Ipsm (T)) is still a superposition of these correlated 
states. The latter coexist in 1Ip sm (T)) and without application of the reduction 
postulate to the meter system M there is no a priori reason of accepting only one 
of the states 1Sn ) 0 1Mn ) as physically real. In fact, without making a definite 
decision on an observable being measured on M we could consider another set 
of basis states, 

liffn)  Imnixmn ,  licio,  (4.262) 
n,  

and write the state vector of the combined system after time T alternatively as 

lOsm( T )) = nn)  0 1-Tlin ),  (4.263) 
n 

where we have introduced new normalized system states through 

"To facilitate the following discussion we assume here that the interaction is non-degenerate, 
i.e. that it leads to an indirect measurement of a non-degenerate system observable. 



and 
1 

ISO = cn  n ■ 

(4.270) 
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znrs-7,,) E 
 sn1)(1Vin Huno.  (4.264) 

n' 
With the same right as before we could now claim that the measurement of the 
meter observable 

Tw= E -6-n l ivinxkn I 
n 

leads to the measurement of the system observable 

'--5-i  = E and§n)(§711, 
n 

(4.265) 

(4.266) 

or of some function f (S). The problem is that, although we did not change the 
system—meter interaction and although the reduced system's density matrices 
obviously coincide, 

ps(r) = E lc„,12 ,sfn)(sn = E -J,,i2ls'n)(§ini,  (4.267) 
n  n 

the to-be-measured system observable is ambiguous since, in general, the  quan-
tities § and §' do not commute, 

[5 ,:'4-1  0  (4.268) 

The question is thus: Do we have a measurement device which measures S—  or :§? 
Once a basis of meter states Mn ) is given, the corresponding states ISO in 

a decomposition of the form (4.263) are denoted as relative states. They are. 
in general, not orthogonal to each other but may be taken to be normalized 
in which case they are defined uniquely up to a phase factor. The concept of 
relative states has been used by Everett (1957) in his relative state formulation 
of quantum mechanics. We may assume the En  in eqn (4.264) to be real and 
non-negative which yields 

En  = E Icni1 2 1(-Tin Mn') 2 
1 
 (4.269) 

ni 

Hence, the scalar product of the relative states ISO is given by 

(§4-§n) = _  IL  E 1 C 71,1 1 2  071-n1 1110 (Mn i  I lVini)* Cm cn n, 
(4.271) 

We note that for non-orthogonal relative states eqn (4.266) still defines a self- 
adjoint operator, where, however, the an  are not its eigenvalues. Moreover, eqn 
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(4.267) represents the system's density matrix after the measurement in two al-
ternative ways as a mixture of pure states, where in the second case these pure 
states are not orthogonal. 

The above problem becomes particularly acute if all non-zero coefficients en, 
n = 1, 2, ... , D, in the superposition of the initial state 10sm (0)) have the same 
absolute value, that is if lOsm (0)) is maximally entangled. In this case ps (r) be-
comes proportional to the identity in the subspace spanned by the corresponding 
states ISn ), 

D 

PS(T) =  1'971)(94 
 

(4.272) 
n=1 

Assuming further that the corresponding basis states 1Mn ) and 1Mn ) span the 
same subspace we immediately find with the help of eqn (4.271) that the relative 
states are orthogonal, that is 

(,§ni gn) = (5mn 
 (4.273) 

for any choice of meter basis states (with the above restriction, of course). By 
varying the meter basis we can measure any system basis. Thus we are led to 
the surprising conclusion that our measurement device is capable of measuring 
any system's observable. 

It is important to realize that the problem discussed above does not provide a 
contradiction to the orthodox interpretation of quantum mechanics, for it arises 
only if one refuses to make a definite decision on the meter observable and to 
apply the reduction postulate. However, the situation is somehow dissatisfying 
since according to experience a certain measuring device which has been designed 
to measure, for example, the momentum of a quantum system, does measure 
momentum, and not position. The ambiguity in the measured system observable 
is obviously due to the fact that the system—meter interaction does not fix a 
unique basis of states 1Mn ) in the meter's Hilbert space 1-im (or in a certain 
subspace thereof). This ambiguity can only be avoided if for some reason a 
specific basis is singled out, that is if only a specific physical quantity M = 
En  bn iMn)(Mrt  (or some function of it) can be measured on  M.  The system 
observable  S measured by the device is then determined by the corresponding 
set of relative states 1Sn ). 

At this point it must be taken into account that the meter M is usually 
assumed to represent a macroscopic degree of freedom, which, in turn, is coupled 
to a huge (usually infinite) number of further degrees of freedom. Environment-
induced decoherence then leads to a dynamical selection of a specific basis. This 
means that the meter's Hilbert space 7-im is decomposed into coherent subspaces 
(which are supposed to be one-dimensional here) in such a way that a local 
observer cannot observe coherences between different subspaces. Superpositions 
of the form (4.262) are thus effectively destroyed and a unique basis {1Mn)} 



274  DECOHERENCE 

System Meter 

:ow •A  i,••• 

FIG. 4.13. Schematic picture of the measurement scheme. In addition to the 
system-meter interaction the meter is coupled to a large environment which 
dynamically selects a specific pointer basis through decoherence. 

emerges. This basis is often referred to as the pointer basis. The environment 
E acts like a measuring apparatus: While the total system S + M + E evolves 
unitarily, of course, the reduced system S+M behaves as if its state continuously 
collapses into one of the correlated states 1S„)® Ma). The reduced state of Sd-M 
then behaves, with regard to local measurements, as an incoherent statistical 
mixture of the states 1 Sn)  0 Mn) • 

Thus, we consider a measurement scheme of the type depicted in Fig. 4.13. 
The total interaction Hamiltonian in the interaction picture will be supposed to 
be of the form 

TT f\  = I-1,6(t) +  (4.274) 

Here, we assume for simplicity that HsmE = 0, that is there are no triple 
interaction terms in the total Hamiltonian, and that HsE = 0, which means 
that the direct interaction between system and environment is zero. The whole 
measurement process can then be decomposed into two phases as follows (Zurek, 
1981). 

1. As before 1-/,6(t) acts over a time interval [0, 7 ]  in which HM  (t)  
HfuE(t). During this time interval the desired system-meter correlations 
are built up under the influence of HL,/  (t), 

enIsn) 1m) 0 1E)  E enIsn) 0 imn) 1E),  (4.275) 

where 1E) is the initial state of the environment. As before, the back-
action evasion condition (4.258) is assumed to hold, which guarantees that 
the system states 1S„) are not affected by the system-meter interaction. 
This first phase of the process may be called pre-measurement. 

2. For t > T the meter-environment interaction dominates, that is HiviE (t) >> 
11,6(0. This yields the dynamical selection of the pointer basis through 
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environment-induced decoherence. Assuming also the back-action evasion 
condition for the meter-environment interaction, 

[R,  HLE(t)] = 0 ,  (4.276) 

we may write the second phase of the measurement process as 

enisn) mn) 1E) 
 E cn  ®  IM)  lEn). 

 (4.277) 

We note that the most general solution of condition (4.276) reads 

HL,E (t) = E  (mn1 Bn(t),  (4.278) 

where the  B(t) are arbitrary operators of the environment. Condition 
(4.276) guarantees that the eigenbasis of M is not affected during the sec-
ond phase of the process. The specific system-meter correlations created 
during the pre-measurement are thus not destroyed through the environ-
ment; they are still present in the reduced system-meter density matrix, 

PSM (t) = E icni2 Sn)(S 7,1 IM,,)(Mn  I.  (4.279) 

This is, of course, only a schematic picture of what is going on in a realistic 
measurement scheme. In particular, it turns out that in a more realistic descrip-
tion the ideal back-action evasion condition (4.276) cannot, usually, be fulfilled 
exactly. The pointer basis can, however, be still approximately orthogonal, which 
is fully sufficient for the measuring device to work. This point is illustrated with 
the help of a specific model in the next subsection. 

4.7.2 Dynamical model for a quantum measurement 
Let us discuss here a dynamical model for a quantum measurement process which 
has been introduced and investigated by Walls, Collett and Milburn (1985). It 
consists of two coupled oscillator modes a and b, where a is the to-be-measured 
quantum object and b represents the meter. The system-meter interaction is 
taken to be of the form (the entire discussion will be performed in the interaction 
picture and we omit for ease of notation the index /) 

Hsm = - -2 ata (bE* - btE) .  (4.280) 

The physical background for this type of coupling is a four wave mixing interac- 
tion (Walls and Milburn, 1994) which leads to a back-action evasion interaction, 
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satisfying [f (ata), Hsiv] = O. Disregarding the coupling of mode b to the envi-
ronment we get the following pre-measurement time evolution: 

losm(o)) = EcnIn) s  O)  _> losm(t)) = E cn1n)s Int/2)i. (4.281) 

Thus, if the meter mode b is initially in the vacuum state 10)m, the number 
states n,)5,  of mode a become correlated with the coherent states 

Mn) = InEt/2)m,  (4.282) 

which will be seen to play the rôle of the pointer basis states. We note that these 
states are approximately orthogonal since their overlap is exponentially small for 

t » 1 , 

(MrnlMn) = exp[ 1
6 1: t2  n)2]  

(4.283) 

The environment is represented by a collection of modes ci  which are linearly 
coupled to the meter mode b, 

HME = t + EK•C• 3 3  J• (4.284) 

Tracing over the environment and performing the Born-Markov approximation 
in the quantum optical limit we get the following master equation for the system-
meter density matrix, 

1 cipsm(t) = --2 [ata (be - btE) ,psm(t)] 
dt 

1  1 
+70 (bpsm(t)bt - -btbpsm(t) - -psm(t)btb) , (4.285) 2  2 

with the initial condition 

P s m (0) = s m (0)) s m (0)1 =  emcn ongros (10)(01)m •  (4.286) 
mm  

We note that HmE violates the back-action evasion condition (4.276). We know, 
however, that the master equation (4.285) leads to a rapid destruction of co-
herences between coherent states. We thus expect an approximately orthogonal 
pointer basis to emerge, consisting of the coherent states (4.282). 

To solve the master equation we employ the ansatz 

psm(t) = > fnni(t) onxmos 0 onmornmom  (4.287) 
mm  
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where fnni (t) and 0 (t ) are c-number functions with initial conditions f,,,,(0) = 
cm* en  and On (0) = 0. Inserting this ansatz into the master equation (4.285) one 
is led to the differential equations 

= — 1Sn + II, 

inni  1 d 
.1
,rnrn = 70 OM On + —2 —dt (10nd 2  + Ifimr) — 

—ne
On 

Me
13;7%, 2  2 

which are easily solved to yield 

13n(t) = l'2' (1 — C'Y0t/2) ,  (4.290) 
7o 

1E1 2  [ 
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f nm(t) = C  N rn*  en  exp  (n — m) 2  {3 — t — 4e-0t/2 + eyot } . (4.291) 

The solution of the master equation can thus be written in the following two 
alternatives forms, 

6.1 2  
Psm(t) = Ecrvnexp [ 2,y1 02  (n — m) 2 {3 — -yo t — 4e 0t/ 2  + e—yot }]-1' 

x (1n)(ml) s  0 (10n(t))(0m(t))m 

*  E1
2 70t 

 

=Ecmc
nm 

 

 
—2  y/2 

 

71 exp 1  (n — m) 2  1  —  _ e —ot 
'To 

x (1n)(m) s  0 (  1fin(t))(37n(t)l)  (4.292) 
(0m(t)1fin(t)) ) m . 

Let us first discuss the limit Nt < 1, that is the limit of times which are 
short compared to the relaxation time -y4 '.  Then we have to lowest order in Nt, 

and, hence, 

nEt 
2 

3—  Nt — 4e- ,rot/2  _  (70 0 3  , 

psm(t),E c7n en exP [-- 4  (1E10 2  7ot — m) 2 1 
nm 

x 
( n ) (m ) s (nEt /2 ) (mEt / 21) m  • 

(4.293) 

(4.294) 

(4.295) 

The measurement will be the more accurate the smaller the overlap (4.283) of 
the pointer states (4.282). Thus we consider the limiting case, 

(4.288) 

(4.289) 

mm  

lElt  oo, 7ot —4 0, (lElt) • (Tot) = fixed.  (4.296) 
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Equation (4.295) shows that in this limit psm(t) becomes diagonal in the pointer 
basis IMO = TI,EtI2), 

psm(t)P-' E Icn12 onxn ) s ® Imn)(mnl.  (4.297) 

The decohering influence of the environment has thus singled out an approxi-
mately orthogonal basis of pointer states. This happens on a time scale which, 
under the given conditions, is small compared to the relaxation time. Therefore, 
damping effects play a negligible rôle and the pointer basis is independent of the 
relaxation rate. 

We finally remark on another interesting property of the model. The second 
equation in (4.292) gives the following reduced density matrix for mode a, 

{1 
1E1 2 

\ 2 ps(t) = E c,n c„ exp  (n — m) 
7o  

— 22. — e —Y0t / 2  11 (In)(rnDs • (4.298) 2 
nm 

For -yo t < 1 we have to lowest order 

1 1 _ _-Yot _ e —yo t/2 ,,,..,,, __ (2,0 02 .  
2  8 (4.299) 

It follows that the off-diagonals of ps(t) in the number state basis of mode a 
decay exponentially with an exponent which is proportional to t 2 , indicating the 
non-Markovian character of the model for short times. For large times, -yo t » 1, 
we find 

ps(t) = E em ,„,, r 1E 2-yo  1'  (n — m) 2 ] 0 700nDs . L  nm 
(4.300) 

On differentiating this equation with respect to time we thus obtain 

d 
Ps(t) = --1E2 1 [ata '  [ata

' 
 ps(t)]] .  (4.301) 2-yo  

This is a Markovian master equation for the reduced system S and its form is 
that of a master equation in the singular coupling limit. The model thus shows a 
transition from non-Markovian behaviour for short times to Markovian dynamics 
for long times. 
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Part III 

Stochastic processes in Hilbert 
space 





5 

PROBABILITY DISTRIBUTIONS ON HILBERT SPACE 

We saw in Section 2.1.3 that the statistical properties of a quantum mechanical 
ensemble are fully characterized in terms of a density matrix. However, if selec-
tive measurements of one or several observables are carried on the ensemble, it 
will split into a number of sub-ensembles, each sub-ensemble being conditioned 
on a particular outcome of the measurements. The theoretical description of the 
collection of sub-ensembles thus created leads to a new kind of quantum statisti-
cal ensemble which differs from the one encountered in Section 2.1.3. The central 
subject of the present chapter will be to introduce these new ensembles. They 
will enable us in Chapter 6 to look at the dynamics of open quantum systems 
from a new perspective, namely from the viewpoint of stochastic processes in 
Hilbert space. 

The considerations of Section 5.1 serve to give a precise physical interpre-
tation of the new type of ensembles. The required mathematical framework of 
functional integration in Hilbert space will be developed in Section 5.2. There we 
introduce probability density functionals on Hilbert space which allow a general 
characterization of the new kind of ensembles and enable the construction of ap-
propriate stochastic time-evolution equations for the state vector. As a further 
generalization required in later chapters we are going to study in Section 5.3 
probability distributions on the space of density matrices. 

5.1 The state vector as a random variable in Hilbert space 

We introduce in this section a new type of quantum statistical ensemble which 
may be characterized by means of a random state vector in Hilbert space. The 
general concept will also be illustrated with the help of a simple example. 

5.1.1 A new type of quantum mechanical ensemble 
In Section 2.1.3 we studied a certain type of ensembles 6' the statistical properties 
of which are completely characterized by means of a density matrix p. In order 
to distinguish such ensembles from the new ensembles introduced below they 
will be denoted by E = Ep in the following. 

Recall that an ensemble Ep  was constructed by mixing M ensembles E,, 
a = 1, 2, ... , M, of a certain quantum mechanical system with the weights wa  = 
NŒ /N. Each ec, represents a pure ensemble describable by a normalized state 
vector 0,. The number Na  denotes the number of systems in E„ and 
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N =  Na  (5.1) 
(1=1 

st(tIV,,) 

 

is the total number of systems in  E. Denoting by  ,  the indi- 
vidual systems of Ea  we may write the result of the mixing process symbolically 
as 

{ Q(1)  q(N1)  Q(1)  g(N,)  Q(1)  S(NI)1 (5.2) (- 19  6-)1 ,." " 1  7 " ' "a ," • )"ct  7 " 7 " M ' - 7 "M  ' 

This notation serves to emphasize that the ensemble Ep  is simply a collection of 
N quantum systems. 

The important point to note is the following: Saying that the statistical prop-
erties of Ep  are completely described by the density matrix 

 

P = z_d Wal 'Oct)(Oct 
 (5.3) 

(1=1 

one presupposes that the N systems SV making up the ensemble Sp  are in-
distinguishable in the sense that no information on the original grouping into 
the subsets Ea  is available. An experimenter performing measurements on Ep  
only knows that, taking at random a member from the ensemble, this particular 
system is to be described with probability wa  with the help of the state vector 

It is certainly true that an experimenter with only this information to hand 
can by no means predict anything other than the probabilities and expectation 
values determined with the help of the density matrix p. It is for this reason 
that one calls Ep  a mixture, that is, a totally disordered collection of quantum 
systems. 

As discussed in Section 2.1.3.2 a given density matrix p can be expressed 
in an infinite number of ways in the form (5.3) as a convex linear combination 
of pure states '‘,/) a ) (0a 1 which need not be orthogonal. There is thus always an 
infinite number of ensembles of the type Ep  which all lead to the same density 
matrix. Consider two such ensembles  C,  and Pp  such that 

M'  
P = E waloa)(oal = E wi,174)(741, 

 (5.4) 
,3=1 

where wa , Oa  are the weights and states of ensemble Ep , and w 1,3 , 0 1,3  are those 
of EP' ' Although both ensembles could have been prepared in entirely different 
ways, they are described by the same density matrix p. Physically, the meaning 
of this statement is that there is no way for an observer to distinguish these 
ensembles by means of any experimental setup. Of course, the observer could 
decompose both ensembles into a number of pure sub-ensembles by measuring 
some discrete, non-degenerate observable R (or else, by measuring a complete 
set of commuting observables). However, not only are the probabilities for the 
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FIG. 5.1. Picture of an ensemble of type 4 (left) and of an ensemble of type 
Sp  (right). 

measurement outcomes the same for Ep  and Pp , but also the collections of sub-
ensembles thus created. In this sense it is justified to say that an ensemble of 
type Ep  is completely characterized by a density matrix p. 

As will now be demonstrated, one can, however, design an entirely different 
type of ensemble the statistical properties of which are not fully characterized 
by a density matrix. We denote such ensembles by the symbol Sp. To construct 
them we again start from the ensembles Ea  describable by pure states ipc,. One 
may imagine that each of these states has been prepared by the measurement of 
some complete set of commuting observables. The various 0, need not, however, 
to be orthogonal. We again combine the S, with respective weights w a . However, 
this time we would like to keep the information that a particular quantum system 
belongs to a particular ensemble  E.  For this purpose we consider Na  identically 

6,,{,2) , . . . , prepared copies d ,  en))  of E, for each a. The new ensemble ep is 
then the collection of these ensembles, that is, an ensemble of ensembles: 

gp  { e ( l ) , . . . , El NO , . . . , Ei(xl) , . . . 7  6ra ) , 7 7 7  , EV 7  . 7  ., ""( NM ) 1  t'Al  •  ( 5.5) 

Note the decisive difference between (5.2) and (5.5): 4 is a disordered set of N 
elements each of which represents an individual quantum system prepared in one 
of the states Oa . On the other hand, Ep is a set whose elements are again sets, 
namely the ensembles EV. The distinction between both types of ensembles is 
illustrated in Fig. 5.1. 

The advantage of this construction is that Sp can now be regarded as a 
sample which has been drawn from the sample space 

12 = VI , — , Ea , ... , em }  (5.6) 

furnished with the probability measure 

wa. 
 (5.7) 
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Thus we have constructed a well-defined classical probability space: The sample 
space Q is a set of ensembles Ea , the algebra A of events is provided by the 
subsets of Q, and the probability measure p assigns the probabilities wa  to the 
elements of II 

The physical significance of the sample space i4, or else, of the new type of 
ensembles Ep stems from the following fact: An experimenter confronted with 
an ensemble of the type Ep can always find out by an appropriate measurement 
which particular ensemble Ea  is realized, that is, he can determine to any desired 
precision the state /Pa  describing Ea . In addition, he can do so in such a way 
that the ensemble Ea  is only negligibly disturbed by the measurement. To achieve 
this he merely measures the state on a sub-ensemble of Ea , leaving the remaining 
part of Ea  completely unchanged. Thus we see also that the elements of 5-2 can 
be considered as classical objects such that the rules for combing the various E„ 
are just the rules of ordinary, classical logic. 

The probability measure (5.7) assigns to each Ea  a probability wa . Since Ect  
is represented by a state vector Oa  , the measure (5.7) gives rise to a probability 
distribution on the space of state vectors. The conclusion is that the state vector 
becomes a random variable in Hilbert space which is given by the assignment 

Oa .  (5.8) 

The corresponding probability distribution is given by 

P(Oct) = wa.  (5.9) 

This equation yields a probability distribution on the underlying Hilbert space 
I-1 or, more precisely, on the space of rays in 7-1. 

Having defined the random state vector (5.8) characterized by the distribu-
tion (5.9) we can interpret the corresponding density matrix (5.3) as the covari-
ance matrix of the random variable, that is, we may set 

p=  E ()OM ,  (5.10) 

where E denotes the expectation value defined through the probability distribu-
tion (5.9). A more general definition will be given in the next section. 

It is very important to realize that the concept of a random state vector is 
by no means a hidden-variable theory. On the contrary, the above construction 
is fully consistent with the statistical interpretation of quantum mechanics. The 
reason for this fact is that the stochastic state vector is defined as a map on 
the sample space Q whose elements are again ensembles. In complete agreement 
with the statistical interpretation of quantum mechanics, a particular realization 
Oa  of the random state vector thus represents a pure statistical ensemble Ea  of 
quantum systems, all typical quantum correlations and interference effects being 
embodied in this particular Oa  . 

It is obvious that an Ep-ensemble contains more information than a corre-
sponding En-ensemble. Thus, there exist observable quantities for Ep which are 
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not observables for ep  and which cannot be expressed in terms of the density 
matrix. To give an example we consider some self-adjoint operator R. On ep  we 
can measure, of course, the variance 

Var(R) = tr { R2  p} — [tr {Rp}] 2  

= Ew.(o.1/720.) — [Ewa(?PaIRIO(/)] 
2  

(5.11) 

of R in the usual way: Take a sufficiently large sample from ep , and estimate 
from it the dispersion of R. The same quantity can be measured also on  Sp,  of 
course. Consider now the following decomposition of Var(R), 

Var(R) = Vari (R) + Var2(R),  (5.12) 

where 

Val. '  (R) = Ewa [(vial/121o.) — oPaIR002] ,  (5.13) 

and 

Var2 (R) = Ewa(oaLRoa)2 — [Ewa(oalRoal 
a  a 

Both Val. '  (R) and Var2 (R) represent non-negative quantities and their sum 
equals the usual quantum variance (5.11) which is determined by the density 
matrix p. Note, however, that Val. '  (R) and Var2 (R) cannot, in general, be ex-
pressed as density-matrix expectation values of some self-adjoint operator, which 
means that these quantities are not observables for  E.  But they do represent 
measurable quantities for ep-ensembles. 

A definite prescription for the measurement of both Var. '  (R) and Var2(R) on 
ep can be given. For this purpose we take a sample of ensembles 4,i)  from  Cp. 
To measure Var i  (R) we first determine the dispersion R (  2Octl  lOct) (OaRl 100 2 

of R in each of the individual ensembles d)  by carrying out a sufficiently large 
number of measurements on the systems making up C,ç, i  ) . The obtained values 
for the dispersion of R will, in general, be different for the various EV . The 
dispersion is thus a real random variable X whose classical statistical average 
(X) equals Van i  (R) . To obtain Var2 (R) one could, of course, simply subtract 
Var i  (R) from Var(R). But Var2  (R) can also be measured directly as follows. One 
determines the expectation value (a R a ) of R in each individual ensemble O 1 1 O  
CV . In general, this expectation value takes on different values for the different 
d) . Thus, the quantity Y = (Oa RIO a ) represents a real random variable whose 
classical statistical variance Var(Y) = (Y 2 ) — (Y) 2  is equal to Var 2  (R). 

We infer from eqn (5.13) that Var i  (R) vanishes if and only if the dispersion 
of R vanishes for all 0,, which occur with non-zero probability, that is if and only 

2 
(5.14) 
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if all these ?Pa  are eigenstates of R. Thus, if Var. '  (R) is found to be zero we can 
immediately conclude that Sp is an ensemble which consists of pure ensembles in 
eigenstates of R. The variance Vari (R) can therefore be considered as a measure 
for the distance of the Sp-ensemble to an ensemble made up of eigenstates of 
R. On the other hand, definition (5.14) shows that Var 2  (R) vanishes if and only 
if the random variable ( RNPŒ) is sharp, i.e. takes on a single value. In the 
general case Var 2 (R) is the dispersion of the pure state quantum expectation 
value and represents a measure of the statistical fluctuations of (0,1R '11),) over 
the ensemble. 

A partition of the quantum statistical variance Var(R) similar to (5.12) has 
been considered by Wiseman in the context of the examination of a continu-
ously monitored laser (1993), while the variance Var2(R) has been introduced by 
Wilmer, Castin and Dalibard (1993) as a measure for the statistical fluctuations 
of the stochastic wave function. Examples of the physical significance of these 
variances for the dynamics of quantum stochastic processes will be discussed in 
Sections 6.7.2 and 8.2. 

5.1.2 Stern-Gerlach experiment 
Two Er -ensembles belonging to the same density matrix p cannot be distin-
guished by any experimental procedure. Two Ep-ensembles, however, can be 
distinguished even if they lead to one and the same density matrix. Let us illus-
trate this point with the help of a simple example. We consider two observers. 
called A and B, each with a Stern-Gerlach apparatus. A uses her apparatus to 
prepare a large sequence of atomic beams consisting of spin- atoms, whereas B 
analyses the beams with his own apparatus. 

The Hilbert space belonging to the internal degree of freedom of the spin-4 
atoms is 71 = C2 . As we know from Section 3A.2, any density matrix p in  this 
space can be written as a unique linear combination of the unit matrix I and 
the Pauli spin matrices a l  , a2, and a3 , 

1 
1)01 = (I + V - &') , 

(5.15) 

where V denotes the Bloch vector, satisfying 1'0 = 1 for a pure state. Thus, a pure 
state is uniquely represented by a point V on the surface of the Bloch sphere. 
Consequently, the probability distribution (5.9) describing an ensemble of the 
type ep can be represented by means of a probability density P(11) which is 
concentrated on the surface of the Bloch sphere, that is which vanishes outside 
this surface and satisfies the normalization condition 

f d3  v P(f)') = 1  (5.16) 

Thus, the Bloch vector V becomes a random unit vector following the distribution 
P(V). Note that P(11) is, in fact, a distribution on the space of rays in 'H. Of 
course, one could characterize the distribution more explicitly as a density P = 
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P(0,c,o) introducing spherical coordinates (0, ço) on the surface of the Bloch sphere 
(Wiseman and Milburn, 1993a, 1993b). We prefer, however, to work here with 
the above general representation. 

Let us illustrate how observer A can generate an Sp-ensemble. We suppose 
that A chooses a fixed unit vector 1. Employing her Stern—Gerlach 
apparatus, she then prepares by the measurement of fi et a large sequence of 
atomic beams. Each individual beam, consisting of a large number of atoms, 
represents an ensemble in a definite pure state which is an eigenstate of 4-6 with 
eigenvalue +1 or —1 and which is therefore given by one of the antipodal points 
±fi on the Bloch sphere. Furthermore A ensures that in the sequence of beams 
she produces both eigenstates occur with an equal weight of 1. The resulting 
ensemble of the type Ep is therefore described by the following probability density 
on the surface of the Bloch sphere, 

11 
P(if) = —

2 

d (fi — Fi)  5(+  71). (5.17) 

This ensemble is now passed to observer B who performs measurements on it. 
Let us first note that the Ep-ensemble given by (5.17) leads to the density 

matrix 

f d3 v p(V)P(F1) = ( 16-  ,  (5.18) 

as is easily verified with the help of (5.15). This density matrix corresponds to 
an unpolarized atomic beam and is independent of ft. Thus, different choices 
for fi obviously lead to different Sp-ensembles but to one and the same density 
matrix p. The question is therefore, can B find out with the help of his own 
Stern—Gerlach apparatus which particular direction has been chosen by A, that 
is, can he determine the direction of the unit vector if which is obviously not 
contained in the density matrix p? The answer to this question is affirmative, of 
course. 

Picking up a particular beam from the ensemble, B does not know by which 
state it should be described. But he does know that each beam is in some definite 
pure state and since each particular beam consists of many atoms he can do 
statistics with it. To determine the direction of fi observer B can proceed as 
follows. First he picks a sample {EV } of atomic beams. Each element EV is 
an atomic beam describable by a pure state of the form (5.15). To determine 
the Bloch vector fi observer B rotates his Stern—Gerlach magnet until there 
is no splitting of the atomic beam into two parts. The direction defined by 
this condition is the direction of the Bloch vector V. Observer B then knows 
that the beam is in a pure state given by an eigenstate of  if  • ê,  and he can 
choose the orientation of V in such a way that the eigenvalue is +1. The beam 
is thus determined to be in the state (5.15) with this Bloch vector V. Repeating 
this procedure for his sample 14P1 of beams B will find out that only two 
Bloch vectors V = ± fi occur in the sample with equal probabilities of  4.  This 
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information enables B to reconstruct the probability distribution (5.17) created 
by A and to fix the direction of the unit vector /I. 

It should be clear from these considerations that B can also reconstruct, to 
any desired degree of accuracy, any distribution P(V) in a similar manner. For 
example, A could have created, at least in principle, the ep-ensemble given by 
the distribution 

1 
P(IT)  = —47r 6  1 ) —  

(5.19) 

To generate this distribution A prepares atomic beams in the pure states p(V). 
where the Bloch vector V is uniformly distributed over the surface of the Bloch 
sphere. The preparation of this Ep-ensemble requires that A performs prepara-
tion measurements of all observables V - 6. We note that for different V these 
observables do not commute, in general, and that they are measured on different 
atomic beams. We also note that the normalization condition (5.16) is satisfied 
and that (5.19) again yields the density matrix (5.18) of an unpolarized beam. 
Following the procedure described above, B will now find, within the usual sta-
tistical uncertainties caused by the finiteness of his sample, that the Bloch vector 
is uniformly distributed over the whole surface of the Bloch sphere and concludes 
that the distribution is given by (5.19). 

The fact that an Sp-ensemble contains more information than a correspond-
ing ep-ensemble may also be seen by determining the variances Var i  (R) or 
Var2  (R). Choosing a fixed unit vector ñ observer B may take R to be R = • .6. 
for example. The expression for Vari  (R) then becomes 

 

Vari (rli • 6-) = f d3 vP(fi) (tr { (tit • 6- ) 2  p(V)}  [tr { ( fit' • 6r. ) p (v)  ) 

f d3 vP(V) (1 — (Tit V) 2 ),  (5.20) 

which is valid for all distributions P(t7). For the distribution (5.17) this expression 
reduces to 

 

Vari  (fit' • 5-) = sin2  x,  (5.21) 

where x E [0, 7r) denotes the angle between the directions of  ñ and  ff.  Corre-
spondingly, we find 

 

Var2 (ili • 6) = cos2  x ,  (5.22) 

such that the decomposition (5.12) of the variance Var(rii, • 6- ) takes the form 

 

Var(rn • 6) = sin 2  x + cos2  X  = 1.  (5.23 

We observe that the variances Var 1 , 2 (rn • 6), which are measurable on E p , de- 
pend on the angle between the directions chosen by A and by B.  By contrast. 
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since p describes an unpolarized beam, all quantities which are measurable on a 
corresponding Er -ensemble, for example the variance Var(rn • 6), are independent 
of . x. 

According to eqn (5.21) the variance Vari(ril • 6) vanishes if ni, is parallel 
or antiparallel to rt. In this case B concludes that Ep is an ensemble which 
consists of ensembles in eigenstates of fil - 6. This is an example of the general 
property of Var. ' (R) discussed at the end of the preceding subsection, namely 
that Var i  (R) = 0 if and only if the ep-ensemble consists of eigenstates of R. 

5.2 Probability density functionals on Hilbert space 
The example discussed in the preceding section clearly demonstrates the physi-
cal significance of ensembles of type Ep. They result from selective preparation 
measurements of a set of (not necessarily commuting) observables and give rise 
to certain probability distributions on projective Hilbert space. In this section 
we develop an appropriate mathematical framework which enables the general 
description of such a distribution. A rigorous mathematical treatment of prob-
ability measures and functional integration in Hilbert space may be found in 
Skorohod (1974) and Gihman and Skorohod (1980). The rôle of probability dis-
tributions on Hilbert space in the formulation of quantum mechanics has been 
discussed by Bach (1979, 1980, 1981) (see also Bach and Wenning, 1982; Cyran-
ski, 1982). We emphasize, however, that the physical interpretation developed 
above is entirely different from that suggested by Bach. 

5.2.1 Probability measures on Hilbert space 
Following the construction of a probability space given in Section 1.1 we consider 
a system A of subsets of the Hilbert space 7-1 which plays the rôle of the sample 
space. 12  The system A is assumed to form a a-algebra. Thus, each element A E A 
is a subset of 7-1 and the system A of subsets satisfies the conditions of a a-algebra 
formulated in Section 1.1.1. According to Section 1.1.2 a set function p = p(A) 
defined for all A E A is called a probability measure if it satisfies the Kolmogorov 
axioms (1.2), (1.3) and (1.5). 

To give an example, we consider the simplest measures, i.e. the Dirac mea-
sures p = (5.0 ,. Taking an arbitrary fixed state vector 0 0  the corresponding Dirac 
measure (5.00  is defined by 

1, if 00 EA,  
(5/P0(A)  { 0,  if 00  Ø A ,  

for all A E A. As is easily verified this definition yields a probability measure 
satisfying the Kolmogorov axioms. 

In physical applications it is customary to work with densities. We thus in-
troduce a probability density functional P = P[0] of the state vector 0 and 
write 

12  More precisely speaking, the sample space is the projective Hilbert space, see Section 5.2.2. 
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,u(A) = f DODO*P[O] 
 

(5.25) 
A 

for the probability of A. Accordingly, the probability density functional of the 
Dirac measure (5,/, will be denoted by P[O] = (5[0 — ?Po] such that we have the 
relation 

(5.0c, (A) = f DODO*(5[0 'Oo ].  (5.26) 
A 

The integration in these formulae is carried out over a subset A of the Hilbert 
space. They thus represent a multidimensional or even an infinite-dimensional 
integral, that is a functional integral. Our next task will be to give an explicit 
construction for the corresponding functional volume element DODO* in Hilbert 
space 

We take a fixed orthonormal basis {On } in 7-i and write the decomposition of 
E 74 with respect to the basis vectors as follows, 

 

— E ZnOn•  (5.27) 

The probability density functional P = P[0] can thus be considered as a function 
P = P[zn , zn*] of the complex variables zn , zn*. Alternatively, we can regard P  as 
a function P = P[an , bn] of the real variables a n , bn  defined by 

 

Z n —  a + ib.  (5.28) 

An appropriate expression for the volume element in Hilbert space is the usual 
Euclidean volume element in a real space with coordinates an , bn , that is we set 

 

DODO* = H dan dbn .  (5.29 

Writing the differentials da n  and dbn  as 

da n  = —
1

(dz n  dz n*), 
2  

(5.30) 

dbn  = —
1

(dzn  — dz n*), 2i  
(5.31 

we can write the volume element (5.29) in terms of the coordinates z n  and z. 

al,GDO* =  —2i  dz ndz.  (5.32 
rt 

Summarizing we have the following explicit formulae for functional integration 
in Hilbert space 

f DODV)* P[11)] = f II  dandbnP[an, bn] — f 11 Ldzndz n*P[zn, z n* ] . (5.33 ) 
2 

A  A n  A n  

The variables zn  and zn* must be treated as independent integration variables 
corresponding to the two independent real integration variables a n  and bn. 
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In accordance with definition (5.29) the density of the Dirac measure 
belonging to the state 

is defined to be 

oo = Ezn°on 3 

n 

0  •I 0 Z°  = an  + tOn , n (5.34) 

00] = 11 6(an — a cn' ) 6 (bn — C.  (5.35) 
n 

This is a functional Dirac function given by a product of ordinary 6-functions. 
If one works in the position representation, for example, one may proceed 

as follows. We consider a finite volume V and discretize it into cells of equal 
volumes AV centred at x i , / = 1, 2, ... , M. The continuous wave function 0(x) 
is thus approximated by the finite-dimensional vector 

(5.36) 
/ 

In this case the volume element takes the form 

DODO* = H doi dot.  (5.37) 
/ 

In the continuum limit this will be written formally as 

DODO* = H d0(x)d0* (x),  (5.38) 
x 

where the product is to be extended over all space coordinates. 
In the following we will often make use of an important property of the func-

tional volume element on Hilbert space constructed above, namely its invariance 
under linear unitary transformations 

0' = UO  (5.39) 

of the Hilbert space. This invariance may be expressed by the formula, 

DO'DO1*  = DODO*.  (5.40) 

To prove this formula we regard U as a unitary matrix in the basis introduced 
in eqn (5.27) and decompose it into real and imaginary parts, 

U = R (U) + i:1(U).  (5.41) 

The  unit arity of U leads to the relations 

R(U)R(U) T  + :1'(U)(U) T  = 1,  (5.42) 
— R(U):1(U) T  = 0,  (5.43) 

where T denotes the transposed matrix. In the chosen representation the matrix 
U describes a unitary transformation z n  i— zn1  from the coefficients z n  in the 
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basis decomposition of ti) to the coefficients zn  in the basis decomposition of 
=  U.  The corresponding transformation of the real coefficients an , bn  defined 

by z  = an  + ibn  is provided by the real matrix 

_ [R(U) —a(U)) 
R(U) 

It is now easy to check with the help of eqns (5.42) and (5.43) that U is an or-
thogonal matrix satisfying Idet  U = 1. Thus, as was to be expected, the unitary 
transformation U of the Hilbert space 7-1 induces an orthogonal transformation 
Ü of the real variables an , bn  which were introduced to define the volume element 
in Hilbert space. We can now apply the transformation formula for multidimen-
sional integrals to conclude that 

da7,1  db1,2 =Idet 01  dandbn  =  dandbn ,  (5.45) 

which proves the unitary invariance (5.40) of the volume element. 
An important consequence of this result is that our definition (5.29) for the 

volume element DOD** is independent of the choice of the basis {On }. Moreover. 
we immediately deduce from the transformation formula (5.40) that the Dirac 
density functional 6[0] is invariant under unitary transformations, 

(5.44) 

(5.46) 

and, hence, 

(5kG — U00] = (5[Ü—L O — Oo].  (5.47} 

These relations are useful for calculations with probability density functionals. 

5.2.2 Distributions on projective Hilbert space 

We have already met the simplest examples of probability measures on Hilbert 
space, namely the Dirac measures (5,/,, . The corresponding density functionals 
6[0 — IN] satisfy 

f DO.W*(5[0 — 0 0 ] = 1.  (5.48) 

The general normalization condition for the probability density functional P[vj 
reads 

f D'ODO*P[0] = 1,  

where the integration is extended over the whole Hilbert space. 
According to the general principles of quantum mechanics the physical state 

of a pure ensemble is uniquely described by a ray in projective Hilbert space (see 
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Section 2.1.3.2). In other words, pure states are characterized by normalized wave 
functions and wave functions which differ by a phase factor are equivalent. Since 
we want to characterize quantum statistical ensembles of the type gp with the 
help of a probability density functional P[0] we postulate that the probability 
distribution is concentrated on the surface of the unit sphere in Hilbert space. 
That is we demand the existence of a functional Q[0] such that 

P[.i)] = 6 (101 1 - 1 )(2 [0].  (5.50) 

This means that only normalized wave functions occur with non-zero probability. 
The equivalence of wave functions which differ by a phase factor leads to the 
requirement that the density functional does not depend on the phase of the 
wave function, i.e. for all x E [0, 27) we must have 

P[exp(iX)0] = P[0].  (5.51) 

By virtue of the conditions (5.50) and (5.51) the functional P[0] can be re-
garded as a probability density on projective Hilbert space (Breuer and Petruc-
cione, 1995). In fact, a representation of projective Hilbert space is obtained by 
taking the surface of the unit sphere in 7-1 defined by 11011 = 1, and by identifying 
those points on it that differ by a phase factor. Since P[0] is constant along the 
rays in 7-1 it can be considered as a functional on projective Hilbert space. Sum-
marizing, an ep-ensemble is characterized by a probability density functional 
P = P[0] satisfying the normalization condition (5.49) and the requirements 
(5.50) and (5.51) of a functional on projective Hilbert space. 

The simplest example for a density functional on projective Hilbert space is 
provided by the expression 

27 
dX PM = f —27r (5[0 — e ix 0o], 

o 
(5.52) 

where 00  is a normalized state. As is easily checked this functional satisfies the 
normalization condition (5.49), as well as the postulates (5.50) and (5.51). In 
fact, since 00  is supposed to be normalized the functional (5.52) is concentrated 
on the unit sphere in 7-1. Moreover, P[0] is invariant under changes of the phase 
of 0 by virtue of the x-integration  in eqn (5.52). 

Another simple situation occurs, if the experimental preparation yields an 
ensemble which consists of a discrete set of ensembles Ea  labelled by an index a, 
each Ea  being describable by a normalized state vector 0„. This is the situation 
that was investigated at the beginning of this chapter, and also encountered 
in the example of the Stern-Gerlach experiment. Again we denote by w, the 
statistical weight of the ensemble ea , such that w, > 0, and a w, , 1. The 
probability density P[0] which describes the corresponding ensemble of the type 
ep consists of a sum of Dirac densities which are concentrated around the various 
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Oa , each Dirac density being weighted with the corresponding factor w a . Thus, 
in this case we have 

27r 

P[7pi = E wo, f  (5 [0 eiX Ocd. 
a  0 

(5.53) 

Again, it can be immediately verified that our basic requirements (5.49), (5.50) 
and (5.51) are fulfilled for this probability density functional. 

The densities P[0] encountered so far are all representable by sums of Dirac 
measures. Of course, one can also easily construct continuous densities. An ex-
ample of such a density has already been given in Section 5.1.2. The density 
P(e) given in eqn (5.19) is constant on the surface of the Bloch sphere iJ = 1 

 which represents the projective Hilbert space of a spin-1 particle. To generalize 
this idea we consider an arbitrary s-dimensional linear subspace V of 1-1 which 
is spanned by an orthonormal set 0i , i = 1,2, ... , s, 

V = span{017 02, • • • 
 (5.54) 

Let us assume that the preparation process yields a mixture of all normalized 
states in V with equal weights (von Neumann, 1955). The correct probability 
density describing the corresponding Sp-ensemble takes the form 

1 f  
P ['P ]  = K  J  ciw ( À)  6['P  (5.55) 

Here we have introduced the surface K of the unit sphere in V. This surface 
represents a manifold of real dimension (2s — 1) given by 

K {(/)(A) E opo E Appi , Ai  E C, E 1 Ai 1 2 = 1  } (5.56) 

   

Furthermore, dw(A) denotes the usual Euclidean surface element of K and 

1 -1(  = f dw(A)  (5.57) 

is the total volume of K. Hence we see that eqn (5.55) provides a uniform prob-
ability density which is concentrated on the unit sphere K C V. Note that the 
integration over the sphere K in eqn (5.55) ensures that the probability density 
functional P[0] does not depend upon the special choice of the basis functions 
Oi. Equation (5.55) makes sense also for the case s = 1. In that case K is iso-
morphic to the unit circle and the dw(A)-integration reduces to the integration 
over the phase x in eqn (5.52). 

More generally, we may consider an ensemble ep which results from the 
combination of ensembles of the above type with weights w, > 0 satisfying 
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= 1. Using an obvious generalization of the above notation this leads to 
the density functional 

P[0] = E wa  f du),(A) (5[0 — oa  (A)]. 
a  K, 

(5.58) 

It should again be clear that this density functional (5.58) satisfies the basic 
properties (5.49), (5.50), and (5.51). 

5.2.3 Expectation values 
With the help of the probability density functional P[0] corresponding to an 
Ep-ensemble we can now define the expectation value of a functional F[0] of the 
random state vector 0 through the relation 

E (F[0]) E f DODO* P[01F[].  (5.59) 

Taking a self-adjoint operator R we may consider the functional F[0] = (0140) 
and its expectation value 

E &AO) = f DODO * P[0] (040-  (5.60) 

The quantity 

( '7) = E ((01/7 10)) = tr IRO 
 

(5.61) 

is the expectation value of R in an 4-ensemble corresponding to the Sp-ensemble 
described by P[0]. This expectation value for the measurement of R on 4 is ob-
tained by averaging (01/0) over the probability density functional P[0]. Hence, 
it is evident that the density matrix p describing Ep  is equal to the covariance 
matrix 

p=  E ( 0)(01) E f D'O DO* P[0] ION 
 

(5.62) 

of the random state vector 0 defined in terms of the density functional P[0] 
(compare with eqn (5.10)). This shows again that the statistics of an 4-ensemb 1e 
is completely determined by a probability density functional P[0]•  The converse 
is of course not true, in general, since a probability density functional is not fixed 
uniquely by giving only its covariance matrix. 

Let us evaluate expression (5.62) for the density functional given in eqn (5.53). 
Substituting the expression for P[0] we get 

27r 
p = E wa f Dop * f dxo —27r 6[0 — e x 0cd10)(01, 

a  0 

(5.63) 
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and, carrying out the functional integration with the help of the properties of 
the Dirac density, we arrive at 

27r 
f dx 

= Ewalool, opa 
a  0  a 

(5.64) 

which is recognized as the density matrix of the corresponding 4-ensemble. As 
another example we substitute the density functional (5.55) into (5.62) which 
yields 

1  1 
p = f DODO*  f dw(À) (5[0 ON] 0)(0 

=IKIf 
 dw(A)10(A))(0(A)1 K 

(5.65) 

where we have again carried out the functional integration over the Hilbert space 
and used the representation (5.56) for the surface K of the unit sphere. Perform-
ing finally the dw(A)-integration one finds 

1  1 
p —  1 
 I' 

dw(A) El Ai 10i)(0i1 = 2_, 10i)(0i1 = 
1K1J 

(5.66) 

As expected, the corresponding 6'p -ensemble is described by a density matrix p 
which is proportional to the identity Iv in the subspace V spanned by the 

All quantities measurable on an 4-ensemb 1e are expressible in terms of the 
covariance matrix p of P[0] which involves moments of of second order. Higher-
order moments of the random state vector represent quantities which are only 
measurable on ep. Examples are the variances Var i  (R) and Var2 (R) introduced 
already in eqns (5.13) and (5.14). With the help of the probability density func-
tional P[0] these equations can now be written as (Breuer and Petruccione. 
1996) 

vari (R) = f Dopo*P[0] ((0 1 R2 10) —  (5.67) 

and 
2 

Var2(R) = f DODO* P[0] (01R10)2  [f DODO *  P[0] (01R10)] 

These expressions involve fourth-order moments of the state vector. Var i  (R) 
represents the dispersion of R averaged over the pure states contained in the 
ensemble and is thus a measure of the average intrinsic quantum fluctuations. 
On the other hand, Var 2 (R) is the variance of the real random variable (OW). 
It is thus a measure of the classical statistical fluctuations of this quantity. 

(5.68) 
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5.3 Ensembles of mixtures 

In the foregoing discussion we have considered ep as an ensemble of various 
ensembles ec, which are describable by pure quantum mechanical states  
This idea led us to the introduction of probability density functionals P[0] on 
projective Hilbert space. An even more general type of ensembles arises, if one 
takes into account that, as a result of the preparation process for example, the 
various E, might be in true statistical mixtures described by density matrices 
p,. This idea then forces us to consider probability density functionals on the 
space  S(7L) of density matrices. 

5.3.1 Probability density functionals on state space 
We denote probability density functionals on the state space of density matrices 
by P = P[a], where a E S(R) is a density matrix. They characterize the statis-
tical properties of the random density matrix a. To construct the corresponding 
volume element we proceed in close analogy to the case of distributions P[0] on 
the Hilbert space R. 

Taking an orthonormal basis {On } in 74 we write the matrix representation 
of an operator a as 

CY = ElooGrnm,(0m.1- 
 (5.69) 

nm 

Next we decompose the matrix elements anm  into real and imaginary parts, 

Cfnm = Unm + iVntn • 

An appropriate volume element may now be defined by 

Do-  E II dun  dv .,.._ m,,,..... nm . 
n,m 

(5.70) 

(5.71) 

A functional F = F[a] can be considered as a multidimensional function F[a] = 
F[urim , vrim ] of the variables u, and v„ and we define the functional integra-
tion by means of 

f D a-F[u] = f II dunin dv nm  F[unin, Vnmi- 
n,m 

The corresponding Dirac density is given by 

6[a] = H 6 (u nn, )6( vnin ) - 
n,m 

(5.72) 

(5.73) 

A probability density functional on the space of density matrices is a non-
negative functional P = P[a] which vanishes if any of the following conditions 
are violated, 
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limn  = Unrn , Vrnn  = —Vnrn ,  (5.74) 

 

tr a = Eunn 1,  (5.75) 
n 

a > 0.  (5.76) 
The first condition ensures that only Hermitian matrices occur with non-zero 
probability and implies, in particular, that v, = 0. The second condition is the 
normalization condition for the random density matrix a, while the third condi-
tion requires that  P[a] must be identically zero outside the convex region defined 
by the positivity of a. Finally, the normalization condition for the probability 
density functional takes the form 

f Do-P[a] = 1.  (5.77) 

As for the volume element DODO* one can easily prove that the volume 
element Du is invariant under unitary transformations given by 

 

cr' = UaUt )  (5.78) 
where U is an unitary operator in R, i.e. that we have 

 

Da' = Du.  (5.79) 
In particular, this invariance implies that our definition (5.71) of Du does not 
depend on the basis {On  } chosen. 

The expectation value of some self-adjoint operator R which is obtained by 
measuring on a corresponding ensemble of the type Ep  is given by the first mo-
ment of P[a], 

(R) = f Da-P[a] tr {Ro-} .  (5.80) 

Consequently, the density matrix describing 4 takes the form, 

p = E(a) E f Da- P[a] a.  (5.81) 

Of course, the different types of variances defined in the preceding section can 
be introduced in an analogous way for density functionals P[a] on the space of 
density matrices. More precisely, we have again the decomposition (5.12) of the 
variance Var(R) into two variances Var i  (R) and Var2 (R), where now 

Var i  (R) = f Do- P[a] (tr {R2 o- } — [tr {Ra }?) ,  (5.82) 

and 
2 

Var2(R) = f Do- P[a] [tr {Ro }? — [f Da-P[a]tr {Ra}] .  (5.83) 

The physical interpretation and the measurement prescription for these quanti-
ties are analogous to those given in Section 5.1.1. 
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5.3.2 Description of selective quantum measurements 
As an example of the use of the probability density functionals P[a] we consider 
the selective measurement described by effects Fm  and operations ck,i  (see Sec-
tion 2.4.2). Performing such a measurement on an ensemble Ep described by the 
density P[a] yields a new ensemble Eip  which is described by the density Pqoa] 
given by 

cb
P10-1  f D o- P[a] tr {Fm o- } 6 [  in ()  

tr {4),72(0.)}  al. 
7 12, 

(5.84) 

Obviously, the new density functional is normalized in view of condition (2.148), 

f Do- '13 [0-1= E f Do-P[o-]tr  {Fm }  = f Do- P[a] = 1.  (5.85) 

On using the first representation theorem of quantum measurement theory (see 
eqns (2.157) and (2.158)) we can rewrite (5.84) as 

/[oi] E f Dap[a] tr {E n mt kt2mku}  Ek Q rrik a9mt  k  1=)  0-1 1 . 
in tr Ek  Qtmk Q niko- } 

(5.86) 

In the simplest case the index k in the last equation takes on a single value only. 
This situation occurs, for example, if one considers an indirect measurement 
with a quantum probe which is in a pure state initially. The last equation then 
simplifies to 

E f Do-P[a]tr {5-2Qm o- }6[  9"1°1"n 
rn  tr {545-2,,o- } 

(5.87) 

It follows from eqn (5.87) that a distribution P[0] of pure states transforms 
again into a distribution PTV] of pure states: If we perform the measurement on 
an ensemble in the state V), the new state conditioned on the outcome in  is given 
by = Qrn0/119?-n011• Thus we get the following relation between the initial 
and the final density functional on Hilbert space, 

= E f DoDo* Ipmo126   0/1 P[0].  (5.88) 
11 9rn0 

The above relations describe the change of a probability density functional 
induced by the selective measurement on ensembles of the type Ep. They consti-
tute the starting point for our derivation of quantum stochastic processes which 
will be presented in the next chapter. 
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STOCHASTIC DYNAMICS IN HILBERT SPACE 

A quantum master equation describes the dynamics of an open system by an 
equation of motion for its reduced density matrix PS  (t).  In the language of the 
previous chapter this provides the evolution of an Er-ensemble. On the other 
hand, Ep-ensembles are characterized through density functionals P[0] on the 
underlying Hilbert space. Drawing on the analogy to the theory of classical 
stochastic processes developed in Chapter 1, one could ask the question as to 
whether the unfolding in time of an Ep-ensemble may be formulated in terms 
of an appropriate dynamics for a time-dependent density functional P[O, t]. It 
will be shown in the present chapter that such a formulation is indeed possible. 
It leads to a stochastic process 0(t) in the open system's Hilbert space which 
reproduces the density matrix through its covariance matrix, that is through the 
expectation value ps (t) = 

This is the idea underlying the so-called unravelling of the master equation. 
Instead of representing the dynamics of an open system by a quantum master 
equation for its density matrix, it is formulated in terms of a stochastic process 
for the open system's wave function. The structure of the Lindblad generator 
for a quantum Markov process leads to a close relation between dynamical semi-
groups and piecewise deterministic processes in Hilbert space. This chapter gives 
a detailed account of this relation and of its physical interpretation and signifi-
cance. The theory will also be illustrated with a number of applications. 

The stochastic representation of quantum Markov processes already appeared 
in a fundamental paper by Davies (1969), and was applied by Srinivas and Davies 
(1981) to a derivation of the photocounting formula. While the theory was origi-
nally formulated in terms of a stochastic process for the reduced density matrix, it 
was recognized by Barchielli and Belavkin (1991), Dalibard, Castin and Molmer 
(1992) and by Dum, Zoller and Ritsch (1992) that it can be formulated also as 
a stochastic process for the state vector in the reduced system's Hilbert space 
and that it leads to efficient numerical simulation algorithms. At the same time, 
Carmichael (1993) developed the idea of the unravelling of the master equation 
in terms of an ensemble of quantum trajectories which are the realizations of the 
underlying stochastic process. 

The physical basis for the stochastic state vector evolution is provided by 
continuous measurement theory: The stochastic dynamics of an Sp-ensemble 
pertaining to an open system results from a continuous monitoring of certain 
observables of its environment. The process OM thus embodies the random 
changes of the state vector conditioned on the outcomes of this monitoring. 



60(x) 0(Y) = 

6 

6 

60* (x) 0(y) ----  O.  

(6.3) 

(6.4) 

6 

60(x) 0*(y) = 
6 
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Accordingly, different detection schemes yield different stochastic processes for 
the conditioned state vector, as was demonstrated by Wiseman and Milburn 
(1993a, 1993b). Microscopic derivations of various stochastic processes will be 
given in this chapter. 

6.1 Dynamical semigroups and PDPs in Hilbert space 

This section serves to introduce, on a formal mathematical level, the relation 
between dynamical semigroups and a certain class of piecewise deterministic 
processes in Hilbert space. We further discuss some important mathematical 
properties of this class of PDPs. The physical meaning of the stochastic repre-
sentation as well as its derivation from microscopic models are shown in the next 
section. Specific physical examples are investigated in Sections 6.3-6.7. 

6.1.1 Reduced system dynamics as a PDP 

6.1.1.1 Closed systems Let us first consider a closed system whose dynamics 
over the time interval from time t o  to time t is described by a unitary time-
evolution operator 

U(t, to) = exp [—iH(t — to)] ,  (6.1) 

where H denotes the Hamiltonian of the system. In order to construct the prob-
ability density P[», t] for the process OM describing the evolution of a corre-
sponding Ep-ensemble (see Chapter 5) we have to introduce an initial probabil-
ity distribution /30[0] which represents the state of the ensemble at time to . The 
probability density for 0(0 to take the value V) at time t is then given by 

P[11), t ] = f DOoDO8Po[005 [11) — U(t, to) 00] = Po[U-1 (t,to)0 ] . 
 (6.2) 

In the second equality we have made use of the definition (5.35) of the Dirac 
density in Hilbert space and of eqn (5.47). The above equation simply expresses 
the fact that any 00  drawn from the initial distribution Po  evolves according to 
the Schrödinger equation, that is the density at 1/) at time t is equal to the initial 
density at the corresponding initial value U-1  (t, to )'.  In the language of the 
theory of stochastic processes V) is a deterministic Markov process (see Section 
2.4.3) and the 6-function in (6.2) is nothing but the transition probability of the 
process. 

Equation (6.2) can be written in differential form. To this end we introduce 
the functional derivatives 6/60(x) and 6/60*(x) with the properties 
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FIG. 6.1. The unravelling of the master equation leads to a commutative di-
agram: Starting from P[O, to] one can either form the covariance matrix to 
get ps(to) and propagate with the help of the super-operator V(t, to) which 
represents the time evolution according to the master equation (6.7), or else 
one can first propagate the stochastic process to get P[O, t] and form the 
covariance matrix. Both ways lead to the same density matrix ps(t). 

If F[0(t)] is any functional of a time-dependent wave function the chain rule 
may be expressed in terms of the functional derivatives as follows 

6F d  ch  11)(x,t)  6F  1)*(x,t)1 = dt  x 5(  f d {0 x)  dt  60* (x)  dt  f •  
(6.5) 

With the help of these relations we immediately obtain from eqn (6.2) the dif-
ferential form 

6 —atp[o' t],  if  dx { 60(x) (H0)(x)  6.0* (x) (H0)* (x)} P[O,t].  (6.6) 

This is just the Liouville equation corresponding to the flow induced by the 
Schrödinger equation / -p(t) = — iH0(t). It is easy to check that (6.6) preserves 
the basic conditions (5.49), (5.50) and (5.51) required for a probability density 
functional on projective Hilbert space. 

6.1.1.2 Unravelling the quantum master equation Let us now turn to an open 
system S.  The dynamics of the density matrix ps(t) of S is assumed to be 
describable by a quantum dynamical semigroup satisfying a Markovian master 
equation in Lindblad form (see Section 3.2.2), 

d 
Ps(t) = — 41  I, Ps(t)] + Epyi (Aips(t)A ti  — Ati A i ps(t) — - ps(t)Ati A,) 

(6.7) 

Our aim is to demonstrate that the dynamics given by this equation can be 
represented as a piecewise deterministic process 11)(t) in the Hilbert space of the 
open system S in the following sense. The process will be defined through an 
appropriate time-evolution equation for its probability density functional P[5,  t]. 
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The density functional at time t is related to the density functional at time to 
 by 

-13 [0,t] = f DV -)D:O. 710,0,t01-13W),t01,  (6.8) 

where T [ b,q,t0 ] is the conditional transition probability of the process. The 
process 0(t) gives rise to a certain equation of motion for the covariance matrix 
which was defined in eqn (5.62) and will be written explicitly as follows, 

ps (x,x', t)  E  [(x, t)*  (z',  t)] =-- f DODO* P[O,t]0(x)11)* (x').  (6.9) 

The covariance matrix is identified with the density matrix ps(x, x', t) of  S.  The 
basic requirement is then that the expectation value (6.9) satisfies the Lindblad 
equation (6.7). Thus, the process OM reproduces the reduced system's density 
matrix through its covariance matrix, as is illustrated in Fig. 6.1. A process which 
satisfies this requirement is sometimes called unravelling of the master equation 
(Carmichael, 1993). 

6.1.1.3 The Liouville master equation As discussed in Section 1.5.1 a PDP 
may be defined in terms of a Liouville master equation for its probability density 
(Breuer and Petruccione, 1995a,  1995 b).  We consider here a Liouville master 
equation for a PDP in Hilbert space which takes the following form analogous 
to eqn (1.150), 

N P[O,t] = i f dx { 6.0(5(x) G(0)(x)  6.0*(5  (z) G()*  (x)}  P[5, t]  

+ f  {W[01V-)]P[V;,t] — W[010]P[O,t]}.  (6.10) 

The first term on the right-hand side provides the Liouville part. It represents 
the generator corresponding to the deterministic time-evolution equation 

 

—d  = —iG(0(0),  (6.11) dt 
where G(0) is a non-linear operator defined by 

 

G(0) =  + —2i  El'illAi011 20.  (6.12) 

The linear operator fi is given by 

H —  -yiAti  Ai .  (6.13) 2 

Thus, k consists of two parts, namely of the Hamiltonian H which appears in 
the Lindblad equation (6.7), and a non-Hermitian part which is defined in terms 
of the Lindblad operators A. 
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The jump part of eqn (6.10) (given by the second term on the right-hand 
side) describes the rate of change of  P[, t]  due to discontinuous jumps of the 
wave function. The gain term represents the total rate for all transitions from 
any state into the state 0, whereas the loss term gives the total rate for all 
transition leaving the state O. The corresponding transition rate is defined to be 

W[010 ] = E7illAv0112 6[
1Av011 
Aii7) 

 6.1.1.4 Deterministic evolution The periods of deterministic evolution of the 
process are given by eqn (6.11) which has the form of a non-linear Schrödinger 
equation. The formal solution corresponding to the normalized initial value 
0(0) = /7) can be written in terms of the non-Hermitian Hamiltonian fi as 
follows, 

(t)  _ gt (z);)  exp ( — if/0 

To prove this equation we differentiate it with respect to time, 

d  O(t) = — iftO(t)  —10(t)11e—mt11-2—dllet0112.  (6.16) 
dt  2  dt 

The time derivative of the norm is found to be 

d  - 

—dt ile —dit-b11 2  = 41eifitt (fit _ fi) 

= 

and, hence, 

11e - lktv3 2_  E'Yi(0(t)1Ati,Ai10(0). (6.18) 

Substituting this into eqn (6.16) immediately yields eqn (6.11). 
Equation (6.18) shows that the time evolution generated by H leads to a 

monotonic decrease of the norm of the wave function. The non-linear part of 
eqn (6.11) compensates this decrease, such that the full non-linear Schrödinger 
equation preserves the norm of the wave function. 

6.1.1.5 Jump process and waiting time distribution According to eqn (6.14) 
the total rate for transitions from a given state L to some other state is given by 

F [0]=  f D 5 DO * W[010] =  FrillAiV;112.  (6.19) 

Let us assume that the normalized state was reached through a jump at time 
t. Due to the continuous time evolution between the jumps, the total rate for 

(6.14) 

(6.15) 

(6.17) 



308  STOCHASTIC DYNAMICS IN HILBERT SPACE 

the next jump depends on the time T elapsed since time t.  With the help of the 
flow  ''(r)  gr()  defined in eqn (6.15) the time-dependent total transition rate 
may be written 

F[g4)] =Elii(O(T)1Ati Ail0(T)) = — Trci lnllexp(—ifir)'0112,  (6.20) 

where we have used eqn (6.18) in the second step. According to the general theory 
of PDPs (see Section 1.5) the distribution function for the random waiting time 
T is thus given by 

F[V, , 7-] = 1 — exp ( — j.  ds F[gs(V;)] = 1—  IlexP( — iii' '0'011 2 - 
o  

(6.21) 

This quantity yields the probability for the next jump to occur somewhere in 
the time interval [t,  t + T] . We see that the waiting time distribution is simply 
determined by the decrease of the norm of exp(—i1-/-  7- )0- , that is by the decrease 
of the norm of the state vector that obeys the linear part of the non-linear 
Schrödinger equation. 

Following our general discussion of the waiting time distribution function of 
PDPs in Section 1.5.2, we first note that the limit 

exp(—i f1411 2  q (6.22) 

exists and thus F[17),  oc] = 1 — q. The number q is the defect and satisfies 0 < 
q < 1. For vanishing defect it follows that F[', cc] = 1. This means that the 
next jump occurs with probability 1 in some finite time. However, if fi has a 
zero-mode it is possible that q > 0. In this case, the defect q is the probability 
that after time t no further jumps occur. A physical example will be given in 
Section 8.2. 

The quantity 147[010] (eqn 6.14) denotes the probability density per unit of 
time for a jump from 1-/) to 0. Since it is given by a discrete sum of functional 
6-functions we have a discrete set of possible transitions. Under the condition 
that the state just before the jump is given by /-/), the particular jump 

1/3  Ai  1/)  
(6.23) 

takes place with probability 

(6.24) 
pi  r[V3 ]  • 

Note that these probabilities sum up to 1, that is Ei pi = 1 by virtue of eqn 
(6.19). The transitions (6.23) will be referred to as quantum jumps. 
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FIG. 6.2. A single realization of the PDP for a one-dimensional harmonic oscil-
lator. The oscillator is coupled to a low-temperature heat bath and is driven 
by a time-dependent force. The picture shows Izi)(x, 01 2  as a function of z 
and t. The initial state is the ground state of the oscillator. In addition to 
smooth evolution periods, one observes the wave function performing sudden, 
discontinuous jumps. 

Again, one easily verifies that the Liouville master equation (6.10) preserves 
the basic conditions (5.49), (5.50) and (5.51). In particular, the conservation of 
the norm with probability one follows from the fact that both the deterministic 
evolution and the jumps preserve the norm of the wave function. The Liouville 
master equation thus defines a stochastic process in projective Hilbert space. 

As an example of a PDP in Hilbert space we show in Fig. 6.2 the square 
10(x, t)1 2  of a single realization of an unravelling of the master equation (3.307) 
for the damped harmonic oscillator discussed in Section 3.4.6. The jump opera-
tors are just the creation and annihilation operators a, at, and we have added a 
time-dependent force to the Hamiltonian part of the dynamics. 

6.1.1.6 Stochastic differential equation As we know from Section 1.5, a PDP 
defined by a Liouville master equation of the form (6.10) can also be formulated 
in terms of an equivalent stochastic differential equation. In the present case the 
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latter is given by (compare with eqn (1.197)) 

 

do(t) = _iG(0(0)dt E ( 10A ((tt)) 1  OM) dNi(t),  (6.25) 

where the Poisson increments dNi(t) satisfy 

 

dNi(t)dNi(t) = Si j dNi (t),  (6.26) 
E [dNi(t)] = Pyi Ai0(t)11 2 dt.  (6.27) 

This shows that the process Ni(t) counts the number of jumps of type i, i.e. 
the number of jumps (6.23) with Lindblad operator A.  The processes Ni(t) are 
inhomogeneous since the expectation values of the increments dNi(t) depend on 
time through the time-dependence of the state vector. 

6.1.1.7 Quantum master equation To prove that the PDP defined by the Li-
ouville master equation (6.10) indeed provides an unravelling of the quantum 
master equation (6.7) we have to derive the equation of motion governing the 
covariance matrix (6.9). On differentiating (6.9) with respect to time we find 

a  a  a —atps(x,xi,t)= f ati)D0*—
atP[0,t10(x**(x') E N ps .  (6.28) 

  

Here, we have decomposed the total rate of change of ps into the rate of change 
induced by the deterministic Liouvillean part and the rate of change induced by 
the jump part of (6.10). The first contribution is obtained from the first term on 
the right-hand side of (6.10), 

a 
—

at

ps  =  j f DO DO* f dy 1/) (x )* (x 1)  

  

x 606(y) G(0)(Y) 60*  (y) G(0) *  (Y)}  P{, t]  

=  f D'OD11)* {G() (x)5*  (x') — 11)(x)G* (0)(x`)} P[11), t]. (6.29) 

In the second step we have performed a functional integration by parts and used 
the properties (6.3), (6.4) of the functional derivatives. On substituting (6.12) 
we thus get 

=  (ftps _ psftt)  1 2 0(x)0 *  (x i  )] (6.30) 

   

Note that the expectation values on the right-hand side represent certain fourth-
order correlation functions of O. 
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With the help of the second term on the right-hand side of (6.10) the jump 
contribution to the rate of change of ps is found to be 

a 
—

at

ps  = f  f ND0.0(x)0* (xi) fivroAPro,t] - wtomPro,til 

 

(6.31) 

We insert (6.14) and carry out one of the two functional integrations in each 
term. This yields 

-y i A ipsA ti  —  -yiE Ai0 1 2 0(x)b *  (4] • 
J 

(6.32) 

  

If we now add eqns (6.30) and (6.32) we see that the contributions from the 
fourth-order correlation functions cancel each other and we are left with a closed 
equation for the covariance matrix. The latter is easily seen to take the form of 
the Lindblad equation (6.7), which concludes the proof. 

6.1.2 The Hilbert space path integral 
As for any PDP the propagator T[0,07), to ] can be represented in terms of a 
sum over all possible realizations of the process. An immediate adaptation of the 
formalism developed in Section 1.5.3 shows that this yields a path integral taken 
over all possible paths in the Hilbert space which connect the state 17) at time t o 

 with the state 0 at time t. Since the stochastic process is homogeneous in time 
we may set to  E- 0 without restriction in the following. 

To begin with, we write the Kolmogorov forward equation for the process as 
follows (compare with eqn (1.167)) 

T[0, 00, 0] = T (°)  [0, q, 0]  (6.33) 

+1 ds f D 1 DV4 f D 52DO;T0[O,Opi,s]T47 [01102]11 [02,s1V 1 0]. 

The physical interpretation of this equation is the same as the one given in 
Section 1.5.3. In particular, the quantity 

T (°) [0,0, 0] = ( 1- —  0,t]) (5 [0 — gt(01 
 

(6.34) 

is the contribution to the propagator from the path without jump, that is the 
contribution that stems from pure deterministic evolution. More generally, we 
write T( N) [0, t '0,0] for the contribution to the propagator which involves the 
paths with exactly N jumps. The full propagator can then be written as an 
expansion in the number of jumps as follows, 

CKD 

T[0,0,0] =  (6.35) 
N=0 
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The N-jump contributions satisfy the recursion relation 

 

T (N)  [11) , , 0] = f ds f D0113114 f D 
 (6.36) 

x T(0)  [0, OP], W [01 *2]T (N-1)  [02, 8117), 0] 

which holds for N > 1. It is convenient to introduce the non-unitary time-
evolution operator 

 

(t) = exp(—ikt).  (6.37) 

On using eqn (6.14) and 

tI ( t — s) 7h. To) [0, 01,  — s*111 26  [v)  — s)6111 ' 
(6.38) 

and carrying out the integration over 01 in eqn (6.36), we find that the recursion 
relation can be cast into the form 

0,0] = f ds f  DD*  -yi Û(t  — s)Ai0 1 2  

Û(t  — 

(I(t — s)A i 0  T(N— ) s 1 0, 

N-fold iteration of the recursion relation (6.39) finally leads to 

(6.39) 

T (N) p,t173, = 

'ON 

 

tN  t2 
f dt N  f  f E E E  (6.40) 
0  0  0  iN iN -1  ii 

t f# ,;  O t (t l  ; • • • ; tN, iN)  
X PNV, 1 1  ul; • • • ; tNI iN)S  

110t(ti/ii; • • • ; tNl iN)II] 

This relation can easily be verified by induction over N with the help of the 
recursion relation (6.36). The quantity 

(ti ,ii;... ; tNI iN) 
 

(6.41) 
= Û(t — tN )A iN  0(tN  —  . Û(t2 — t i )Ai t  0- (t i  )1:6 

is the state vector at time t conditioned on the following event: A quantum jump 
with jump operator A t , occurs at time t1, a jump with operator At, at time 
t2 ,  , a jump with operator AiN  at time tN , and no further jumps take place 
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in the time interval [0, t]. The corresponding probability density for this event, 
known as the multi-time exclusive probability, is given by 

PtAti,il; • • • ;  iN)  'YiN • • • 7i1110N(t1 il; • • • ;  N, iN)11 2  • 
 (6.42) 

According to eqn (6.40) the N-jump propagator is found by integrating the 
contributions from the OtN  over all jump times t 1 , t2 ,  , tN , and by a summation 
over all jump types ii, i2, • • • , iN• 

Substituting (6.40) into (6.35) yields the Hilbert space path integral (Breuer 
and Petruccione, 1996a). It must be emphasized that this path integral is entirely 
different from the Feynman—Vernon path integral that was introduced in Section 
3.6.4.2. The latter is a sum over paths in configuration space, each path being 
weighted by a complex factor given through an effective action functional. By 
contrast, the Hilbert space path integral is a sum over paths OM in Hilbert 
space, where each path contributes a real and positive weight factor which is 
just the probability of the path. It thus provides a mathematical formulation of 
Carmichael's idea of quantum trajectories (Carmichael, 1993) and of the Monte 
Carlo wave function method (Molmer, Castin and Dalibard, 1993; Dum et al., 
1992; Gardiner, Parkins and Zoller, 1992; Castin and Molmer, 1995; Ms/Amer and 
Castin, 1996) 

If we have only a single jump operator A with corresponding rate -yo  eqn 
(6.40) reduces to the simpler form 

T" ) ['/', 0, = 
t  tN  t2 

f dtN f dtN-1 • • • f 

o 
,tN) 

x p tN(ti, • • • ,tN)6[11) 
N tN(t1, ...  ,tN)11] 

(6.43) 

where 

OtN( ti, • .. , tN) = Û(t — tN)AÛ(tN —  — ti)AtI(ti)  (6.44) 

and 

PtN (ti,... ,tN ) = -Z1 10 tAt i ,  ,tN)11 2 .  (6A5) 

If we integrate T (N) [1», t, 0] over V) we get the probability pN (t) for exactly N 
quantum jumps in the time interval [0, t], 

t  tN  t2 

PN(t)= f dtN f dtN_1... f dtiP tN(ti, • • • ,tN)•  (6.46) 

These expressions will be used in the examples of the following sections to de-
termine the statistics of jump events. 
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6.1.3 Diffusion approximation 
Under certain conditions the diffusion limit of the Liouville master equation 
(6.10) exists and yields a Fokker—Planck equation for the probability density 
functional which, in turn, is equivalent to a stochastic Schrödinger-type equation. 
The diffusion limit of the PDP thus gives rise to an unravelling of the quantum 
master equation in terms of a diffusion process in Hilbert space. 

For the sake of simple notation we assume in the following that we have only 
one jump operator A with corresponding rate N. According to the general theory 
of stochastic processes a diffusion expansion of a given master equation can be 
performed if the size of the transitions among the states becomes arbitrarily small 
and if, at the same time, the number of transitions in any finite time interval 
becomes arbitrarily large. In order to formulate these conditions we introduce a 
small (dimensionless) parameter E and write the Lindblad operator as 

A=I+EC,  (6.47) 

where I denotes the identity operator and the operator C is independent of E. 
Our aim is to investigate the behaviour of the Liouville master equation (6.10) 
in the limit E 0. On using eqn (6.47) we obtain to second order in E 

and 

G(0) = IN — Pyci fi + E(ct + c) + E 2 ctc} 0 
i 

+ -2 'Yo 11 + E(C t  + C)  + E2(CtC)0 V) (6.48) 

W[1140] = 'Yo (1 + E(Ct ± C),i,- + E2 (CfC) ) W — '0 + EM(0) + 
(6.49) 

where we have introduced the abbreviation 

(o) v, E (010 1 4 
 

(6.50) 

and defined the non-linear operators 

M(0) E {C — 1  (Ct + C),/, } 0 ,  (6.51) 

1 N(0) E: — —2 { (CtC)v, — —3 (Ct ± Cg ± (Ct ± C)v,C} 4 z». (6.52) 

Inserting these expressions into the Liouville master equation we obtain to second 
order in E 
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NP[o,  f dx  (x) K  ()(x) 80 . (x)   K (V))* (x)} Pk! , 

62 
,y0 E2  f dx f dx /  {  (x)60  (x l ) M (0) (x) I (x' 

(6.53) 

(52 
+ 

(50* (x)  irk* (x')  
(52 

+ 2
So  (x) SO* (x')  

(x) M (0)* (x') P[O, 

This is a Fokker—Planck equation for the probability density functional. The 
non-linear drift operator K(0) takes the form 

K(0) =  + 70E {C - Ct  

±i-y0E 2  -
1

(Ct  C) /pC - 
8
-
1
(0 + 0 2  — —

1
CtC}  (6.54) 

2  2 

As can be seen from eqn (6.53) the diffusion part of the Fokker—Planck equation, 
involving the second-order functional derivatives, scales as NE 2 . Thus, in order 
to obtain a non-vanishing and finite diffusive contribution in the limit E 0, 
we assume that the E-dependence of the relaxation time -yo  reads 

'To = E 2  'TOI  (6.55) 

where is independent of E. On the other hand, the drift operator (6.54) contains 
a term which is proportional to Py0E = Fy0E -1 . This term diverges in the limit 
E 0 unless we impose the condition that the operator C is self-adjoint, that 
is C =  C. Using this condition we obtain for the drift operator 

 

K ()  =  H  +  i 0  (0C — —21  (C)  — —21 C2 }  (6.56) 

while the operator M(0) takes the form 

M(0) = (C (C)/p)  (6.57) 

With these expressions the Fokker—Planck equation (6.53) is equivalent to the 
following stochastic Schrödinger equation in Itô form, 

 

4(0 = —iK(0(t))dt + -I -yo M(tp(t))dW(t),  (6.58) 

where dW (t) is the increment of a real Wiener process. 
To get a well-defined diffusion limit we have assumed above that the jump 

operator is self-adjoint. Of course, it is possible to formulate other conditions and 
to perform a different expansion of the Liouville master equation. In particular, 
if we have several Lindblad operators the conditions leading to a diffusion limit 
may be different. A physical example will be discussed in Section 6.4.2. 
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(a) Unitary time evolution 

U(t, to ) 
100) minie••••m immineop. 0) 
00 ) min imimono. I 

U(t, to ) 

(b) Stochastic time evolution 

11(0, 0, ti(00,  \/, to] 

 

00)   10) 

 

100)  ‘,./. 

(01/1 10) 

2E [(01 A1 0)] 

FIG. 6.3. Determination of matrix elements of Heisenberg picture operators for 
(a) a closed system, and (b) for an open system. 

6.1.4 Multi - time correlation functions 
The representation of the dynamics of a Markovian quantum master equation in 
terms of a stochastic process in the underlying Hilbert space 14 can be generalized 
to lead also to a stochastic formulation of multi-time correlation functions (see 
Section 3.2.4). Here we show that this can be achieved by the construction of 
stochastic processes in a suitably enlarged Hilbert space, namely in the doubled 
Hilbert space I-1 e 1-I (Breuer, Kappler and Petruccione, 1997; Breuer, Kappler 
and Petruccione, 1998). 

6.1.4.1 Reduced Heisenberg picture operators According to Section 3.2.3 we 
can write the matrix elements of an arbitrary reduced Heisenberg picture oper-
ator A(t) (we suppress the index H) in the following way 

(001A(00o) = (OolVt(t,0)A100 ) = trf AV(t, 0)00(001/,  (6.59) 

where A is the corresponding Schrödinger picture operator at time t o  = 0 and 
V(t, 0) is the super-operator describing the time evolution according to the mas-
ter equation (6.7). Equation (6.59) can be interpreted in the following way. For 
the calculation of the matrix element (00 1A(t)100 ) start with the initial 'density 
matrix'100)(0 0 1 and propagate it up to the time t. Then calculate the expectation 
value of A with respect to the propagated 'density matrix'. However, 100(00 1 
is, in general, not a true density matrix for it is neither Hermitian nor positive. 
Thus, it cannot be characterized as the covariance matrix Eirti))(01] of a distri-
bution in the Hilbert space 1-1 of the open system. Hence a direct application of 
the stochastic unravelling developed in the preceding sections to the calculation 
of Heisenberg picture operators is not possible. 
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In a closed system where the time evolution of states is given through a uni-
tary evolution operator U(t, 0) we can calculate the matrix element (001A(t)Wo) 
in the following way (see Fig. 6.3): Propagate 00  and 00  independently to ob-
tain 0= U(t, 0)00  and //) = U(t, 0)00 , and evaluate the scalar product (AO). 
This suggests the following method for the determination of the matrix elements 
(6.59) for an open system: Instead of propagating independently the state vectors 
co E 7-t and 00  E R, we design a stochastic process 9(t) in the doubled Hilbert 
space, that is the direct sum 

171 =  (6.60) 

and use this process to propagate the normalized pair of state vectors 

(6.61) 

This is illustrated in Fig. 6.3. 
To formalize the idea we introduce the propagator T[0, t100 , to ] of the process 

0(t) in the doubled Hilbert space, where we write 

0(t)  

Again, it is assumed that the process is normalized, 

0(t) 1 2  = 110(011 2  + 110(0112 E-  (6.63) 

We can now formulate our basic definition as follows. The process OW is said to 
be a stochastic representation of the reduced Heisenberg picture if the condition 

(000(0100) =  2 f DODO* (0A101-7[0,t100,0]E 2E [(0(t)12410(t))1  (6.64) 

holds for all 00 , 00 , and for all operators A. Thus, once we have constructed such 
a process 0(0 we can determine any matrix element of the Heisenberg operator 
A(t) with the help of the expectation value of the quantity (0(t)1A10(t)). 

The question is now, how can we construct a process 9(t) which satisfies eqn 
(6.64)? To answer this question we consider the following master equation in the 
doubled Hilbert space, 

( t) =  75(0] +  -yi  — —21  ;lit ;I'd-J(0 — —21  j)(t)Ati  ,  (6.65) 

where the Hamiltonian and the Lindblad operators in the extended space are 
defined as 

_ H  _ Ai 0 
0 H) '  0 Ai ) • 

We take 0(t) to be an arbitrary unravelling of the master equation (6.65) in the 
doubled Hilbert space with the initial condition 0(0) = 00 . Thus, 0(t) may be, 

(6.66) 
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for example, a PDP of the type discussed in Section 6.1.1, or else a diffusion 
process of the type given in Section 6.1.3. We now claim that the process 8(t) 
is a stochastic representation of the reduced Heisenberg picture, that is it fulfils 
condition (6.64). Thus, any unravelling of the master equation in the doubled 
Hilbert space gives rise to a stochastic representation for the matrix elements of 
Heisenberg operators in the reduced space. 

To prove this claim we write the density matrix in 1-1 as follows, 

Fj(t)  =  i512 (t) 
) •  

(6.67) 
i521 (t) i522 (t)  

By assumption this is a solution of the extended master equation (6.65) corre-
sponding to the initial condition 

1  ( 10o ) (63 I 1 00) P-(0 ) = 1 00) (00  (6.68) 
100)(001 l'Oo)(00 ) 

By virtue of the block-diagonal structure of the operators (6.66) the master 
equation (6.65) yields four independent equations such that all components i5ii (t) 
separately solve the original master equation (6.7). In particular, i521 (t) solves 
this equation with the initial value 

Thus, we have 

1 
F)21 (0) =  (00 l• (6.69) 

-)621(t) = V (t, 0) (-21100)(001)  (6.70) 

and, hence, by virtue of (6.59) 

(0o IA(0100  2tr{ 24. -/521 (t)}.  (6.71) 

On the other hand, since OW is an unravelling of the master equation (6.65) 
with initial condition 0(0) = 80  we have 

-fi(t) = f DODO* 0)(01 110 , 3, 0i,  (6.72) 

and, consequently, 

-)521(t) = f DODO* 10) (01 17 [0 ,t100 , 

By inserting eqn (6.73) into eqn (6.71) we arrive at 

(00A(0 10o) = 2 f DODO* tr {A10 (01}T[ 0, t100 , 

=  2 f DODO* (01AMI[0 , tO o , 0], 

which concludes the proof. 

(6.73) 

(6.74) 



0(s) = 
110(s),C0(s)) 

  ( 0(s) 
1 COO) E R  

1 (6.76) 
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Thus we have shown that matrix elements of reduced Heisenberg picture 
operators are calculated correctly if the stochastic process in the doubled Hilbert 
space unravels the extended quantum master equation (6.65). It is important to 
note that the above proof does not rely on a specific unravelling of the quantum 
master equation (6.65). On the contrary, it is valid for any stochastic process the 
covariance matrix of which is governed by eqn (6.65). 

6.1.4.2 Multi - time correlations The process 0(t) in the doubled Hilbert space 
14 can now be used to construct a stochastic representation of multi-time cor-
relation functions. Consider for example the two-time correlation function (see 
eqn (3.86)) 

g(t,$) = (001-13(t)C(s)163),  (6.75) 

where t > s > 0 and we may assume, without restriction, that the initial state 
is a pure state. The stochastic process which represents this correlation function 
may then be defined by the following algorithm. 

1. Start in the state 00  at time t = 0 and use the stochastic time evolution 
in the Hilbert space 14 to obtain the stochastic wave function 0(s). 

2. Propagate the normalized state 

using the stochastic time evolution in the doubled Hilbert space 74 to obtain 
the normalized state vector 

0(t) =  q:,((tt)) )  e .  (6.77) 

3. The above correlation function is then obtained by computing the expec-
tation value 

g(t, s) = E [11(0(s), C0(s))11 2  (0(01B*(0)] • 

 (6.78) 

This scheme may be generalized to the treatment of arbitrary time-ordered 
multi-time correlation functions of the form (see eqn (3.87)) 

g(ti ...,tn; si,  sm) = (001131(si)... Bm(sm)Cn(tn).. Ci(ti)10o).  (6.79) 

We use the same notation as in Section 3.2.4, and define the Schrödinger opera-
tors (compare this definition with the one given in eqn (3.90)) 

F1 = I,  G1  = Ci , if ri = ti  0 83  for some i and all j, 
= Bti , Gi  = I, if ri= si  ti  for some j and all i,  (6.80) 

= Ci , if ri =ti = si  for some i and j. 

The multi-time correlation function is then obtained in the following way: 
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1. Start with the state 00  at time t = 0 and propagate it to time r 1  to obtain 
O (r1 ) with the help of the process in W. 

2. Employing the process in the doubled Hilbert space, propagate the state 

1  Fp b(r 0(ri) (6.81) 

(6.82) 

(6.83) 

(6.84) 

II (FiO(r  , G 

to obtain the state 

0(r2 ) = 

Then, jump to the state 

1 

O(ri))11  GiO(r1) 

(0(r2)) 
z )(r2) 

F20(r2) 0(7.2) = 
ll(F20(r2),G20(r2))1  G211)(r2) 

and propagate it to time 7-3 , and so on. 
3. Finally, the multi-time correlation is found from 

(F10(ri),G10( 7. 1)) 11 2  
(F20(r2), G21,1) (r2))11 2  (Fq -10(r —1) G  b (r q — 1 )) 11 2  

x (0(r 014 G q10 ( 1'0)] • 

It should be remarked that this algorithm enables the determination of corre-
lation functions of arbitrary order with the help of a stochastic process in the 
doubled Hilbert space. An example is shown in Fig. 6.5. 

We finally note that the algorithm developed above is related to the method 
proposed by Dum, Zoller and Ritsch (1992) (see also the discussion by Marte 
et al., 1993a, 1993b; Molmer and Castin, 1996). A further method has been 
proposed by Dalibard, Castin and Wilmer (1992). 

6.2 Stochastic representation of continuous measurements 

The stochastic unravelling of the quantum master equation introduced in the 
preceding section yields an intuitive physical picture which may be very helpful 
for the identification of the basic mechanism underlying the reduced system 
dynamics. This will be illustrated by means of a number of examples in  this  
and the next two chapters. The method also leads to an efficient tool for the 
numerical simulation of the open system's dynamics (see Chapter 7). 

However, it must be realized that the stochastic representation of a given 
master equation in terms of a PDP in Hilbert space is not unique. Suppose we are 
given a Lindblad equation with a certain Hamiltonian H and Lindblad operaton,  
Ai  with corresponding rates -yi . We may then transform to a new H',  and new 
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-yii  by any of the transformations given by eqns (3.72) and (3.73), without 
changing the Lindblad generator. However, the corresponding PDP does change, 
in general, under these transformations. For a precise physical interpretation and 
for a microscopic derivation of a unique process one therefore needs an additional 
input which does not enter the derivation of the corresponding quantum master 
equation. 

Thus, in this section we investigate the following question: What is the phys-
ical basis for the description of the reduced system dynamics in terms of a 
stochastic wave function OM, and can one give a microscopic derivation of such 
dynamics which is in agreement with the basic principles of quantum mechanics? 
It will be demonstrated that the theory of continuous measurements provides an 
appropriate framework to answer these questions, as was demonstrated by several 
authors (Barchielli and Belavkin, 1991; Hegerfeldt and Wilser, 1991; Wiseman 
and Milburn, 1993a, 19931); Breuer and Petruccione, 1997) (see also the review 
article by Plenio and Knight (1998) and the references cited therein). 

6.2.1 Stochastic time evolution of Ep-ensembles 
The physical situation studied here is similar to that of an indirect measurement 
scheme as already investigated in Section 2.4.6. Here, the quantum object, living 
in some Hilbert space 7-is, represents an open system whose evolution we wish 
to describe in terms of a stochastic wave function OM. The quantum object is 
coupled to another quantum mechanical system, the environment, whose Hilbert 
space is denoted by  7LB  The environment is continuously monitored by some 
measuring device. The environmental state thus acts as a quantum probe. The 
continuous monitoring of the latter yields certain information on the object sys-
tern which can be deduced from the correlations between the object and probe 
system. 

In Chapter 3 the dynamics of the reduced density matrix ps of the object 
system S was obtained from the density matrix p of the combined system by 
taking the partial trace over the degrees of freedom of the environment B. Fixing 
an orthonormal basis of state vectors (p a  in 7-1B we may write the reduced density 
matrix as 

Ps = trBP =E(40aPkoct). 
 (6.85) 

a 

The trace over the degrees of freedom of the environment can thus be viewed as a 
non-selective measurement of an environmental observable with eigenvectors (pa . 
In a non-selective measurement the information on the measurement outcomes is 
thrown away and the sub-ensembles conditioned on the measurement outcomes 
are re-mixed during the evolution. As a result the reduced density matrix ps 
does not depend on the basis cp a  , that is, it does not depend in any way on the 
measured observable of the environment. Therefore, the time development of Ps 
describes the unfolding of an ensemble of type Ep. 
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However, a time evolution for an ensemble of type ep is obtained if we de-
scribe the process on the selective level, that is, if we keep the information ob-
tained by the measurement record and if we take into account the splitting into 
the various sub-ensembles conditioned on it. This leads to a stochastic dynamics 
for the object system's wave function /P(t). Thus, the stochastic wave function dy-
namics describes the evolution on the level of an indirect, selective measurement 
which is performed on the environment and which leads to a stochastic back-
action on the state vector of the object system. This back-action has already been 
discussed in connection with the general scheme of an indirect measurement. In 
view of this picture it must be expected that an average over the realization of 
the process OM leads to the dynamics on the non-selective level, that is to the 
corresponding equation of motion for  Ps  (t). 

6.2.2 Short-time behaviour of the propagator 
To formulate these ideas in mathematical terms we take some initial time t o  and 
some later time t E to + 7- , where T > O. The conditional transition probability 
T[5, t/, to] of the process OM is defined through eqn (6.8). Suppose that at time 
t an ideal quantum measurement of a non-degenerate environmental observable 
with eigenvectors (pa  is carried out. The corresponding operation is then given 
by the operators (compare with eqn (2.211)) 

9a —= (Pal U ( t ) t0)100))  (6.86) 

where the environment is assumed to be in a pure state given by 00 , and U(t,  to )  
is the time-evolution operator of the combined system. 

The situation under study is the same as the one considered in the preceding 
chapter. In fact, on comparing eqn (5.88) with the definition (6.8) we immediately 
see that the conditional transition probability is given by the following exact 
expression, 

T[0 , 0--p, to ] , E llo„ ,-61126 [  9a°  01 
a  11 9aa 

This is the probability of finding after a complete orthogonal measurement of 
the environment at time t the reduced system in state V) under the condition 
that at time t o  the state 7,G was given. According to eqn (6.8) the probability 
density functional P[O, t] describes the ensemble of type Ep that results from the 
complete measurement on the environment at time t. The rôle of the operators SI, 
is to describe the operation corresponding to the back-action on the object system 
S induced by the measurement. Note that T is considered to be a conditional 
transition probability in projective Hilbert space. Namely, if P[O, to] is a phase-
invariant density functional, then the density functional P[O, t] according to eqn 
(6.8) is automatically phase invariant for a propagator of the form (6.87). This 
can be easily checked with the help of the invariance properties of the Dirac 

(6.87) 
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measure. It also follows from eqns (6.8) and (6.87) that the total probability for 
being in any state at time t is equal to 1, namely 

f D/PDV)* T [7/), OP, to] = 1,  (6.88) 

and that for t  to  only the probability of being in the initial state is different 
from zero, that is, 

lim T [O, t 11/), to ] = 6 [71)  gid • t— *to  
(6.89) 

In order to derive a PDP describing the continuous measurement one now 
has to invoke the Markov approximation. For a sufficiently small time increment 
T  (but still T » TB) the short-time behaviour for the conditional transition 
probability takes the general form pertaining to a PDP, namely 

T[I1), tIO , to ] = (1 — TF[]) [z-p — iTG(0) — 71)] + 7 - T47  [714].  (6.90) 

The strategy to derive the PDP is thus simply this: One first derives the short-
time behaviour of the conditional transition probability given by eqn (6.87) em-
ploying the Markov approximation. A comparison with the general structure 
(6.90) then yields the transition rate W[010] for the quantum jumps, as well as 
the generator G(0) for the deterministic pieces of the process. 

We close this section with a few remarks. Involving the variables of the envi-
ronment and the exact time-evolution operator U(t, to ), eqn (6.87) for the con-
ditional transition probability is an exact expression. However, in most physical 
applications one is interested in, the environment constitutes a system with a 
large (practically infinite) number of degrees of freedom with a quasi-continuous 
spectrum of frequencies, e.g. the continuum of modes of the electromagnetic 
field. In such cases, it is of course impossible in practice to design a measure-
ment scheme that corresponds to a complete and orthogonal decomposition of 
unity. However, as will be seen in the following examples, the Markov approxima-
tion enables one to decompose the conditional transition probability into a small 
number of terms that can be interpreted as the different alternative outcomes of 
an incomplete measurement scheme. The latter is easily realized physically since 
it corresponds to a resolution of the identity in terms of projection operators 
that project, in general, onto high-dimensional subspaces of 7-LB • 

The process defined by the short-time behaviour (6.90) of the conditional 
transition probability has to be interpreted as resulting from a continuous mea-
surement of the environment according to the measurement scheme that is de-
fined by the operators Q a . This interpretation is necessary because each applica-
tion of the infinitesimal generator of the process implies a state reduction which 
is fixed by the measurement scheme. Furthermore, it is clear that the term con-
tinuous has to be understood in the sense of a coarse graining in time which 
enables the Markovian approximation of the dynamics (compare the discussion 
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of the quantum Zeno effect in Section 3.5.1). It should also be clear that one 
uses at each time the assumption of (approximate) statistical independence of 
the system and environment. In other words, it is assumed that the probe is only 
weakly disturbed by the object system and that after each time interval of the 
order of T one can apply anew the short-time expression (6.90) for the propa-
gator. It should be clear that this assumption of weak disturbance can only be 
valid if the environmental state 00  is only weakly influenced by the measurement 
process. This condition is satisfied, for example, if the bath state is contained in 
the reduction basis (p a  that fixes the measurement scheme. The examples treated 
below are precisely of this type. 

Above, we have assumed the Markov process to be homogeneous in time 
since this is sufficient to treat the examples that will be given below. A non-
homogeneous Markov process can result if, for example, the reduced system is 
coupled to time-dependent external fields, or if the state of the environment 
depends on time through the time evolution generated by the bath Hamiltonian 
HB. For such a non-homogeneous Markov process the generator G as well as the 
transition rate W may depend explicitly on time. In the examples below we shall 
treat the case of time-dependent external fields. However, since the Hamiltonian 
will still be time independent in the interaction picture, the Markov processes 
are time homogeneous in that picture. Essential modifications occur, however. 
in the case of strong external fields (see Section 8.4). 

6.3 Direct photodetection 
As our first example we study in this section the driven two-level atom considered 
in Section 3.4.5. At .zero temperature eqn (3.271) yields the vacuum optical 
master equation 

d  ift 
—dt ps(t) = —2 [0-± o-_, p(t)]  (6.91) 

+-ro (a-Ps(t)a+ — -

2 

a+a–Ps(t) –2 Ps(t)a-Fa–) 

for the atomic density matrix PS  (t).  
The measurement scheme underlying the derivation of the PDP is the di-

rect, continuous detection of the fluorenscence photons emitted by the two-level 
source. Thus, the environment is provided by the radiation modes and the vac-
uum of the electromagnetic field acts as the probe state. The continuous mon-
itoring of the photons radiated gives rise to a stochastic process for the atomic 
state vector. 

6.3.1 Derivation of the PDP 
We write the Hamiltonian of the radiation field as follows, 

HB = Ewi b -,!bi ,  (6.921 
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where b 1  t. b • are the creation and annihilation operators of the field modes labelled 
3  3  

by j. The frequency of the mode j is denoted by wi . The interaction picture 
Hamiltonian Hi (t) takes the form 

Hi(t) = e iw° t o-+B(t) e -iw ° t o-  _ Bt (t)  L  (6.93) 

The first two terms describe the coupling of the atomic dipole moment to the 
radiation field, where 

B (t) = (6.94) 

and the kj  are coupling constants. The third term yields the interaction with 
the resonant driving field, 

St 
HL  - -2 (o-_ a+) . (6.95) 

Suppose that the photons of the modes bi  emitted by the atomic source are 
observed through direct detection by a photocounter. This means that the basis 
vectors (pa  must be taken to be the Fock states created by the operators bti  out 
of the field vacuum, 

(Pa E 
 (6.96) 

Here, the index a stands for a complete set {Ni
} 
 of occupation numbers of the 

modes bi In particular, we define the vacuum of the electromagnetic field 

 

(6.97) 

and the one-photon states 

E 1j) E bjt  1°) (6.98) 

The two-level atom constitutes the quantum object, while the electromagnetic 
field plays the rôle of the quantum probe. The pure probe state will be taken 
to be the vacuum state, that is, we set 00  = (po  E  O) .  This choice satisfies the 
requirement of weak disturbance, since the demolition measurement of the field 
quanta puts the electromagnetic field back into the vacuum state. 

Our task is now to derive the operators SI, which describe the operation for 
the detection of the photons. Employing second-order perturbation theory we 
have 

 

t  t i 

Ui(t, t o ) I —  i f  (ti) — f  f dt"Ill(e)H1(t"). 
t o  to  to 

and, hence, eqn (6.86) leads to 

(6.99) 



— 6a,0 + fa + gcx) 

—E(fifa,) 0 } + (fcva),, 
a' 
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(6.100) 

(6.101) 

(6.102) 

(6.103) 

where we have introduced the operators 

fa =  f de ( (pa  VI A t i ) 10), 
to 

t  t ' 

ga = — f f dt" ((p a  (e)H (0)10) . 

to  to 

For (pa  =  (vacuum state) this yields 

= 
and for cpa  = 1j) (one-photon state) we get 

t 

'; f fj = —.K;  dtici(w3—wo)ti  
a_ 

t o  

(6.104) 

(6.105) 

Note that fa  = 0 if (p a  is any N-photon state with N > 2. Thus, to second 
order we have to keep only the first-order term in  1l3  which corresponds to the 
projection onto the one-photon sector, and the second-order term in fto  which 
corresponds to the projection onto the field vacuum. This yields, on using eqns 
(6.100), (6.101), (6.104), and (6.105), 

and 

9./ = fig- ,  

HRI 17) 11 2  = 

cl 0 = / — iTHL + go, 

11 90` 3 2  = 1  412(a±a_4- 
3 

(6.106) 
(6.107) 

(6.1081 

(6.1091 

Equation (6.106) shows that ft i  is the product of two factors: The first one is f )  
which is simply the probability amplitude for the observation of a photon in the 
mode j; the second factor is the atomic lowering operator cr_ which represents 
the back-action on the object system conditioned on this observation. 



T[0,07), to] = NO, t3,  to] + T1[010,13  to ],  

To[0, t 0,to] = mo-b11 2 6 
11Q001 

where 
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Collecting these results we see that the conditional transition probability may 
be split into two parts 

and 

Top,o),toi = E 11Qp-b112,5 [ 1:3  a'-b-  
1.fd Ho-411 

(6.112) 

The factor h/ h1 under the argument of the (5-function is a pure phase factor. Re-
membering that the propagator represents a transition probability in projective 
Hilbert space, we see that this factor drops out if the propagator is convoluted 
with any phase-invariant density functional. Thus we can write 

Ti [0, orP, to] = (  E 1Q,i'0112 
i 1 10-- 01 1 

(6.113) 

This expression shows that the operation conditioned on the measurement of a 
photon does not depend on the mode j. The reason for this fact is, obviously, 
that S--ti  depends on j only through a scalar factor. Physically, this means that 
the back-action on the quantum object is the same for all field modes j. 

The decomposition (6.110) of the conditional transition probability corre-
sponds to two disjoint classical alternatives. T1  describes the detection of pre-
cisely one photon. The factor in front of the 6-functional in (6.113) is the prob-
ability for the detection of a photon, whereas the argument of the 6-functional 
shows that the state 

Gr_77) 
  = (phase factor) x 1g) (6. 1 14) 

is the new state of the atom conditioned on that measurement result. Note that 
this state is just the ground state 1g) of the two-level system, that is the detection 
of a photon puts the atom into the ground state. 

On the other hand, To  gives the contribution from no photodetection. The 
probability for this event is given by eqn (6.109) and the state of the reduced 
system conditioned on that result is given by 

Q00  
- • 11Q 0 011 

(6.115) 
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Next we perform the Markov approximation. Under the assumption that the 
electromagnetic field may be approximated by a continuum of field modes we 
obtain for  r»  1/wo from eqns (6.105) and (6.103) 

E  rrd, TN,  (6.116) 

1 
go — —2 7—You+ Gr— 

where we have neglected the Lamb shift, and 
+00 

-Yo = f dtezw 0t (01B(t)Bf (0)10) = 27rD(wo)1K(w0)1 2  
-CC 

is the atomic damping rate, D(w) being the density of field modes. 
Thus we have from eqn (6.116) and eqn (6.107) 

11Q.i112  T70(Gr+Gr_),z-,, 

3 

and from eqn (6.116) and eqn (6.109) 

11 90a2 1  — T-Yo(a+a—), 

and, hence, inserting (6.119) into (6.113) 

T1[0,07), to]  T -Yo(g+Gr — )  [ IkuT  1,--bV) 11  

From eqn (6.117) and eqn (6.100) we get 
1 

=  I  + fo + go rrz-,-' I  — iTHL —  

(6.117) 

(6.118) 

(6.122) 

(6.123) 

and therefore it follows with eqn (6.120) that 

o  {/ — iTHL — 'T`To Vf-Fa— (a+g—)4 't -P• 
QV)  1 

dçW11 
Thus, we find the contribution To  of no photodetection by inserting (6.120) and 
(6.123) into (6.111), 

To  [ b, tlz-P, to] rrz-,-' { 1  — TN (a+Gr—)il, 

1 x 6  —  —  — (g+a--)4}  d • 

If we finally add eqns (6.124) and (6.121) we obtain the short-time behaviour 
of the conditional transition probability T[0,0), to]. The latter is seen to be pre-
cisely of the general form (6.90) characteristic of a PDP in Hilbert space. In fact. 

(6.124) 
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from a comparison with (6.90) we infer that the generator of the deterministic 
evolution periods reads 

G(0) = fro +  H Gr_ 2  7/), 

with the non-Hermitian Hamiltonian 

I/ = HL — 
2 

The transition functional takes the form 

W[]= 'y0 2  
11g-011 

Accordingly, the corresponding Liouville master equation (6.10) describes a PDP 
with only one type of quantum jump 

=   

 

I la-011  
(6.128) 

which occur with a rate, i.e. probability per unit of time, which is given by 
N 1 2 . These jumps represent the back-action on the object system: Condi-
tioned on the detection of a photon, they put the atom into its ground state. 

Finally, the equivalent stochastic differential equation (see eqn (6.25)) now 
reads explicitly, 

d(t) =  (HL — -1-1 2°  — 1 ,7-0(t)11 2 1) (t)dt 

71)(0) dN(t),  (6.129) 

where, as usual, dN(t) 2  = dN(t) and E [dN(t)] = -Yo la— V) ( 011 2 dt. 
Following the reasoning of Section 6.1.1 we conclude that the PDP con-

structed above leads to a covariance matrix 

Ps(t) = E 00(0)(0(01) 
 

(6.130) 

which satisfies the Bloch equation (6.91) for the density matrix. As an ex-
ample we depict in Fig. 6.4 the simulation results for the stochastic quantity 
(0/0)(0(t) le). The figure shows the average of this quantity taken over a sam-
ple of many realizations of the PDP. The average provides a statistical estimate 
for the off-diagonal element (glps(t)le) = (o-+(t)) of the density matrix, as is 
demonstrated by a comparison with the solution of the Bloch equation. 

As a further example we show in Fig. 6.5 the results of a numerical simula-
tion of the stationary four-point correlation function (o-± o-± (T)o-_(T)o- _). This 
correlation has been estimated from a simulation of the corresponding stochastic 
process 0(t) in the doubled Hilbert space IC as explained in Section 6.1.4. 

(6.127) 
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FIG. 6.4. Simulation of the PDP for direct photodetection of a driven two-level 
system interacting with the field vacuum. The solid curve represents the 
imaginary part of the density matrix element (gdps(t)1e) = (o-± (t)) obtained 
from the analytical solution of the quantum master equation (see eqn (3.289)) 
for -yo gt = 0.1. The symbols give the average taken over an ensemble of 10 4  
realizations of the PDP. 

6.3.2 Path integral solution 
The Liouville master equation for the PDP of direct photodetection may be 
solved by means of the path integral technique of Section 6.1.2. 

Let us concentrate in the following on the underdamped case St > -y0 /2. 
and consider the special initial condition 0(0) = 1g). Using eqn (6.126) in the 
definition (6.37) we find 

= e--yot/4 cos pt — 711 sin pt  iZ sin pt -  
ie sin pt  cos pt + —7° sin pt LIA 

(6.131) 

where we haye introduced the parameter p which is defined by 

(6.132) 

With the help of eqns (6.21) and (6.131) the waiting time distribution function 
is easily found to be 
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FIG. 6.5. The correlation function (ci-± c)-± (7)a_ (7)0-_) for a driven two-level 
atom on resonance with Rabi frequency St = 10-yo . The figure shows the 
simulation results for a sample of 105  realizations of the PDP in the doubled 
Hilbert space (thin line and error bars), and the analytical solution (thick 
line). 

F[10, t1 = 1- 1101011 2  
-rd 

 -  1 -  e -0tl2  (1+ -8/7  sin-2   tit +'---,t(°  sin tit cos pt) . 

The corresponding density f(t) is given by 

d  7Q  f(t) E -dt F{19),ti = 70  0  0211u-0(01 11 2  =  e-7ot/2 sin 2  pt. 4112  

(6.133) 

(6.134) 

These are the expressions for the waiting time distribution for direct photode-
tection of resonance fluorescence (Carmichael et al., 1989). Note the oscillating 
behaviour of the density f(t), as shown in Figs. 6.6 and 6.7. The comparison 
with the corresponding exponential distribution shows that the probability of 
small waiting times is strongly suppressed. This is obviously due to the fact that 
the atom is in the ground state immediately after a quantum jump. It therefore 
takes some time to get excited again with appreciable probability and to be able 
to emit another photon. 

Let us investigate the path integral representation (6.43) for the N-jump 
contribution to the propagator. First, we infer from eqn (6.44) that 
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FIG. 6.6. Plots of the density f (t) of the waiting time distribution according 
to eqn (6.134) with  'yo/ 1  = 0.1 (solid curve), and of the corresponding den- 
sity for an exponential waiting time distribution with the same mean value 
(dashed curve). 

ON (t 1 , —  - , tN)  Û (t — tN)19)  
kb tN(tl, . - . , tN)ll  HO (t — tN)19)11 

apart from an irrelevant phase factor. Moreover, eqn (6.45) gives the multi-time 
exclusive probabilities 

PtN(ti, t2 , - - - , tN) = PO (t — tN)f(tN — tN-1) • • • f (t2 — h.) f (ti),  (6.136) 

where f (t) is given by eqn (6.134) and 

po (0 = 1 — F[1g) , t] = HO (t)1011 2  (6.137) 

denotes the no-jump probability, that is the probability that no count is observed 
in the time interval [0, t]. Thus, with the help of eqn (6.43) we find the following 
compact form for the full propagator 

T[Olt19)10] = po (t)6 [0  
U(t)g) 

 1  (6.138) 
11U(t)Ign 

± E f dtN f dtN_, .. . f dtiPtN(ti. , - - - ,tN)6 k  ,, HU (t — t AO 
0 (t — tN)Ig)  I co 

N=1 0  0  0 

(6.135) 
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, 

and 

f () = f dt exp( — At) f (t), 
o 

(6.140) 
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FIG. 6.7. The same as Fig. 6.6 but for -yo /ft = 1. 

It is evident from these formulae that the complete statistics of the counting 
events can by reconstructed from the exclusive probabilities pt (t 1  ,t2,... ,tN). In 
particular the probability of N counts in the interval [0, t] may be found from 
eqn (6.46). If we introduce the Laplace transformed quantities 

fiN (A) = 
00 

f dt exp( — At)p N (t), 
o 

(6.139) 

eqn (6.46) together with (6.136) leads to 

= 1  if(A)  [] N  ,  (6.141) 

where we have used the fact that the Laplace transform of the no-counting 
probability is given by (see eqn (6.137)) 

/50(A) = 1  (1 — 1(A)) .  (6.142) 
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FIG. 6.8. The probability p N (t) for N photon counts in the time interval [0, t] for 
the driven two-level system. The figure shows the simulation results obtained 
from an ensemble of 10 3  realizations of the PDP for direct photodetection 
(histogram). The solid line represents the Poisson distribution with the same 
mean value as p N (t) . Parameter: -y0/S2 = 1 and St t = 50. 

The Laplace transform of the density f may be found with the help of (6.134), 

J(À) =  
--- 70Q2  (6.143) 

where we have introduced the abbreviation A = A + -y0/2. Thus, the Laplace 
transform of the probability p N (t) can be written as 

(1,yos-2 2)N [v ± .i.,_yoA  ± s-22] 
fiN (A) =  2  (6.144) 

[A (A 2  + (2p)2)] N+1  ' 

This is the photocounting formula for direct photodetection of flourescence ra-
diation derived by Mollow (1968, 1969, 1975). 

Figure 6.8 shows the photocounting probability p N (t) for a fixed time t as a 
function of N. The picture has been obtained from a numerical simulation of the 
PDP by counting the number of quantum jumps in a sample of realizations of 
the process. The picture also shows the corresponding Poisson distribution with 
the same mean value. The sub-Poissonian character of p N (t) is clearly visible. It 
may be characterized with the help of the Mandel Q paramter defined by 
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FIG. 6.9. Experimental setup of homodyne photodetection. The source is a 
two-level atom with frequency coo  which is driven by an external interac-
tion HO). The light emitted by the source (modes bi ) traverses a beam 
splitter and is detected at detectors D I  and  D2.  The emitted light interferes 
with the light field from the local oscillator (modes ei ). The detectors register 
the quanta of the modes ch i  and d2i  defined in the text. 

Var(N(t))  
Q =  1. 

(N (t)) 
(6.145) 

For a Poisson distribution we have Q = 0, while Q < 0 characterizes a sub-
Poissonian distribution. For the simulation shown in the figure the Mandel Q 
parameter was found to be Q R.,- —0.69 which is in good agreement with the 
analytical result (Mandel and Wolf, 1995). 

The sub-Poissonian character may be understood from the waiting time dis-
tribution shown in Fig. 6.7 for the same parameters. The density f(t) for the 
PDP exhibits a pronounced bump such that the variance of the random waiting 
time is less than that of the corresponding exponential distribution. In particular, 
the photon emission events exhibit a strong antibunching effect. The distribution 
pN(t) of the photon counts is therefore sharper than the corresponding Poisson 
distribution which would be obtained from an exponential waiting time distri-
bution. 

6.4 Homo dyne photo detection 

As a second example we consider in this section a driven two-level atom whose 
emitted light is detected by homodyne photodetection (Walls and Milburn, 1994; 
Wiseman and Milburn, 1993a, 1993b). A schematic picture of the setup is shown 
in Fig. 6.9. 
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6.4.1 Derivation of the PDP for homodyne detection 
The Hamiltonian HB of the environment is taken to be 

HB = E wi bti bj  E wj  ci  ci .  (6.146) 

Again, the bi -modes are the radiation modes that couple directly to the atom. 
Furthermore, we have added a term that contains the modes e3  of the local 
oscillator whose light interferes with the radiation emitted by the atom. We take 
into account the presence of the local oscillator by a coherent driving of the 
ci -modes. The interaction picture Hamiltonian now takes the following form, 

Hi (t) = e -iw° t o-  _Bt (t) + e iwc'to-± B(t) + Oe-iw°tCt  + 0* eiw° t C(t) + HL, 
(6.147) 

where HL is defined in (6.95) and B(t) is given by (6.94). The quantity j3 repre-
sents the amplitude of the local oscillator field and 

= 
 E

_tw•t Ki e 3  Ci (6.148) 

As for direct photodetection, the electromagnetic field serves as the quantum 
probe, the pure probe state being the field vacuum Oc, = 1 0). 

The crucial point of the derivation of the stochastic process for homodyne 
photodetection is the correct choice of the basis (pa  in the reduction formula. 
What is measured at the detectors D I  and D2 (see Fig. 6.9) is the superposition 
of the light emitted from the atom and the light of the local oscillator. Under 
the assumption that the beam splitter has transmittivity and including a 
phase shift of r/2, the field quanta that are detected at D 1  and D2 are defined, 
respectively, by the annihilation operators 

1 
d  =  (b• + ic•) 1,3  3  ici),  

1 d2,, =  (bi  — 

(6.149) 

(6.150) 

Note that these operators satisfy the usual boson commutation relations 

= 5kki 5jj' 
 (6.151) 

where the index k = 1,2 labels the two detectors D I  and D2. Thus, d 3  

be interpreted as the creation operator for a photon in mode j at detector  Dk• 
Consequently, we take as the basis (pa  the Fock basis which is generated by the 
creation operators d out of the field vacuum, that is, we write 

(Pa = 1{ 1\71 1) } ; {N1 2) } ).  (6.152) 
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The index a now represents two sets of occupation numbers: {e) } is the set 
of occupation numbers of the dk J .-modes, where k = 1, 2. In particular, we have 
two types of one-photon states given by 

E ik, i) d10), (Pk,i  k = 1, 2.  (6.153) 

We can now proceed in close analogy to Section 6.3. The first step is to 
determine the operators ft c, which yield the operation corresponding to the mea-
surement scheme. These operators are given by eqn (6.86), where for the states 
'Pa  expression (6.152) must be used. We shall use again the definitions (6.102) 
and (6.103) for the operators fa  and ga . We then find that for the vacuum state 
fo = —iTHL. For a one-photon state (Pa 

, 

fk,3 = —i f deciwot i 

to 

{(kilBt(ti)p)a_ + (k,  (t 1 )1 0)0} (6.154) 

The matrix elements in the above equation are easily calculated to be 

jiBt (t` )10) =  ,  (6.155) 

= ik,i), however, we have 

and 

(k,  (t 1 )10) –  1  e eiwit' 
'4 3  (6.156) 

where we use the convention that the upper sign corresponds to k = 1 and the 
lower sign to k = 2. Hence we obtain 

==h07-  (6.157) 

where 

E — de e 
3 

to 

-w0)t' (6.158) 

On using these results we can decompose the conditional transition proba-
bility into three parts as follows 

T[0, 0, to ] = TO[O,  tO1 T1[O, 01411 ± T2[0, til-P1t01 , 
 (6.159) 

where 
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Tokb, 0- , to] = 11 90 1-P11 26  [ 11 9901 11  01 

Ti[lp,tk-b,to] = 
 II 91,j0 2) 

T2[0, tki, , to] = (E11 92,11 2) 

The factors in front of the 6-functions are given by 

imo/A2 = 1 — 

(6.160) 

(6.161) 

(6.162) 

(6.163) 

[11((cru-- ++ ii/30 ))011 

6 [  (u_ -  
[I1(a- 

k,j 

EII1i,jII =  = E 1.61 2 ((a_ + ifi) t (Gr- + ifi))7„ (6.164) 

Elp2,i112 =  = E  _ is) t(c,_ _  (6.165) 
3 

The above decomposition of T into three terms expresses three classically dis- 
joint alternatives. Either no photon is detected (contribution To), or a photon 
is detected at D 1  (contribution T1 ), or a photon is detected at D2 (contribution 
T2 

In the Markov approximation we find in the same way as in the previous 
section that 

Thus we get 

Qoi4  
11 9011 

1 
{i - iTHL - -2 77o (a+a-  

E fi I 2  r''j 770 

and, therefore, 

E  ii3 ) t (Gr-± 0)4, 

IIoii 2 rrz,- 1 —  r o  {(cr±g_),ÇT + 

Moreover, we have 

1  r  
go 2 770 ig-Fa- +101 2 1 

(6.166) 

(6.167) 

(6.168) 

(6.169) 

(6.170) 

Note that the terms involving 1012  cancel each other and that we therefore find 
the same expression (6.123) as in the previous section. 
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Summarizing these results, we finally obtain 

Tokblik-p,toi = {1 — r-ro [11a-11 2  + IsIl }  
xs [{I — iTHL  — - -/--yo (cr+ o- _ -  

Ti  [0,tk- >to] = 'T-yoll(Gr_ + is)cP112 6r  (a- ± ifi)'-'  01, LII(g- +i/3)J11 

T2[0,G,t0] = y-roii(Gr- — is)-bil2(5 [11( Gru  - — ii)6 )2iI1  d 

(6.171) 

(6.172) 

(6.173) 

We add these three contributions to get the short-time behaviour of the propa-
gator and compare with the general form (6.90). This shows that the generator 
G(0) for the deterministic evolution periods of the PDP is of the same form as 
in eqn (6.125). However, the transition functional is now given by 

T47[01/-P] = l'011(0-- + ifi)-b1126 
[ii((gor- 

+i 

+ ii)310 ))11  d 

 

+ -1 'Yoli(a-- - ifi)' -bii 2 (5  r  (Gr- 01 . 
2 L - 0)01i j 

The Liouville master equation thus describes a piecewise deterministic process 
with two types of quantum jump, corresponding to the detection of photons at 
DI  or D2, 

(g- 1  ifi) -b  1-yoll(o-_ ± iSi6 11 2 . 
ii(g- 1  i0)011  2 

The deterministic pieces of the PDP are obtained from the same differential 
equation as for direct photodetection. 

The equivalent stochastic differential equation for the PDP describing homo-
dyne detection takes the form 

d(t) = -i (f/ + i'llia_0(t)11 2) 0 (t)dt  (6.176) 

(  (a- ± OM) dNi(t) + ( (a- - 'OM) dN2 (t). + 
\ii(a- ± 0*(t)ii  1 g- - i0)0(t)ii 

The processes Nk(t) count the events at detector Dk and satisfy 

dNk (t)dNk, (t) = (5kk, dNk (t),  (6.177) 
and 

E[dNi(t)] = 1.11(0-- + 0)0(011 2 dt, E[dN2(t)] = 22 11( 0- - - i0)0(011 2 dt. 
(6.178) 

(6.174) 

(6.175) 
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FIG. 6.10. Diffusion on the surface of the Bloch sphere. The picture shows a 
single realization of the random Bloch vector 11(0 = (0(t) 16- 111)(t)) for the pro-
cess OM given by the stochastic Schrödinger equation (6.181). Parameters: 

0.1 and  0=  0. 

6.4.2 Stochastic Schrödinger equation 
The PDP for homodyne photodetection yields a certain stochastic Schrödinger 
equation in the diffusion limit. To derive it we write 

i3 = iifileia 
 

(6.179) 

and investigate the limit E E VIA -* 0 of a strongly excited local oscillator. 
This can easily be done by invoking the results of Section 6.1.3 on the diffusion 
limit of the Liouville master equation. We first observe that, instead of u_ ± ifi, 
we may use the two jump operators 

I ±  EC E I ±  5 e -ie  o-  -,  (6.180) 

if we scale the damping constant by a factor of 01 2 , that is if we replace 70 —* 
'Yo1012. Then we have a situation which is similar to the one discussed in Section 
6.1.3, where, however, we now have two jump operators. Since C E exp(-i9)o-_ 
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FIG. 6.11. 103  realizations of the random Bloch vector 17(t) =  
plotted at three fixed times given by Qt = 1.5 (dots), Ot = 3.0 (crosses), and 
Ot = 4.5 (stars). All trajectories started out at the south pole of the sphere, 
Parameters: -yo /O = 0.1 and 60  --= 0. 

appears with a positive and with a negative sign, the linear part (in e) of the 
drift generator (6.54) of the Fokker—Planck equation drops out and a well-defined 
diffusion limit is obtained without restriction on C. 

The resulting stochastic Schrödinger equation for homodyning, first derived 
by Wiseman and Milburn (1993a, 1993b) and by Carmichael (1993), may be 
written as follows, 

d(t) = —i,K(0(t))dt + Ar-W1 M(0(t))dW(t),  (6.181) 

where dW(t) is a real Wiener increment. The drift operator K(0) reads 

K(0) = Ha + il- {(C + CC  — Ct C — 1±1 (C + C1 ) 20 } 0,  (6.182) 

while the noise term is given by 

1 
M() , { c - -2 (C +00} 0, (6.183) 
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By construction, the stochastic Schrödinger equation (6.181) exactly conserves 
the norm of the wave function. It leads to a stochastic differential equation for 
the random Bloch vector 

6(0 = (0(01 610 (0),  (6.184) 

describing a diffusion process on the surface of the Bloch sphere. A single real-
ization of this process is depicted in Fig. 6,10. We observe that the noise induced 
by the homodyne measurement scheme drives the Bloch vector out of the plane 
defined by y1 = 0, Satisfying the Bloch equation, the expectation of e(t), how-
ever, remains in this plane as illustrated in Fig. 6.11 which shows the evolution 
of an ensemble of realizations. 

6.5 Heterodyne photodetection 
The measurement scheme for heterodyne photodetection is the same as that for 
homodyne detection, the only difference being that the frequency of the local 
oscillator is detuned from the system's frequency wo . In the notation of the 
previous section this means that we have to replace the amplitude of the local 
oscillator fi by 

fit  = 0 exp(-iOt),  (6.185) 

where 0 is the finite detuning of the local oscillator (not to be confused with the 
Rabi frequency). 

6.5.1 Stochastic Schrödinger equation 
We perform this replacement directly in the stochastic Schrödinger equation 
(6.181) for homodyne detection, which yields the drift operator 

K(0) =  HL  O -  i  - (e -24 "9-ç2t) u- + u+)00" 
 

(6.186) 

_L _1 

i\
fi,

u
, \ 2 , -- 240 — Qt) ± (0.420e 2i(O — C2t) ± 2(u  )0  (a+  ) 01 } 0,  

m  4  i '° 

while the noise term becomes 

M(0) - {e -i("w) o- - 1  (e -m) o-_ + ei(0-42t) o-± ) v, 0. (6,187) 

Following Wiseman and Milburn we assume that the detuning is much higher 
than the system's characteristic damping rate which is of the same order as the 
interaction strength with the driving field, i.e. we assume 

(6,188) 

Hence, we may consider a time interval At such that I2 At » 1 but  'Yo  At < 1. 
Now we integrate eqn (6,181) with (6.186) and (6,187) over the interval At, and 



HETERODYNE PHOTODETECTION  343 

neglect terms of second order in -yo At. We consider the drift and the diffusion 
terms separately. The integration of the drift term leads to 

t+At 
f dSK(0) 
 

(6.189) 

= HI*At - ill)  a a-  At - tf+Atds(e -2i(6-118) o-  ) 0 cy_ - t+Atds(0-±),0"_ 
2  ± - 

{ 
t  t 

td-At  t+At 
1  

- 
/5+ ,2 240—Os)1 ± _1  f ds( s[(o-_) 20 e  + k hpe  cr—)0( 0-40 1/5  ±  f d 4  2 

Since the first and the third time integral in this expression are of order -yo /O 
they can be omitted since by assumption It » 70 . So we are left with 

t+At 

f dSK(0) = [Ha —  i 1 (0-±a_ — (0"± )00-_  (0- (0"± ),0) 0] At. 

(6.190) 

Accordingly, the integration of the noise term leads to 

t+At  t+At 

f M(tP)dW(S) = f dW (s)e — i (Û—Ç2s) cr_O 
 

(6.191) 

t+At 

f dW (s)(e — ' ("s) a_  

Introducing the two quadratures 

X 0  E. —

1 (e ° a_ + io 
2 

170  E —2  ( o-±  —  o-_) , 

(6.192) 

(6.193) 

we can write 

t+At  t+At 

f M()dW(S) = f dW (s) cos(0s) { C' 9  cr_ — (X0)0} 0  (6.194) 

id-At 

f dW(S)sin(0,3)  07,94} 
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The integrals occurring in the above equation suggest we define two new Gaussian 
variables 

t+At 
8W(t) E N7.-  f dW (s) cos(0s), 

, 

t+At 
8W(t) E  — V  dW (s) sin(f2,9). 

t 

It is easy to show that to zeroth order in Sr i , 8147x  and  8W y  have zero mean 
and satisfy (Wiseman, 1994) 

E [8Wq (t)(5W q, (e)] = 8q , q 1 (At - It - el)0(At - It - el),  (6.197) 

where q and q' stand for x and y and e denotes the Heaviside step function. When 
taking the continuum limit -y0 /0 0 the quantity At is infinitesimal on the 
system's time scale, i.e. At —> dt , so  8W q  (t) can be regarded as an infinitesimal 
Wiener increment dW q (t) satisfying 

dT47 q (t)dW q i (e) = 8q , q ,  dt.  (6.198) 

For the averaged noise contribution (6.194) we may therefore make the replace-
ment 

t+At 
1  . 

f MetP)dW(s)  — { e-i°  a _ - ( (,9),p 1 OdW x (t) 
t 

(6.199) 

1 ±  — {-ie -i°  o-_ - (Ye) 0 } OdWy(t)- - 
Summing up the results obtained so far the stochastic Schrödinger equation 

pertaining to heterodyne detection reads 

1 4)(0 = -41-ladt - _ -  @+ )a-  + -
2 

(a_ )0 (o-+)) 0 dt  (6.200) 2 
eyo  . + V = 

 
(e °  a_ - (X 0 ) 0 ) OdWx (t) - \17°  (ie- i°  o-_ + (Y0 ),p)odwy (t), 

2  2 

As is easy to verify this equation is norm preserving. It is also straightforward 
to check that it is equivalent to the following stochastic equation for the unnor-
malized wave function 

cirCb = {-iHL - lo-± a_ + -yo (o-±  ) o u_ } Odt + NrfoCT_OdW(t),  (6.201) 

where  d'/3 is the increment of the unnormalized wave function and dW (t) is the 
differential of a complex Wiener process 
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dW(t) :_--7_ —
1 

(dWx (t) – idWy (t)).  (6.202) 
V2F-7  

Note, that the right-hand side of eqn (6.201) involves the normalized wave func-
tion 0 (t). 

The examples considered in the present and the previous sections clearly 
illustrate the general concept behind the stochastic representation of continuous 
measurements. As we have discussed already the stochastic state vector describes 
the dynamics of an ensemble of type Ep for the object system, namely the atomic 
source. The output light field is observed by different detection schemes which, 
consequently, yield different stochastic processes for the atomic wave function: 
Information on the quantum object is extracted in different ways by monitoring 
the environment and, thus, also the back-action on the object turns out to be 
different. On the other hand, the evolution of the corresponding ensemble of type 
Ep  is given, in all cases considered above, by one and the same density matrix 
equation, namely by the vacuum optical master equation (6.91). This reflects 
the fact that in all cases we have the same local coupling between atom and 
radiation field. 

6.5.2 Stochastic collapse models 
It might be important to mention at this point that stochastic Schrödinger equa-
tions of the type of eqns (6.181) and (6.200) have been proposed, in an entirely 
different physical context, by Pearle (1976, 1989), Ghirardi, Rimini and Weber 
(1986), Ghirardi, Pearle and Rimini (1990), Gisin (1984, 1989), and by Gisin and 
Percival (1992, 1993). Namely, these authors suggest modifying the Schrödinger 
equation on a fundamental level by the addition of non-linear and stochastic 
terms. Various models have been proposed, such as the continuous spontaneous 
localization model (eqn 6.181) and the quantum state diffusion model. The aim 
is to explain the non-existence of the superposition of certain macroscopically 
distinct states. The random terms in the Schrödinger equation lead to a dy-
namical destruction of such superpositions in a way that macroscopic objects 
are practically always in definite localized states. In these theories the destruc-
tion of superpositions is a real process going on in physical space and time. It 
is not, as in environment-induced decoherence, a result of the tracing over an 
external world that became entangled with an open system. Thus, the funda-
mental modifications of quantum mechanics based on random Schrödinger-type 
equations provide dynamical collapse models in which the stochastic state vector 
describes an individual quantum system and enables some kind of macro-realistic 
interpretation. 

Stochastic collapse theories of this kind are not the interpretation followed 
here. As discussed in Chapter 5 stochastic Schrödinger equations of the form 
derived above admit a clear interpretation as the evolution of an Ep-ensemble. 
Nevertheless, it might be instructive to show that a stochastic Schrödinger equa-
tion of the type suggested in the quantum state diffusion model, which was de-
veloped by Gisin and Percival (Percival, 1998), can be derived from eqn (6.200) 
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by an appropriate phase transformation. 
We begin by noting that eqn (6.200) can be rewritten with the help of the 

complex Wiener differential as 

do(t) . — iHL odt —  (Ct C — ( Ct )0 C + ( C)0 (00) 0dt 

+.\/-)T, (C — (C)0)0dW(t) 
\F—To + —2 

((C)odW(t) — (Ct) o dW*(t)) 0, (6.203) 

where we again use C ,_=_ exp(-0)o-_. The first noise term in this equation is 
already of the form of the noise term in the stochastic Schrödinger equation 
proposed in quantum state diffusion (see below). Therefore, we will now try to 
eliminate the second noise term with the help of an appropriate phase transfor-
mation. To this end, we try the ansatz 

(t) --,-- exp[iço(t)]0(t)  (6.204) 

with the stochastic phase 

t 
i 

(PM -= —V5T) f [(C)0(ti)dW(t i ) — (0 )0(t9c/W * (t/ )] - 2  0  
(6.205) 

Since the phase is a real random number the phase transformation preserves the 
norm of the wave function and leaves unchanged the expression for the density 
matrix. We now determine the stochastic Schrödinger equation governing the 
dynamics of zi) using the rules of the Itô calculus. 

Following our previous discussion the differential of the phase is 

i 
4)(0 --= — Nfr—Yo ((C) oodW (t) — ( 0 )0(t)dW *  (t)) - 2 

(6.206) 

Accordingly, the differential of the transformed wave function '/' is given by 

d't" (t) _,--- exp[iv(t + dt)]0(t + dt) — exp[iso(t)]0(t) 
--, exp[i(v(t) + dso(t))](0(t) + &NO) — exp[io(t)]0(t) 
--= exp[îo(t)] lexp[idv(t)](0(t) + th/'(t)) — OW}  (6.207) 

and, hence, 

d(t) , exp[iv(t)] {(exp[idv(t)] — 1) 0(t) + exp[idv(t)]4(t)} .  (6.208) 

Since the differential dcp is of order VT/t we have to expand (exp[idso] —1) to second 
order. Conversely, since c/0 already contains terms of order NATt it is sufficient 
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to expand the exponential function in the term exp[i4]chP to first order. To the 
desired order eqn (6.208) therefore reads 

1 cksb = (i4 — (ciço) 2 ) 't + exp[iv] (1 + i4) cbt,b .  (6.209) 

Upon inserting eqn (6.203) into the above equation we get 

cirt-p  (id  p — 1  (d(p) 2 ) ,Cb — ill vt'spdt  (6.210) 

—'1 (C 1 C — (C1 )C + dt 

+V-ITIe-ie  (c - (C) ) 't- dW(t) 

+ \147)  ((n ly)-dW - ( 0)0W*) ,I -p + ,'' icLiod,O. 

The terms appearing in the above equation are easily evaluated. It follows from 
(6.206) that 

id   c,o0 = — 2  ((C)c/W — (Ct)dW ) (6.211) 

and this term is seen to compensate the second and the third noise term in eqn 
(6.210). Equation (6.206) leads to 

170 --
2 

(ct,o)Vp = --(Ct) -(C) dt,  (6.212) 
4  0 0  

because of the properties of the complex Wiener increment. Furthermore, we 
find 

exp[ic,o]i4d0 = 1(0 ) CI- dt.  (6.213) 

Inserting eqns (6.211), (6.212) and (6.213) into eqn (6.210) we finally obtain 

ct  _21  21 (b = —ilivt -pdt + -yo  ((Ct  _ ct c  4C  (Ct),-p-(C)) z -pdt 

 

— (C)0) 1 -P clW,  (6.214) 

which is just the stochastic differential equation of the quantum state diffu-
sion model involving a single Lindblad operator C. We thus conclude that the 
stochastic Schralinger equation of quantum state diffusion, which has been pro-
posed originally as a model describing dynamic state vector localization, appears 
here as an equation which represents the stochastic dynamics of heterodyne pho-
todetection in the diffusion limit. 
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6.6 Stochastic density matrix equations 

The stochastic processes considered so far describe the dynamics of ep-ensembles 
of pure states 0(0. In a completely analogous manner we can also derive the pro-
cesses for the corresponding ensembles of mixtures. This will lead us to equations 
of motion for the time-dependent distributions P[o-, t] on the space of density ma-
trices a or, equivalently, to stochastic density matrix equations. 

Probability distributions on the space of density matrices have already been 
introduced in Section 5.3. We have also discussed there the description of selective 
measurements. Our starting point will be eqn (5.84) which, applied to the present 
case, yields the new distribution P[o- , to  +-7-] of the object system at time t = to-FT 
as it results from the measurement on the probe system after the interaction 
between object and probe during the time interval T. Thus, eqn (5.84) leads to 

P[o-  , to  +  r  = f  14),,(6- )1 6 [ tr f.t m  (a)}  a] P[6- '  
(6.215) 

In view of this relation the conditional probability for the density matrix at time 
to  + T to be o-  under the condition that the density matrix at time t o  is 6-  takes 
the form 

ck m (&)  T[o, to + TI6- , to ]  tr {m(&)} [tr  {.21),,(5-)1  
al 

 
(6.216) 

The next step is again the determination of the operation ci)„, pertaining to 
the measurement scheme under consideration. As an example, let us consider 
direct photodetection. As in Section 6.3 we have to distinguish two cases, that 
is the index m takes on two values m = 0, 1. The operation 

'to (51 = trB flroUi(t, to) ( 6-  0 1 0X0 1)  (t, to)70} = oo a-oto  (6.217) 

corresponds to the case that no photon is detected, where 70 = 10)(01 is the 
projection onto the vacuum state which serves as the probe state. The other 
case is that a photon is detected (note that in second-order perturbation theory 
there are no contributions from sectors with a higher number of photons). The 
corresponding operation is 

(6") = trB  Ui(t, to) ( 6-  1 0 ) (0 1) Uti (t, to)7ri =  (6.218) 

where 71- 1 = E 3 Ii)(il denotes the projector onto the one-photon subspace. In 
the same manner as before (see eqns (6.106), (6.116) and (6.122)) we find that 
in the Born—Markov approximation 13  

13 To avoid confusion with the random density matrix o-  we write here A for cr_ and At for 
o-+. 
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Oo r& I — irf-IL — —
1 
r-yoAtA,  (6.219) 

2 
Qi  r& 

 

 

JA,  where E 1412 ,., ryo .  (6.220) 
i 

The second equation shows that the operation for the measurement of a photon 
can be written 

 

Li2A6-At ry0 A5- At.  (6.221) 

Hence we find that the propagator (6.216) is again a sum of two terms, T 
To + T1 , expressing disjoint classical alternatives: To  corresponds to the event 
of no photon detection, and T1  to the event that a photon is detected. These 
contributions are given by 

To[o- , to +  to] = tr  Ot0 005- } 

(1 — 7---yotr {AtAei- }) 

and 

[c r , to  +  to]  tr {(1) 1 (&)}S 

r-yotr{AtA6- } 

Here, we have introduced the non-linear super-operator 

G(0- ) E flu — crilt + iyotr 

where (see eqn (6.126)) 

f-I = 
2 

00'W° 

-  , 

a] - 

(6.222) 

(6.223) 

(6.224) 

(6.225) 

tr {05- } 

(5 [a- - 

S 

[ tr {(1).; 1(6-(5-)  )1  a] 
[  A6-At 

{iltilo- } 

tr {AtA -6- } 

It is clear that the above form for the propagator yields a PDP for the 
stochastic density matrix  a(t), where g(a) generates the deterministic parts 
of the evolution. The equivalent stochastic differential equation for the PDP is 
given by 

do- (t) = — iG (o-  (t))dt +
tr { At Au (t)}  

(t) dN (t),  (6.226) 

where the Poisson increments have the properties, 

dN (t) 2  = dN (t), E [dN(t)] = Pyo tr {AtAo- (t)} dt.  (6.227) 

The stochastic process a(t) is easily seen to have the following property. If 
we suppose that we have a pure state a(t) = 10(t))(0(t)1 at some time t,  then 

Aio- (t)At 
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purity is preserved under the stochastic time evolution. For such a case, the 
PDP thus describes a stochastic state vector evolution which is precisely the one 
derived in Section 6.3, namely the one given by eqn (6.129). This property of 
the stochastic density matrix equation is due to the fact that we have just one 
Lindblad operator and, thus, the operation 4. 1  corresponding to the detection of 
a photon transforms pure states into pure states, as can be seen directly from 
eqn (6.221). 

The above conservation of purity must be carefully distinguished from the 
irreversible nature of the process on the level of the corresponding ensemble of 
type ep . Namely, the mean density matrix 

ps(t ) ---E f D uP[Gr, ti 0-  (6.228) 

obeys the irreversible dynamics given by the vacuum optical master equation 
(6.91), as is easily verified by taking the average over eqn (6.226). 

6.7 Photodetection on a field mode 

6.7.1 The photocounting formula 
As our last example, we consider in this section the quantum measurement of 
the photons in a mode a of the electromagnetic field by a photon detector. It 
will be assumed that the operation describing the back-action on the field mode 
is proportional to the annihilation operator of the mode, that is we have a single 
jump operator given by A = a. If we denote the damping constant of the mode 
by -yo  we thus have a PDP which is defined by the non-Hermitian generator 

H  = — i'Y° ata 2  ' 
with the corresponding evolution operator 

(6.229) 

0(t) = exp(—if/t) = exp [-21)P at al 
2  , 

(6.230) 

and by the transition functional 

W[Ok'b-] = 70 I laz-P11 2 (5  [ a/1-1  0] - 
ila0ii 

(6.231) 

For this process the path integral representation developed in Section 6.1.2 
can immediately be written down. First, we note that 

(I(t)a --, exp(Pyo t/2)at(t).  (6.232) 

This relation can be used in eqn (6.44) to bring all jump operators to the left 
which gives 
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, tN ) = exp [N-70 t/2 — -yo (t i  +  + tN )12]aN ts1(t).  (6.233) 

The full propagator T[0,0,0]  can therefore be written as follows, 

T[0,t1z --k,0] =  pN(t)6 aNÛ(t)  
N=0  ON  (tiP- 11 

The probability p N (t) for N counts in [0, t] is found from eqn (6.46) with the 
help of the multi-time exclusive probabilities 

ptN(ti ,  , tN) =  ,tN)II 2  
= YC)v  exP [Noiot — (t i  +  + tN)] liaN Û(N11 2 . (6.235) 

Carrying out the time integrations one arrives at 

PN(t) = [t)1N  Nt  exp(N-yo t)lia N Ci(t)/ -P11 2 .  (6.236) 

Here we have introduced the quantum efficiency 

11(t) E-  1 — exp(--yo t).  (6.237) 

This quantity is the probability of counting a photon in the time interval [0, t ]  
from a one-photon state  = ati0). In fact, for a one-photon state we have 
obviously pi  (t) = p(t), po (t) =  1—  p(t) and p N (t) = 0 for N > 2. 

The above representation of the process has been obtained for an initial pure 
state 'Cb. If the field mode is initially in a mixed state given by /5 we have to 
average (6.236) over a corresponding initial distribution  P[,5,  t = 0] which leads 
to 

[//(01 N  PO) = Nt  exP(N'yot)tr Ot(t)(at) N aN tsi(t)fil . (6.238) 

As is easily demonstrated the above result is equivalent to the photon counting 
formula derived by Mollow (1968), Scully and Lamb (1969), and Selloni et al. 
(1978), which is usually written in the form 

[p(t)at  cd 
P N(t) = tr  exp 

N  
[— p(t)at  : N!    (6.239) 

where f (at, a) : denotes the normal ordered expression of some function f of 
the annihilation and creation operators. In the remainder of this subsection we 
are going to analyse the above expansion of the propagator (6.234) for different 
initial state vectors /7). 

(6.234) 
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6.7.1.1 Fock state Let us first take an initial Fock state, i.e. ''.-b = In). Then we 
have the trivial relations 

and 

which yield 

aN Û(t)in)  = In — N), 
i1aNtI(t)in)11 

IlaN Û(t)in)11 2  = exP(—nNt) (n —
n!

N)!' 

(6.240) 

(6.241) 

00 

T[0,0,0] = E pN(t)(5[0 - in - N)l-  (6.242) 
N=0 

By virtue of (6.236) the counting probability is found to represent a binomial 
distribution, 

PN (t) = (Nn  ) [P(t)] N  [ 1  — 11 (t) ]
n—N  ' 

If the initial state is a mixed state 13 we have 

PO) =  (nifiln) (Nn ) [ti(t)] N [ 1  —  
n=1V 

(6.243) 

(6.244) 

which corresponds to the expression given by Srinivas and Davies (1981). 

6.7.1.2 Coherent state For an initial coherent state, ' -'b = la), we have (omit-
ting an irrelevant phase factor) 

aN Û(t)la)  = la exp(--yot/2)),  (6.245) 
liaNÛ(t)la)11 

and 
ii aNty- (01012 ____ i ct i2N exp i_ ( N'yot) exP [ — larti(t)] - 

This yields the propagator 
00 

(6.246) 

Tio , tk-b, 01 = E pN(t)8 [o - la exP(-70/ 2))] = 6 [0 — la exP(-70/ 2))1, 
N=0 

(6.247) 

showing that a pure coherent state remains a pure coherent state under time evo-
lution which, as a consequence of damping, shrinks continuously to the vacuum 
state. The counting probability now represents a Poisson distribution, 

((t))N  
pN(t) =N  NI  exp [— (N(t))] ,  (6.248) 

with mean value (N(t)) = 1(11 2  p(t). 



aN tsi(t)lia, +) = la exp(—Nt/2), +), 
11aNO(t)la,+)11 

aN Û(t)la, +) = la exp(—eyo t/2), —) 

and 

IlaNCT(t)la,+)11 
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6.7.1.3 Schradinger cat initial states We now consider a Schrödinger cat type 
initial state (Garraway and Knight, 1994; Goetsch, Graham and Haake, 1995) 
given by a symmetric superposition of two coherent states, 

1  
N+(a) (la) + 1 — a)) - 

The corresponding antisymmetric superposition is written as 

1 
la, ) -7- N_(a)(la)  — 1 —  a)) - 

The normalization constants are 

N+(a) = 2e-1 ' 12 / 2 -Vcoshla1 2 , 

N_(a) = 2e-1 ' 12 / 2 Vsinh la1 2 . 

(6.249) 

(6.250) 

(6.251) 

(6.252) 

With the help of 

aN CI(t)la,+) = N+1(a) aN exp(—N7ot/2)exp(-1a1 2 /1(t)/2 

x { la exP(—Nt/2))  + (-1) N 1 — a exP( — Nt/ 2)} (6.253) 

it is easy to show that for N even we have 

I1aNCT(t)la,±)112 ,i 1 ICE
N12 eXp(_N,y0t) COSh (1a12e--yot) 

cosh la1 2  , 

and 

(6.254) 

(6.255) 

while for N odd we have 

iiallo(o i ce,+ )1 1 2_ i ct i2N 1 1  exp(—N-yot)
sinh (1a12e—Tot) 

cosh la1 2  ' (6.256) 

(6.257) 

This yields the counting formulae 

[1a1 2 p(t)]v cosh (1a1 2 e—Y0 9 
PN(t

) 
 
 _AR  cosh la1 2  

(6.258) 
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for even N, and 

po)  [Ial 2 p(t)] N sinh (kk1 2 e--yot) 

N!  cosh lal 2  (6.259) 

for odd N. Summing separately over the even and the odd values of N we 
immediately get the following expression for the propagator, 

7[0,01-P, 0] = P""(t)8 [0 — la exP( —Nt/ 2), +)] 
±edd  (t)(5 [0 — la exp(--yo t/2), —)1,  (6.260) 

where 

Peven  (t) = E pN(t) = 
Neven 

cosh (larp(t)) cosh (1a 1 2 11 — 

 

(6.261) 
cosh kW 1 

edd (t)  po) = 
sinh 01 2 /1(t)) sinh  (1a1 2 [1 — ft(t)]) 

= E  cosh i ct i 2 

and 

No dd 
(6.262) 

It is clear from eqn (6.260) that the initial Schrödinger cat remains a Schrödinger 
cat. The effect of the quantum jumps is to switch from the even superposition to 
the odd superposition. As a consequence of damping both cats move towards the 
vacuum state, while the coherence of the superposition is completely maintained. 
This requires, however, that the photon detection provides a complete record. 
As we saw in Section 4.4.1 the coherence is effectively destroyed already by a 
single photon that escapes undetected. 

6.7.2 QND measurement of a field mode 
In Section 4.7 we have analysed a specific model for the quantum measurement 
process developed by Walls, Collet, and Milburn (1985). This model consists of a 
field mode a (the to-be-measured system), and a field mode b (the meter), which 
are coupled by a four-wave mixing interaction. The meter mode b is coupled via 
amplitude coupling to a zero-temperature environment. 

Assuming that the environment acts as a perfect photoelectron counter, we 
investigate here this model from the viewpoint of continuous monitoring of the 
photons in the meter mode b. The corresponding unravelling of the master equa-
tion (4.285) gives rise to a PDP for the state vector Osm of system-plus-meter. 
We determine the photon statistics for this measurement scheme and demon-
strate that the quantum demolition measurement of the photons of mode b leads 
to a QND measurement of a certain system observable, namely of the square 
(ata) 2  of the photon number in mode a. 
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For the present model, the PDP is defined through the jump operator b, with 
corresponding rate -yo , describing the demolition measurement of the quanta of 
the meter mode, and by the non-unitary time-evolution operator 

Û(t)  = exp(—ifismt) = exp [— cita (b6* — bi .  6) — Nt  bi-  b 
2  ] ' 

corresponding to the generator 

Hsm = Hsm —  bf b ' 

(6.263) 

(6.264) 

where Hsm is given by (4.280). As in eqn (4.281) we investigate an initial state 
of the form 

z-p•sm = E enin)s 0 low.  (6.265) 
n 

Let us construct the propagator of the process. To this end we note that 

bÛ(t) =  Û(t)  [e-7° t I 2 b — L.  (e— °t/ 2  — 1) ata] .  (6.266) 
'Yo 

This relation can be used in eqn (6.44) to bring all the O's to the left. Since 
mode b is initially in the ground state we are left with the expression 

OtAr(ti,..- 
N 

, tN ) = (=:.1.) (e— l'otN /2 _ 1) ( e-70tN-1/ 2 _ 1) ... (e - 0t1/ 2 _ 1) 
'Yo 

x 0. ( t) (at a)N sm • (6.267) 

From this we conclude that the full propagator of the process reads 

co 
N  z-P  j T[Osm, qsm, 0] = E pN(t)(5[  

(I(t) (at a)sm  0sm  - IIU (t)(ata)NI-P.smil 
,  (6.268) 

N=0  

where the probability pN (t) for N counts is found from eqns (6.45) and (6.46). 
Performing the time integrations we get 

1 
pN(t) = yi A(t) N1 10(t)(ata)N sm 11 2 , 

with 
1 6 12 

A(t) = 1  ' (yo t + 4e—Y0t/ 2  — e-70t  — 3) . 1 
With the help of the relation 

(6.269) 

(6.270) 
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Û(t)(atez-psm E cne-mon2/27iNiros 1,3n (t))m,  (6.271) 

where 071 (0 is defined in eqn (4.290), we can determine the norm in the expression 
for p N (t) , which finally yields 

p N (t) = E 1,12 tkr-, [pn  (t)]N e—  (6.272) 

We observe that the distribution p N (t) for the counting events represents a 
weighted sum of Poisson distributions with mean values 

p(t)  A(t)n 2 .  (6.273) 

In the limit -yo t  cc, lei fixed, as well as in the limit (4.296) the quantity 
A(t) becomes arbitrarily large. The Poisson distributions in the sum (6.272) are 
thus  strongly  peaked around the average values pn (t), the relative widths being 
1/ Vp n (t) 0. Since further the Poisson distribution with mean value pn (t) 
occurs with the relative weight len 1 2  we conclude that the measurement of the 
number N of photon counts practically always yields one of the values in the 
vicinity of N = p(t) with the respective probabilities le7 1 2 . For a given outcome 
N we conclude from eqn (6.273) that 

n 2 = — A(t) 

that is we infer a measurement value for the observable 

A = (at a)2 .  

(6.274) 

(6.275) 

This measurement of the square of the photon number in mode a through 
the measurement of the quanta in mode b provides a QND measurement as may 
be seen from eqn (6.271). The function 

f(n)  e- A(t)n 2  /2 TI N  (6.276) 

is sharply peaked around the value n given by eqn (6.274). The record N thus 
yields the conditional state vector 

In)s  Ifin(t))m 
110(t)(ata)N1-p.smii 

where n is related to the outcome N by eqn (6.274). Summarizing, in the limits 
given above the propagator of the process becomes 

Û (t)(at  a) N  s m 
(6.277) 

Tiosm,tk -b•sm,oi  E lenrs[osm - iTos ifin)m]  (6,278) 
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FIG, 6.12. The variances Var i  (A), Var2 (A), and Var(A) for the observable 
A = (ata) 2 . We depict the simulation results for 104  realizations of the 
PDP describing the monitoring of the meter mode b. The simulation was 
performed with Yo  = 1 and 6 = 2 and the initial state Osm was taken to be 
a superposition of the states n = 1, 2, 3, 4, 5 with equal amplitudes. 

Equation (6.278) expresses the transformation from quantum mechanical am-
plitudes to classical probabilities during the measurement process. The initial 
pure state Osm is transformed into a statistical mixture consisting of definite 
states in)s 0 if3n)M- This mixture is an ensemble of type (T), where the various 
pointer states In)s 1,30m represent classical alternatives. 

The transition (6.278) may be illustrated further with the help of the vari-
ances Van i  (A) and Var2 (A) introduced in eqns (5.67) and (5.68). Since A com-
mutes with Hsm the quantum mechanical variance 

Var (A) = Vari  (A) + Var2  (A) 
 

(6.279) 

stays constant. Since further the initial state is pure, it follows that 

Var 2 (A(0)) = 0, Var. '  (A(0)) = Var(A).  (6.280) 

In the long time limit -yo t  co, lei fixed, Var. '  (A(t)) decreases to zero, that is 

lim Var. '  (A(t)) = 0,  (6.281) 

showing that the final ensemble is an ensemble of eigenstates of A. This may be 
shown directly with the help of the Liouville master equation pertaining to the 
process Osm(t). In fact, one finds 
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0 
Var i  (A(t)) = — NE (Q[Osm]2 ) < 0,  (6.282) 

where we have introduced the functional 

QflPsitil =  1  ((bosm  Imo s m ) 
11b0smil  — 1 1) 10 s m11 2  (Os mlAlOs m)) .  (6.283) 

Since the expectation on the right-hand side in (6.282) is taken over a non-
negative functional Q 2  we see that Var i  (A(t)) decreases monotonically and, 
therefore, approaches a definite value in the limit t 0.  On the other hand, it 
is easy to show that the functional Q[Osm] vanishes if and only if Osm is one of 
the correlated states 1n)s 010 I fi ii )m. These states are eigenstates of A and, thus, 
eqn (6.281) follows. 

Thus we see that the states in)s 0 ifi ii )m are the stable states of the process 
Osm M. The stochastic dynamics drives the initial state (6.265) with probability 
ic„1 2  into the state in)s 0 1070m. On the other hand, the variance Var 2 (A(t)) 
approaches Var(A), demonstrating that the statistical fluctuations of the random 
variable (OsmiAlOsm), being zero initially, increase monotonically until they 
become equal to the quantum fluctuations given by Var(A). This dynamical 
behaviour of the variances expresses the fact that the potential outcomes of the 
measurement contained in the amplitudes of the initial state are made objective 
during the process of measurement. These features are illustrated in Fig. 6.12. 
where we show the time dependence of the variances obtained from a numerical 
simulation of the PDP (Breuer and Petruccione, 1996b). 
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7 

THE STOCHASTIC SIMULATION METHOD 

Most stochastic processes encountered in science cannot be solved by analytical 
methods. One therefore has to rely on numerical methods to derive predictions 
from a given stochastic dynamics. Numerical algorithms can be employed to solve 
the equation of motion governing the probability distribution for the stochastic 
variable itself, the master equation or the Fokker—Planck equation, for example. 
Another approach is to derive a system of deterministic differential equations 
for the moments of the process and to solve it by numerical integration. How-
ever, these methods are often not feasible in practice due to the high degree 
of complexity of the underlying problem: The probability distribution may be 
represented by a density in a very high (or even infinite) dimensional space, 
while the dynamics of the moments may lead to an infinite hierarchy of coupled, 
non-linear equations. In both cases the numerical integration by deterministic 
algorithms is extremely difficult. 

An alternative and very powerful tool in the numerical analysis of stochastic 
processes is provided by the so-called Monte Carlo or stochastic simulation meth-
ods. The basic idea of these methods is to generate by a numerical algorithm 
independent realizations of the underlying stochastic process and to estimate 
with the help of statistical means all desired expectation values from a sam-
ple of such realizations. A stochastic simulation thus amounts to performing an 
experiment on a computer. It yields the outcomes of single runs with their cor-
rect probabilities and provides, in addition to the mean values, estimates for the 
statistical errors of the quantities of interest. 

In the present chapter we discuss in some detail the application of Monte 
Carlo methods to the stochastic processes in Hilbert space that were derived in 
Chapter 6. Depending on whether the stochastic process is a piecewise determin-
istic process or a diffusion process in Hilbert space the corresponding individual 
realizations consist of intervals of deterministic evolution periods interrupted by 
sudden jumps, or of continuous, nowhere differentiable paths. Appropriate sim-
ulation techniques for both types of processes will be described in Sections 7.1 
and 7.2 and illustrated by specific examples in Section 7.3. 

To determine numerically the density matrix of an open quantum system one 
can either integrate the density matrix equation directly or else simulate the pro-
cess for the stochastic wave function and estimate the covariance matrix. In gen-
eral, the density matrix equation leads to a system of linear equations involving 
N2  complex variables, N denoting the effective dimension of the Hilbert space. 
By contrast, stochastic simulation only requires the treatment of N complex van- 
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ables characterizing the state vector. For large N, that is for high-dimensional 
Hilbert spaces, one thus expects Monte Carlo simulations to be numerically more 
efficient than the integration of the density matrix equation, provided the size of 
the required sample of realizations does not increase too strongly with N. This 
point will be illustrated in Section 7.4 which deals with a detailed comparison 
of the numerical performance of the stochastic wave function method and of the 
integration of the corresponding density matrix equation. 

7.1 Numerical simulation algorithms for PDPs 
At several places in Chapter 6 we have already shown results obtained from nu-
merical simulations of PDPs in Hilbert space. Here we discuss in some detail the 
simulation technique and special features of appropriate numerical algorithms. A 
general account of the use of Monte Carlo methods in statistical and condensed 
matter physics may be found in Binder (1995) and Landau and Binder (2000). 

7.1.1 Estimation of expectation values 
A stochastic simulation algorithm serves to generate a sample of independent 
realizations of the stochastic process OM for the wave function. Let us denote 
these realizations by Or(t), r = 1, 2, ... , R, where R is the number of realiza-
tions in the sample. The aim of the simulation is, in general, to estimate the 
expectation values 

A E E (F[0, t]) = f DODO * P[O, tiF[0 ,  t]  (7.1) 

of real functionals F[o,t] of the random state vector which may depend explicitly 
on time. An unbiased and consistent estimator for the expectation value Mt  is 
provided by the sample average 

R -  1 
Mt= yi E F[or(t), t]. 

r=1 
(7.2) 

Here and in the following a hat is used to indicate an estimator. Of particular 
interest are the expectation values 

mt E  E 0(t)1 13 10(t))) = f DODIP*P[O, ti(01/3 10)  (7.3) 

of the observables B of the open system, for which the estimator takes the form 

1  R 
112It = fi E (Or  (t)IBIO T  (0)- 

r=1 

(7.4) 

It is clear that the estimated expectation value is subjected to statistical 
errors. A natural measure for the statistical fluctuations of the random variable 
F[0, t] is the variance 
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= E (F[0, t] 2 ) — {E (F[0,  t])} 2 .  (7.5) 

In the case F = (01.1310) this is just the variance 

= Var2(B),  (7.6) 

which was already introduced in eqns (5.14) and (5.68). An appropriate estimator 
for the statistical errors in the determination of Mt  from a finite sample of size 
R is given by 

1 ^2 
at = R(R   E  1) r  (F[or(t),t] - 11.4) 2  - 

=1.  (7.7) 

The quantity ?it  is known as the standard error of the mean value  M. For the 
estimation of the mean value of an observable B it is given by 

1  

R(R — 1) rE ((O r  (t)IBIO r  (t)) — 11'4) 2  

If the realizations in the sample are statistically independent the standard error 
eft decreases with the square root of the sample size R, 

1 
(7.9) 

This provides a relation between the standard error of the mean value and the 
number of realizations of the sample. 

7.1.2 Generation of realizations of the process 
Let us consider a PDP in Hilbert space of the type studied in Section 6.1.1 which 
can be represented through the stochastic differential equation (see eqn (6.25)) 

do(t) =  (ft + E ,yiiiitio(t)112) ocodt + 
 A i tP(t)  

OW) dNi (t). 

(7.10) 
The Poisson increments dNi (t) satisfy eqns (6.26) and (6.27), while the non-
Hermitian Hamiltonian fi is given by (see eqn (6.13)) 

ft  = H —  (7.11) 2 i  

We also recall from Section 6.1.1 that the cumulative waiting time distribution 
(6.21) for the quantum jumps is given by 

F[0, =  1—  exP( — ifiT)CP11 2 ,  (7.12) 

where T represents the random waiting time between successive jumps. 

(7.8) 
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From the discussion of Sections 1.5.2 and 6.1.1 we immediately see that a 
sample of realizations Or(t) of the process defined by eqn (7.10) in the time 
interval [O, tf] can be generated by means of the following algorithm: 

1. Assume that the normalized state Or (t) was reached through a jump at 
time t and set Or(t) = O. If t is the initial time t = 0, 't-i) is the initial state of 
the process which must be drawn from the initial distribution P[1/), t = 0]. 

2. Determine a random waiting time T according to the distribution function 
(7.12). This can be done, for example, by drawing a random number n  
which is uniformly distributed over the interval [0, 1] and by determining 
T from the equation 

=  F[77),T] = exp( — ikr)011 2 -  (7.13) 

For n  > q there exists a unique solution, q being the defect of the waiting 
time distribution defined in eqn (6.22). For n  < q we set T = Do in which 
case there will be no further jumps. Within the time interval [t,  t + 7] the 
realization follows the deterministic time evolution given in (6.15), 

exp(—iks) 
Or (t + s) = 

I exP( — i-f1411 '  
0 < S < T.  (7.14) 

3. At time t+T (if T is finite and t-FT <  t1)  one of the possible jumps labelled 
by the index i in eqn (7.10) occurs. Select a specific jump of type i with 
probability 

and replace 

= 7illAiOr (t + r)11 2  
pi  

Ei fiYillAiO r (t + 7)11 2  

A iOr (t +  
Or ( t + I lAiOr + '011 

(7.15) 

(7.16) 

4. Repeat steps 1 to 3 until the desired final time t1 is reached, which yields 
the realization Or (t) over the whole time interval [0,  t1].  

5. Once a sample of realizations Or (t), r = 1, 2,  , R, has been generated ac- 
cording to this algorithm any statistical quantity can be estimated through 
an appropriate ensemble average, as described in the previous subsection. 

Let us now discuss the various parts of the algorithm in more detail. 

7.1.3 Determination of the waiting time 

An essential part of the simulation algorithm is the determination of the random 
waiting time. 
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7.1.3.1 Exponential waiting time distributions The easiest case is provided by 
an exponentially distributed waiting time, 

 

F[ , T] = 1 — eXp (—Fr) .  (7.17) 
Such a waiting time distribution always arises when the total jump rate does not 
depend on time, i.e. Ffi-p, F = constant > 0. If n  is an uniformly distributed 
random number in the interval [ 0, 1], the waiting time T is easily determined 
with the help of (7.13) which yields 

1 
T =  ln  (7.18) 

The development of appropriate random number generators has been discussed, 
for example, by Press, Flannery, Teukolsky and Vetterling (1992) and by Knuth 
(1981). 

7.1.3.2 Multi- exponential waiting time distributions A waiting time distribu-
tion which is a sum of exponential functions arises if the jump operators Ai are 
eigenoperators of the Hamiltonian H, which leads to (see eqn (3.125)) 

=0.  (7.19) 

This was the case, for example, in the weak-coupling master equation (3.140) 
without external driving fields. It follows that H and the positive operator 
Ei  Ai  have a common eigenbasis {la», i.e. 

HIct) = Ela)  (7.20) 
and 

 

= Fa lcx),  (7.21) 

with real eigenvalues Ea  and Fa  > 0. Hence, also H-  is diagonal in this basis and 
we may write 

 

Ria)  = (Ea — —;ra) la).  (7.22) 

The waiting time distribution is therefore a sum of exponential functions whose 
exponents are given by the imaginary parts of the eigenvalues of H. Accordingly, 
the waiting time T is determined by the equation 

= exP( — ifir)'011 2 =  YT I( 101 2  exp(—F ar).  (7.23) 
a 

If  î is proportional to one of the la) we recover the exponential waiting time 
distribution (7.17). In general, eqn (7.23) can no longer be solved analytically 
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for T.  However, it may be solved numerically provided the basis la) and the 
corresponding eigenvalues Fa  are known. Equation (7.23) also shows that we 
will have a defect if F a  = 0 for some a with (a l't ./.)) O. 

7.1.3.3 General waiting time distributions Step 2 of the simulation algorithm 
described in Section 7.1.2 rests on the assumption that the waiting time distri-
bution F[:0 ,t] is known explicitly such that one can solve eqn (7.13) for T,  either 
analytically or numerically. If  F[5, T]  is known the algorithm described is usually 
the most efficient one, in particular, if the random time steps T become large 
and if an analytical expression for exp(—ifir) is also known. 

However, in the general case neither the deterministic evolution nor the wait-
ing time distribution are known explicitly. The waiting time T must then be 
determined along with the numerical solution of the deterministic dynamics. To 
achieve this one starts from the normalized initial state irb and solves numerically 
the equation 

d 
—
dt

b(t) = —i1-10(t), (7.24) 

which yields the non-normalized state vector OM = exp(—ifit)  the norm of 
which decreases monotonically. According to eqn (7.13) the waiting time T can 
be determined by checking after each integration step whether the square of the 
norm has decreased to the value 27 . Thus, step 2 of the algorithm given in Section 
7.1.2 may be replaced by the following procedure: 

2. Draw a random number n  uniformly distributed in [0, 1] and determine 
the non-normalized solution OW of the linear Schrödinger equation (7.24) 
corresponding to the initial value 0(0) = 0. The waiting time T is then 
determined by the condition 

= 
The deterministic evolution between the jumps takes the form 

"0(s)  (t + s) = 
 HO (S  
0 < s < T . 

A '  - 

(7.25) 

(7.26) 

This form of the algorithm should be preferred when performing simulations 
in the general case. For the numerical solution of eqn (7.24) between the jumps it 
is often convenient to expand the wave function with respect to an eigenbasis of 
the Hamiltonian H and to bring (7.24) into a linear system of ordinary differential 
equations for the components of 0. The integration can then be performed by 
employing standard numerical routines appropriate for deterministic differential 
equations. We remark finally that the above form of the algorithm, in particular 
condition (7.25) and eqn (7.26), also applies, of course, if the generator in eqn 
(7.24) depends on time, that is if H = H (t) 
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7.1.4 Selection of the jumps 
According to step 3 of the algorithm described in section 7.1.2 we have to select 
a specific quantum jump of type i with probability p i  given by eqn (7.15) and to 
carry out the corresponding transition (7.16). The index i specifying the jump 
is a random number with values in some index set / = {1, 2, ... , K }  following 
the distribution p i . 

Essentially, there are two ways to implement numerically the selection of the 
jumps. If the index set I is small, then i may be drawn with the help of the 
method of linear search (Gillespie, 1976, 1992). To this end, one subdivides the 
interval [0, 1] into K sub-intervals Ji  of lengths pi  and draws a uniform random 
number x G [0, 1]. The index i is then found by searching for the interval Ji  
which contains z. When applying this algorithm, it is important to check that 
the probabilities pi are larger than the resolution of the random number generator 
(Hanusse and Blanché, 1981). 

If the values of the probabilities p i  are approximately equal to each other 
it may be more efficient to use the following rejection method (Press, Flan-
nery, Teukolsky and Vetterling, 1992): Draw two independent uniform random 
numbers z and y in [0, 1]. The first random number is used to select an index 

= int(Ks) + 1 from the index set I. If the second random number satisfies 
Y < pilpmax  this index i is accepted, where pmax  denotes the maximum of the 
pi . Otherwise i is rejected and the procedure is repeated. 

The advantage of the rejection method over the linear search is that the 
former is numerically efficient even if the number K of elements in the index 
set becomes large. A condition is that the product of pmax  and K should not be 
much larger then 1. 

The linear search and the rejection method get inefficient if the index set I 
is very large and if the distribution pi  is very inhomogeneous. In these cases it 
might be helpful to cluster possible jumps into logarithmic classes (Fricke and 
Schnakenberg, 1991) or to make use of search trees (Maksym, 1988; Blue, Beichl 
and Sullivan, 1995). However, the time which is saved due to improved search 
algorithms might be lost again in the actualization of the data structures (Breuer, 
Huber and Petruccione, 1996). 

7.2 Algorithms for stochastic Schraclinger equations 

In this section we develop numerical algorithms for the simulation of stochastic 
Schriidinger equations (SSEs) of diffusion type. Such equations were encountered 
in Section 6.1.3 as diffusion approximations of a corresponding PDP in Hilbert 
space. They also arise in the context of fundamental dynamical collapse models 
(see Section 6.5.2). 

Below, we are going to discuss four different algorithms to solve SSEs, namely 
the well-known Euler scheme, an adaptation of the Heun and the Runge—Kutta 
scheme to SSEs and a second-order weak scheme for stochastic differential equa-
tions proposed by Platen (Kloeden and Platen, 1992). Special emphasis is laid 
on the order of convergence of these schemes using as an example a stochastic 
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Schrödinger equation of the type encountered in Section 6.4.2 (Breuer, Dorner 
and Petruccione, 2000). The methods discussed here can of course be applied to 
other kinds of SSEs. In particular, they may easily be generalized to simulate 
SSEs involving complex instead of real Wiener increments. 

7.2.1 General remarks on convergence 
Let us consider a stochastic Schrödinger equation of the following general Itô 
form, 

&PM = D1 (OM) dt +  D2  (0 (t)) dW (t),  (7.27) 

with the drift term 

D 1  (0) = —iHO + -;f- ((A + At)0A — AtA — 41  (A +  At))  0,  (7.28) 

and the diffusion term 

D2 OM = Nry (A_  —1
(A ± At) o ) 

2 

where we have made use of the shorthand notation 

(A) 0  (0 1A 10), 

0,  (7.29) 

(7.30) 

and dW (t) is a real Wiener increment. An equation of the form (7.27) was ob-
tained in Section 6.4.2 by performing the diffusion limit of homodyne photode-
tection (see eqn (6.181)). For simplicity we consider the case of a single Lindblad 
operator A. The corresponding density matrix equation is given by 

d  1  1 — p(t) = —itH, p(t)] + 7 (Ap(t)At — — At Ap — — pAt A) L p(t).  (7.31) 
dt  2  2 

We note that eqn (7.27) is a stochastic differential equation with multiplicative 
noise which means that the diffusion term D 2 (21) (t)) which multiplies the Wiener 
increment depends on the stochastic variable OM. The noise is called additive 
if the diffusion term does not depend on the stochastic variable. 

It must be emphasized that OM is a process in the Hilbert space lis of an 
open quantum system. It thus represents, in general, a process in an infinite-
dimensional vector space. However, in many cases of interest the dissipative 
character of the equations of motion ensures that the dynamics is confined to a 
finite-dimensional subspace of 7-Is.  It is therefore justified physically to restrict 
the discussion to finite-dimensional spaces, that is, we may regard eqn (7.27) as 
defining a process in an effectively finite-dimensional space. 

Consider now a numerical scheme to integrate eqn (7.27) over the time in-
terval [t o , to  + 7 ] . Such a scheme leads to a discrete time approximation V) k for 
the exact process 0(t k ) at times tk  E to ± k At, where k = 0, ...  ,n  = T I At. 
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The discretization does not have to be equidistant but to simplify the notation 
this will be supposed here. In this section, Ok will always denote a numerically 
generated approximation, while OM denotes the exact process defined by eqn 
(7.27). Analogously, we denote by 

Pk  = E{I0 k) (0 kl]  (7.32) 

the discrete time approximation of the density matrix, whereas 

P(t) = EtIO(t))(0(t)ii  (7.33) 

is the exact density matrix satisfying the Lindblad equation (7.31). 
In order to characterize the convergence behaviour of the numerical schemes 

to be discussed below we will compare the discrete approximation pk with the 
Taylor expansion of the exact density matrix p(t) which is given by 

p(t + At) = p(t) + rp(t)At + —21  L 2  p(t)At 2  + 0(t3 ).  (7.34) 

Without loss of generality, we will always assume that a deterministic (i.e. sharp) 
initial state 00 E tp(to ) is given. The single-step error of a certain numerical 
scheme may then be expressed through the difference 

pl - p(ti) = 0(t'),  (7.35) 

which means that the scheme reproduces the Taylor expansion of p(t) including 
terms of order 0' — 1 in At. 

It is straightforward to prove that the integration over a finite time interval 
[t o , t o  + T] decreases the order of convergence by one since we need n = 71 1 At 
time steps to calculate the density at time to + T = tn , i.e. 

pn  — p(t 1 ) = O(Lt)  (7.36) 

with = fi' 1. If this equation is satisfied the numerical scheme will be said to 
be a scheme of order fi in the following. 

Equation (7.36) is a special case of weak convergence of order 0. The degree of 
an approximation of a stochastic differential equation can also be characterized 
by the notions of strong convergence (Kloeden and Platen, 1992). If the numerical 
algorithm leads to an approximation On  for 0(W satisfying 

E {II On — 0(t11 ) Ill - AV3  (7.37) 

for sufficiently small At, it is said that the scheme converges strongly with order 
0. This definition imposes a condition on the closeness of the random variables 
On and 0(t 12 ) at the end of the integration interval. By contrast, weak conver-
gence only requires that the probability distributions of 61  and 0(t 11 ) are close 
to each other which is a much weaker criterion. In practice, one is often only 
interested in this weaker form of convergence, for example, when considering the 
approximation of functionals of the stochastic variable. 
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7.2.2 The Euler scheme 

The Euler scheme is probably the simplest recursive algorithm to get an approx-
imation for the state vector. It takes the form 

Ok+1 =11)k D1( 114)At D2(0k)AWk-  (7.38) 

The Wiener increments AWk,  k = 0, 1, 2,  ,n  - 1, are independent Gaussian 
random variables with zero mean and variance At, the index k indicating different 
realizations at each time step. Thus, we can write 

A Wk =  (7.39) 

where k  is a Gaussian distributed random variable with mean zero and unit 
variance, that is a random variable following a standard normal distribution. It 
should be mentioned that it is not necessary to use Gaussian distributed random 
variables if one requires convergence in the sense of eqn (7.36). One may use other 
random variables instead which coincide, for example, only in the first and the 
second moment with those of a standard normal distribution. 

It is easy to demonstrate that eqn (7.36) is satisfied with  fi  = 1. The Euler 
scheme thus provides a weak scheme of order 1. In spite of the low order of 
convergence the Euler algorithm is useful because it is very easy to implement 
numerically and often yields a reasonable degree of approximation. In general, 
the scheme does not conserve the norm of the state vector, by contrast to the 
SSE (7.27). The state vector should therefore be normalized after every iteration. 

7.2.3 The Heun scheme 
The following method, which we shall call the Heun scheme, is a generaliza-
tion of the Heun method known from the numerical integration of deterministic 
differential equations. It is defined by the recursion relation 

with 

4,  1 n  (4,  \  n(  A  n  \A  
Ok+1 = (Pk  ±   0,bk) '-1 Wk ,  

=  k  + D1(5k)Lt + D2(0k)AWk- 

(7.40) 

(7.41) 

A Wk  again takes the form of eqn (7.39). For vanishing diffusion one recovers 
the Heun method for deterministic differential equations. It turns out that, in 
general, the Heun algorithm again leads to relation (7.36) with = 1. It is 
therefore a scheme of order 1, similar to the Euler method. This is in contrast 
to SSEs with additive noise, where the Heun method is actually of order two. 

7.2.4 The fourth-order Runge-Kutta scheme 

For deterministic differential equations there is a great variety of numerical in- 
tegration methods and one is easily misled when heuristically modifying these 
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0.0  0.5 2.0  2.5 

FIG. 7.1. One realization of the process (7.50) for the damped harmonic os-
cillator with initial condition Ino) = 19) (continuous line). The dashed line 
represents the analytical expression (7.56) for the expectation value of the 
number operator. 

methods in order to integrate SSEs. The following example shows that it is indeed 
wise to proceed cautiously. 

A well-known numerical scheme for deterministic differential equations is 
the fourth-order Runge—Kutta method. A heuristic modification to approximate 
solutions of SSEs is obtained if one integrates in each time step the drift with the 
Runge—Kutta method and the diffusion term of the SSE with the Euler scheme. 
This leads to the following scheme, 

with 

1 
Ok+1 =  k  + —6 1011, + 24, +  2  + tp;', } At + D2 (0k)AWk (7.42) 

(7.43) 

012, = Di  (Ok  + —21  Atz/4, ),  (7.44) 

= D1(0k + —21 Atq),  (7.45) 

'14 = Di (Ok +  (7.46) 

The order of convergence can again be determined by calculating the difference 
in eqn (7.36). The surprising result is that the scheme is of order fi = 1. The 
stochastic generalization of the Runge—Kutta method converges with order 1, by 
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FIG. 7.2. The average over 100 realizations of the damped harmonic oscillator. 
The initial condition is Ino ) = 19). The dotted line gives the analytical result. 

contrast to the Runge—Kutta method used for deterministic differential equations 
which is of order 4. 

From this example one can see that in general simple heuristic generalizations 
of higher-order Runge—Kutta schemes do not necessarily lead to higher-order 
methods for SSEs. The above method converges of course but, in general, there 
will be no advantage over the Euler method, for example. 

7.2.5 A second- order weak scheme 

The final algorithm we are going to consider has been proposed by Platen (Kloe-
den and Platen, 1992). In our notation this scheme is provided by the recursion 
relation 

1 f 
k+1 =  ±  —2 V--)1(0k) + &'k)) At 

1 , + kr312 ( Pk  )+D2(ok  )+ 2D2(tPk)) Wk 

1 + 4— (132 (01-,H) D2 ())  {(Wk ) 2  At} At-1 /2  (7.47) 

where 

ZPIc Dl(Pk)At D2(5k)Wk,  (7.48) 

'11) = k  Dl(tPic)At ±  D2(0k) -  t  (7.49) 



EXAMPLES  373 

A 

V 

0.0 
 

0.2 
 

0.4 
 

0.6 

FIG. 7.3. A single realization of the mean number operator of the damped har-
monic oscillator. The thin line corresponds to the second-order weak scheme 
and the bold line to the Euler, the Heun and the Runge—Kutta schemes (not 
distinguishable on the scale of the figure). The smooth line represents the 
analytical result (7.56). 

Here, the increments AWk must fulfil certain conditions. These are satisfied if eqn 
(7.39) is assumed. For vanishing noise the scheme reduces to the Heun scheme 
for deterministic differential equations. 

Performing again the error analysis one finds that Platen's scheme converges 
with order 0 = 2. Thus, contrary to the algorithms studied before, Platen's 
scheme is really a higher-order scheme in the sense defined above. This point 
will be illustrated in the examples below. 

7.3 Examples 
In this section we apply the simulation algorithms for PDPs and stochastic 
Schrödinger equations to some specific examples. 

7.3.1 The damped harmonic oscillator 
7.3.1.1 Simulating the PDP We study the following process for the damped 
harmonic oscillator (see Section 6.7), 

&PM =  (ata — (0(t)latal0(t)))  +   OW) dN (t). (7.50) 

Let us simulate this equation for the simplest initial condition, i.e. for a number 
state 0(0) = In). In this case the deterministic evolution periods of the process 
are trivial since 
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FIG. 7.4. A plot of the mean photon number f/T. relative to the analytically 
calculated value (n(T)) at ey1 -1  = 1.2 versus the step size At for different 
methods. The solid lines correspond to linear and quadratic fits. 

exp(—ifit)In) = exp(--ynt/2)1n).  (7.51) 

Also the jumps are trivially given by 

am)  

 

In)  = In — 1).  (7.52) 
lain) ii 

Since the waiting time distribution is 

F[In), T] = 1 — I I exp(—ifiT)In)11 2  = 1 — exp(-7nr),  (7.53) 

we find that the random waiting time may be obtained from the equation 

T = — —1 
ln (7.54) 

where ?) is a uniformly distributed random number in the interval [0, 1]. 
Figure 7.1 shows one realization of the process for the initial condition 0(0) — 

Ino) = 19). As an example of the calculation of expectation values we also show in 
Fig. 7.2 the mean of the number operator determined from a sample of R = 100 
realizations through (see eqn (7.3)) 

1 
=  E(Or(t)latalOr(t))- 

r=1 
(7.55) 
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FIG. 7.5. CPU time (normalized to one) versus absolute error for the data points 
of Fig. 7.4. 

The analytical expression for this quantity is, of course, given by 

(ata(t)) = no  exp(—yt).  (7.56) 

According to eqn (7.4) the standard error for this mean value is provided by the 
expression 

 

1  \ 2 
^ 2   

 

= R(R  ((Or  Miat  aiOr  (0) – (7.57) 

The values for the standard error are indicated in Fig. 7.2 by error bars. 

7.3.1.2 Simulating the SSE The stochastic Schn5dinger equation (7.27) for the 
damped harmonic oscillator reads 

1 
d(t) = —7 ((a + at) 0(t ) a — at a — —4 (a + at) 20 (0 ) 0(t)dt 

2 
1 

-H\Fy (a — —2 (a + at)0 (0) 0(t)dW(t).  (7.58) 

In the numerical simulations the state vector has been represented in the basis 
of number states In). Again, the initial state is taken to be zp(o) =  Io  = 9) and 
the Hilbert space has been truncated at nmax  = 12, that is the simulation was 
performed in a subspace of dimension N = 13. 
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FIG. 7.6. One realization of the PDP (7.59) for the driven two-level atom. The 
continuous line shows pli computed from the realization. The dashed line rep-
resents the analytical solution for pli according to eqn (3.289). Parameters: 

A single realization of the process is depicted in Fig. 7.3. The solid line shows 
the analytical curve (7.56). The thin line represents the solution calculated with 
the second-order weak scheme of Platen and the bold line the solutions calculated 
with the other methods, which are not distinguishable in this example. The size 
of the time steps is At = 0.01. Note that the same sequence of pseudo-random 
numbers was used for each run to stress the differences or similarities between 
the methods. 

In order to study the convergence behaviour, we compute the mean value 
(7.55) of the number operator at a fixed time T for R = 105  realizations and for 
different step sizes At. The results are displayed in Fig. 7.4. Error bars are not 
drawn in this figure because they would be roughly of the size of the symbols. 
Obviously Platen's second-order weak scheme converges very well already for 
quite large step sizes compared to the other schemes. The heuristic Runge—Kutta 
method shows the worst convergence behaviour. 

Based on the knowledge of the order of convergence it is possible to fit lin-
ear functions (in the case of the Euler, Heun and Runge—Kutta methods) or 
quadratic functions (in the case of Platen's methods) to the data points. These 
fits (also shown in Fig. 7.4) are in good agreement with the data points and 
confirm the results derived in Section 7.2.1. 

Another criterion for the assessment of numerical algorithms is, of course, the 
CPU time which is required to achieve a given accuracy of the results. Figure 7.5 
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yt 

FIG. 7.7. The average over 1000 realizations of the PDP (7.59) for the driven 
two-level atom. The continuous line shows pu  computed from the average 
over the realizations. The dashed line represents the analytical solution for 
Pli  according to eqn (3.289). The standard error of the mean is indicated by 
error bars. The parameters are the same as in Fig. 7.6. 

displays the CPU time (normalized to one) versus the error for the data shown 
in Fig. 7.4. We see that Platen's scheme shows the best performance, followed 
by the Euler scheme. 

7.3.2 The driven two-level system 

As a second example we consider the PDP given by the equation 

dW(t) = 
(11 

0-_0(t)  
illo--0(0112) 0(t)dt+ ( Ilia  0011  

0(0) dN(t). (7.59) 

As shown in Section 6.3 this equation describes the direct photodetection of 
a driven two-level system (see eqn (6.129)), while the stochastic Schn5dinger 
equation 

4(0 = il/L0(t)dt 
1 

+ —
2 

((cr_. + C/± )ip0"__  - ca_  - -
4

(a_ +a+))  0(t)dt 

1 
+ Nry  + o-± )0)0(t)d-W(t) (7.60) 
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Yt 

FIG. 7.8. A single realization for pH_ computed from eqn (7.60) according to 
the different numerical schemes of Section 7.2 with step size At = 0.01. The 
results are not distinguishable on the scale of the figure. The smooth line gives 
the analytically solution (3.289). The inset shows a magnification of a small 
part (thin line: Platen's scheme; bold line: Euler, Heun and Runge—Kutta 
schemes). Parameters: fl = -y = 0.4. 

corresponds to homodyne photodetection (see Section 6.4). In the numerical 
simulations we start with the atom in its ground state 1g) and compute the 
probability 

Pu(t) = (e1P(010) (7.61) 

of finding the atom in the excited state le). From a sample of realizations this 
probability is estimated by determining the average 

 

ii  1 
=  

r=i 

while the corresponding standard error ô-t  is given by 

- 2  1 
at  R(R — 1) TE=1(1(elOr (t))1 2  — kt) 2  (7.63) 

The discussion of the algorithm for the generation of realizations of the piece-
wise deterministic process may be kept brief because we have already collected 
all relevant formulas for the waiting time distribution and the jumps in Section 

(7.62) 
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FIG. 7.9. Estimated means of 1(e1 (T))1 2  minus the exact values for different 
step sizes and methods. The parameters are Si = 0.4, 7 = 0.4 and 7T = 8.4. 

6.3. According to eqns (7.13) and (6.133) the random waiting time 7-  can be 
determined by solving the equation 

2 
= exP( -7T/2) (1 +  7   sin2  /1-7- _I._  ; 

8112  sin in-  cos lay) (7.64) 

for T. We have used a numerical routine to find the root of this equation. In 
Fig. 7.6 we show 1(e 10 (0)1 2  for one realization of the PDP. The corresponding 
average over an ensemble of 1000 relizations can be seen in Fig. 7.7 which clearly 
reveals the convergence of the algorithm. 

Let us now turn our attention to the simulation of the stochastic Schrödinger 
equation (7.60). Single realizations calculated with the different numerical meth-
ods introduced in Section 7.2 are shown in Fig. 7.8. In the inset, showing an 
enlarged part of the image, it is seen that the weak scheme of order two differs 
from the other schemes which are still hardly distinguishable on the enlarged 
scale. 

The results of simulations with different step sizes and R = 5 x105  realizations 
per point are shown in Fig. 7.9. For the sake of clarity we display only error bars 
at points which are not too close to other points. They have been calculated 
according to eqn (7.63). The error bars omitted are of about the same size. In 
any of the four cases the numerical results are in very good agreement with 
the analytical predictions. The Runge—Kutta method seems to converge better 
than the Euler and the Heun scheme for bigger step sizes. However, if one takes 
into account the corresponding CPU times, as is done in Fig. 7.10, it becomes 
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FIG. 7.10. The CPU time (normalized to one) versus the absolute error for the 
data points of Fig. 7.9. 

obvious that these three methods are more or less equal with respect to the 
ratio of accuracy and speed. Anyhow, Platen's scheme shows again the best 
performance. This changes if one chooses parameters such that 'y < 0, i.e. if 
the deterministic part of the SSE prevails over the noise part. The Runge—Kutta 
method then shows the best performance, while Platen's scheme behaves like the 
Heun method. This is, of course, to be expected since for < fl the deterministic 
part of the equation of motion dominates and, therefore, the fourth-order Runge-
Kutta method becomes the most efficient one. 

7.4 A case study on numerical performance 

Monte Carlo algorithms are often the only way to study high-dimensional sys-
tems, for which deterministic calculations based on the numerical integration of 
the equations of motion are beyond the capacity of any computer. On the other 
hand, deterministic methods may be preferred for low-dimensional systems. In 
this section we want to present a systematic analysis of the numerical efficiency 
of the Monte Carlo wave function method and compare it with that of the inte-
gration of the corresponding density matrix equation. The main interest lies in 
the dependence of the time-consumption on the system size N. It will be shown 
that the CPU time consumption for the two approaches may be expressed in 
terms of simple power laws. 
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7.4.1 Numerical efficiency and scaling laws 

The results of a Monte Carlo simulation are always subject to statistical errors. 
These errors in turn are related to the number of realizations that are generated 
in the simulation. Hence the total CPU time required by a Monte Carlo simula-
tion depends crucially on the desired accuracy. A typical task of the numerical 
investigation could be, for instance, 'estimate the expectation value of the energy 
with a relative error of 1 %', or: 'calculate the density matrix with a precision of 
better than 10 -4  in each of its elements'. The question to be answered is then, of 
course: Under which circumstances should a stochastic simulation be preferred? 

The crucial quantity for the relative performance is therefore the number of 
realizations R. Hence, the dependence of the errors of the simulation with the 
sample size deserves a more detailed discussion. To this end let us denote by N 
the number of complex variables which are used for the numerical representation 
of the wave function, that is, the number of basis states. Accordingly, the number 
of complex variables which are necessary to represent the density matrix is then 
N 2 /2. The relation (7.9) allows us to write down the following equation 

- 2 AB ( N )  
a-t =  R ' (7.65) 

in which the factor AB (N) takes into account the dependence of the statistical 
error on the observable B and on the system size N, but does not depend on 
the sample size R. Using a sufficiently large sample of realizations, AB (N) can 
be determined by fitting eqn (7.65) to the simulated data. Then, eqn (7.65) can 
be solved for R, 

AB(N)  R E R(N) = 
at 

(7.66) 

This is the number of realizations that is necessary to achieve a given accuracy 6 -t 
for observable B and system size N. If AB (N) varies as a power of the system size, 
AB (N) — N — a , the following classification can be made (Ferrenberg, Landau and 
Binder, 1991): 

1. If x = 1, the observable B is strongly self-averaging. 
2. If 0  < s  < 1, the observable B is self-averaging. 

3. If x = 0, the observable B is not self-averaging. 

With these considerations we can now investigate the scaling behaviour of the 
CPU time required by the deterministic and by the stochastic approach to the 
numerical estimation of expectation values with a prescribed accuracy. 

In the case of the density matrix equation approach, the part of the numerical 
integration routine that dominates the CPU time consumption is the calculation 
of the generator fp of the Lindblad equation. One such calculation requires, for 
large enough N, an amount of CPU time proportional to a power of N, and 
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the CPU time needed to integrate the density matrix over a given physical time 
interval is, to leading order in  N, 

TDME = ki Si (N) AT' 3  .  (7.67) 

Here, Si  (N) is the number of times the quantity rp has to be evaluated, ki and 
)3 depend on the type of the specific problem, but not on  N.  Besides, ki  depends 
on the particular implementation on a computer. 

Analogously, in many examples the time-critical part of the stochastic sim-
ulation is the calculation of the generator ko, and the CPU time required for 
the simulation is 

Tsts = k2 R(N) s 2 (N)  Na.  (7.68) 

R(N) is the number of realizations of the process that are generated to treat the 
system of size N, 82(N) is the number of evaluations of kii) for one realization, 
and k2  is analogous to k i . 

In many situations, s i  (N) and 5 2 (N) will be roughly equal. Provided that 
similar numerical integration routines are used, this is the case if the smallest 
time scale of the dynamics of the stochastic wave function is about equal to that 
of the density matrix. Since we want to separate the effects of system size from 
dynamical phenomena, this case is the one of interest for us, and the example 
presented in Section 7.4.2 illustrates that case. 

Let us briefly note that there are also situations where s i  (N) and s2 (N) 
are quite different. In general their ratio might depend on N and they do not 
necessarily grow in the same way with the physical time over which the system 
is studied. Consider the case where the time scale of the dynamics of a single 
realization of the stochastic process varies, during its temporal evolution, in a 
wide range, as for example, in laser cooling (see Section 8.3). The simulation of 
one realization will then contain stretches with very long time steps, interrupted 
by phases of more rapid development and short time steps. The integrator of 
a density matrix equation, on the other hand, which describes the dynamics of 
the whole ensemble, must always adapt to the short time scale. Clearly, in such 
cases the stochastic wave function method is the preferred choice. 

The number of floating point operations to calculate rp and to calculate kV) 
differ by about a factor  N,  and one expects 

e& a + 1.  (7.69) 

This relation will be verified in the example below. Concluding these general 
considerations, we can write eqns (7.67) and (7.68) in a more succinct form 

TDME = k i. NŒ+1 
 

(7.70) 
Tsts --= k2  Na— x .  (7.71) 

Here we have assumed that the numbers of steps s i  and 82 are roughly equal 
and can be absorbed into the constants a, le i  and k2 . The performance of the 
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stochastic wave function method versus that of the density matrix integration 
can be measured by the difference between the exponents, which is 1 in the 
non-self-averaging (x 0) and 2 in the strongly self-averaging case (x =1). 

7.4.2 The damped driven Morse oscillator 
Let us illustrate the scaling laws (7.70) and (7.71) for the CPU time consumption. 
To this end, we consider a non-trivial example, namely a damped Morse oscillator 
which is driven by a time-dependent force. It will be seen that the scaling laws 
are very well satisfied for this non-linear problem. 

7.4.2.1 Description of the model The Hamiltonian describing the coherent 
part of the dynamics is taken to be 

Hs(t) = Hm +  (7.72) 

where 

1 no Hm =  + V (q) (7.73) 

and 

V (q) = D[1— exp(—bq)1 2  (7.74) 

is the Morse potential. The Morse Hamiltonian (7.73) may be used to model, 
e.g. a molecular degree of freedom within a single electronic potential energy 
surface. With an appropriate choice of the parameters it yields a fairly realistic 
description of, for example, the vibrational dynamics of the local O-H bond in 
the water molecule. The external driving is described by the interaction term 

HL(t) = pqFo s(t) sin cuLt.  (7.75) 

Here, fig is the relevant component of the molecular dipole moment, F0  is the 
maximum field strength and s(t) is the envelope of the driving pulse. To be 
specific, we take 

s(t) = sin2 tp  (7.76) 

in the following, where tp  represents the pulse length. For the physical back-
ground of this model see Manz and W6ste (1995). 

The Morse Hamiltonian Hm has a finite number N of bound states which 
depends on the parameters of the Morse potential V(q). The following inves-
tigation will be restricted to the case where the dynamics is well confined to 
the bound state sector of the Morse oscillator. The simulation will therefore be 
performed in the energy eigenbasis 1j), j = 0, 1, 2, ... , N — 1, of Hm with the 
corresponding energy eigenvalues Ei  which are known analytically. 
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The jump operators are taken to be 

k  j, k = 0,1, .  ,N — 1,  (7.77) 

with corresponding rates 7jk. These rates are assumed to be given by the expres-
sions for the weak-coupling master equation describing the dissipative dynamics 
in a thermal reservoir. The operators Ajk are eigenoperators of Hm belonging 
to the eigenvalues (Ej  — Ek ). The effect of the jump operator Aik on the system 
wave function may thus be interpreted as a transition describing the emission 
or absorption of a vibration quantum of energy lEj — Ek I. In the energy repre-
sentation the Markovian master equation for the matrix elements pik = (jlpsik) 
therefore reads 

dpik  . 
  = -1(E - Ek) Pik - if (t) E (Q.j1 Plk Qlk Pii) dt 

1  
+6ik  7i1 MI) —( —2  + rk)Pjk• (7.78) 

The corresponding PDP is governed by the following equation for the components 
of the normalized state vector 0, 

1 
= —i(EljOi + f(t) EQikok)  (E -yki - E-ykiloir) Oi dt .) k  k  kl 

-FE (  - oi) dNk, (0.  (7.79) 
kl 

In these equations f (t) is the time-dependent external force (cf. eqn 7.75) 

1(0 = 1.c.Fo s(t) sin(c Lt),  (7.80) 

and the Qj k = (j  lql k) are the matrix elements of the dipole operator. The matrix 
(Qjk) is real and symmetric. ri  is the total rate of all jumps away from I i),  

N-1 
= E 

m.0 
(7.81) 

Finally, the Poisson increments satisfy 

dNki (t)dNki (t) = 6kki 6u ,  dNki (t),  (7.82) 
E [dNki(t) =`Tiakbil 2 dt.  (7.83) 
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FIG. 7.11. The CPU time per step for the integration of the density matrix 
equation (A) and for the propagation of the wave vector V) (o). The dotted 
lines indicate how the exponents a and /3 were calculated from the slope; the 
continuous lines simply connect the data points. 

7.4.2.2 Simulation results In the following we solve eqns (7.78) and (7.79) and 
compare the numerical performance for both equations. The initial state is always 
taken to be the ground state of the Morse oscillator. In order to study the effect 
of the system size on the time consumption of the numerical routines, a series of 
similar oscillators with varying number N of bound states was investigated. The 
system size N was varied in the range N = 12, . . . , 78. In order to not just blow 
up the number of states, with the actual dynamics always staying in the same 
number of low-lying states, it is necessary to appropriately scale the driving field 
as well. For the following study two parameter combinations are employed, one 
corresponding to weak damping, the other to strong damping. We also note that 
the same Runge—Kutta routine is used for the integration of the density matrix 
equation and for the integration of the deterministic pieces of the PDP. The 
details of the physical parameters used and of the numerical implementation are 
described by Breuer, Huber and Petruccione (1997). 

Let us first look at the exponents a and O' which were introduced in eqns (7.67) 
and (7.68). Figure 7.11 shows the CPU time per time step of the numerical in-
tegrator as a function of the system size N.  Measuring the slope of the lines one 
finds 

= 3.0 ± 0.1,  a ------ 2.0 ± 0.1,  (7.84) 

which confirms eqn (7.69). These values can be easily understood: In the case 
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FIG. 7.12. The triangles (A) display 8 1 , the number of integrator steps to cal- 
culate one pulse using the density matrix equation. The diamonds (o) show 
8 2 , the average number of steps to calculate one realization of the process. 

of the stochastic simulation, the most time-consuming part is the multiplication 
of V) with the dipole matrix Q (cf. eqn (7.79)), which requires 0(N 2 ) floating 
point operations. Analogously, for the density matrix integration the calculation 
of the right-hand side of eqn (7.78) for all j and k involves 0(N 3 ) floating point 
operations. 

Figure 7.12 displays the number of integrator steps 8 1  and 82 that are nec-
essary to calculate a whole pulse. As we can see s i  and s2 increase with N,  but 
remain roughly equal. Their increase is due to particular properties of the pre-
sented example. The systems of differential equations which have to be solved 
for the density matrix calculation and for the stochastic simulation both become 
stiffer with increasing N. In particular, the ratio between the highest and the 
lowest eigenenergy of the oscillator grows about linearly with increasing N. 

In order to investigate the behaviour of R(N), the number of Monte Carlo 
realizations that have to be generated to treat a system of size N, it is necessary 
to look at the standard error of the observables of the system. Let us consider. 
for example, the energy Hm of the Morse oscillator, whose standard error will 
be denoted by H.  According to eqn (7.66) we have 

A ll-(N) 
R(N) =   (7.85) 6,-, 2  • 

H 

Figure 7.13 shows the behaviour of the function AH(N) for two different environ- 
ment parameter sets. Up to statistical fluctuations, A(N) and, therefore, R(N) is 
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FIG. 7.13. The function All-(N) measures the self-averaging property of the 
mean energy of the Morse oscillator Hm, cf. eqn (7.65). The triangles A 
correspond to weak dissipation, the diamonds o to strong dissipation. 

a non-increasing function of N. Similar results are obtained for other observables 
and for the matrix elements of p. This means that, in order to achieve a constant 
statistical error in the simulation results when the system size N is increased, 
the number of realizations need not be increased. It follows that the stochastic 
simulation will eventually, for large system sizes, be always faster than solving 
the density matrix equation. 

This result is exemplified in Fig. 7.14. The plots show the CPU times needed 
to integrate the density matrix equation and to generate as many realizations 
of the stochastic process as are necessary to obtain the standard error ô-H = 
4.10-3  of the mean oscillator energy. The number R of realizations was calculated 
with the help of eqn (7.85). According to Fig. 7.13, we chose AH(N) = 10 -3  
independently of N. The curves follow different power laws and at some point 
No  they intersect. In the present example, No  r-t: 35 for the weak dissipation 
case and No ',:ss.,- 55 for the case of strong dissipation. Above No , the stochastic 
simulation is faster. 

The main result of the numerical study is that the CPU time for the density 
matrix integration TDmE and the time for the stochastic wave function simula-
tion Tsts scale with the system size N as 

 

TDME ' N3 / 
 (7.86) 

 

TStS ' N2 . 
 (7.87) 
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FIG. 7.14. CPU times needed to integrate the density matrix equation (A) and 
to generate as many realizations of the stochastic process (o) as are necessary 
to obtain the standard error 6-H =  4.  10' for the mean oscillator energy. 
The plots on the right-hand side cover the full variation of the system size 
while the plots on the left side zoom in at lower N. 

Although the numerical study was performed on a specific example, the consid-
erations made in Section 7.4.1 are far more general. In particular, whereas the 
absolute values of the exponents in eqns (7.86) and (7.87) depend on specific 
properties of the system under study, their difference is of more general signif-
icance. Under general conditions, the exponent in the expression for TDmE is 
expected to be larger by 1 to 2 than the exponent of Tsts. 

The quantities TDmE and Tsts that have been investigated above stand for 
the time that the programs run on a single processor. When comparing the effi-
ciency of numerical codes that are designed for processing on a parallel computer 
with many processors, other important criteria are speed-up and scalability. The 
speed-up is defined as the ratio between the wall-clock times needed to do the 
job on a single processor and on the parallel computer. Scalability means that 
the speed-up is close to the number of processors of the parallel machine, for a 
wide range of numbers of processors. This implies that little time is spent on 
the communication between processors and that the synchronization overhead 
is small. Whereas an efficient, scalable parallelization of the density matrix in- 
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tegration might be a complicated task, the stochastic wave function method is 
an intrinsically parallel and very well scalable algorithm. Since the individual 
realizations of the sample are generated independently, the only communication 
needed is for the final averaging or archiving, and for parameter control. Monte 
Carlo methods are therefore ideally suited for parallel processing. 
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APPLICATIONS TO QUANTUM OPTICAL SYSTEMS 

Chapter 6 provided a number of simple examples for stochastic processes in 
Hilbert space and their derivations in the framework of continuous measurement 
theory. The present chapter deals with a presentation of the theory on the basis of 
the microscopic equations of quantum electrodynamics (QED). The emphasis lies 
on the derivation of the quantum operations and the corresponding stochastic 
processes for various detection schemes directly from the Hamiltonian which 
describes the interaction of the matter degrees of freedom with the quantized 
electromagnetic field. Throughout this chapter we will treat the matter degrees 
of freedom non-relativistically, having in mind applications to quantum optics. 

After a brief survey of the quantization of the electromagnetic field we start 
with the derivation of the general expression for the QED operation which de-
scribes the back-action on the matter degrees of freedom induced by the measure-
ment on the field variables. From the general expression we deduce the stochastic 
representation for the multipole radiation of the matter current. The stochastic 
dynamics will be formulated in terms of a stochastic equation of motion for the 
reduced density matrix of the source. For the case of a complete measurement 
of the quantum numbers of the radiated photons a stochastic evolution equation 
for the state vector of the source is obtained. We shall also deal with incom-
plete measurements. They lead to an unravelling of the dynamics in the form 
of a stochastic density matrix equation which does not preserve the purity of 
quantum states. 

The chapter includes a detailed discussion of some important physical prob-
lems for which the interplay of coherent quantum evolution and dissipative pro-
cesses plays an important rôle. First, we investigate the emergence of dark states 
in the interaction of atoms with coherent laser fields. In addition, we study the 
mechanism of coherent population trapping in the sub-recoil cooling of atoms 
in laser fields. The corresponding piecewise deterministic process for the quan-
tized motion of the atoms is derived. It provides an interesting example of the 
emergence of long-range Lévy-type distributions resulting from a quantum in-
terference effect. Finally, we examine dissipative phenomena in the dynamics of 
systems in strong periodic driving fields. Appropriate stochastic wave function 
dynamics can be derived by employing the representation of the reduced system's 
state vector in a basis consisting of Floquet states. 
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8.1 Continuous measurements in QED 

8.1.1 Constructing the microscopic Hamiltonian 

To begin with, we briefly recall the quantization of the free radiation field (see, 
e.g. Bjorken and Drell, 1965) which may be represented by the free field operator 

t) for the vector potential. Imposing the Coulomb gauge condition 

• ;i( , t) = o,  (8.1) 

electric and magnetic field operators are given by" 

1 0 - 
Ê(-1' t)  =  
fi(Z, t) =  x 

The field operators are Heisenberg picture operators satisfying the wave equation 

(  182 A)  o. 
e2 ot2 

(8.4) 

For the following discussion it will be helpful to decompose the radiation 
field into a complete set of mode functions  Ûx  (x)  labelled by some index A. They 
satisfy the Helmholtz equation 

2 
(A ± ) (Z) = 0 (8.5) 

with suitable boundary conditions, and are normalized such that 

f d3x  ÛX()  • tfA ,  ( -2) =  i.  (8.6) 

The quantity cdJA denotes the frequency of the mode A. We further impose the 
condition that the modes are transverse, 

f • CA (Z) = 0 1  (8.7) 

such that the completeness relation for the modes takes the form 

= (5y (i, it )  EE & ii — —  ( 
A A 

Here, (5,? ("Z , r) is the transverse 6-function which, applied to any vector field, 
projects onto the transverse component of the field. 

14 1n this chapter we write explicitly all physical constants such as Planck's constant h, the 
speed of light c, electron charge e and mass m. Further, we use Gaussian units such that the 
fine structure constant is given by a = e 2  /he 1/137. 

(8.2) 

(8.3) 

(8.8) 
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On using the mode functions we can represent the vector potential as, 

A4(Y, t) = E  tiac2  (OA (Z)e —iwA t b), + C/(x)e iwA t btx ) ,  (8.9) 
WA A 

while the electric field operator takes the form 

f(,t) = iE v27rhw, (ri, (y)e—twAtb,„ _ c(i)etwAtbtA )  (8.10) 
A 

The operators btA  and b), are the creation and annihilation operators for the 
photons of mode A, satisfying bosonic commutation relations, 

[bA l  btv ]  = (5AA 1  / 
 (8.11) 

[bA, bAil -= [btA , btv ] = 0.  (8.12) 

In particular, we denote by 

IA) = btAIO)  (8.13) 

the one-photon states, where IC» is the vacuum state of the field. Exploiting these 
commutation relations one obtains the equal-time commutation relations for the 
field operators, e.g. 

[Ei  (x , t),Ai(P,t)] = 47rihc 4. (4 -i').  (8.14) 

The projection onto the transverse component embodied in the transverse  5-
function on the right-hand side of this equation ensures that the commutation 
relations are compatible with Gauss's law t • f = 0 for the free field. Finally, in 
the radiation gauge the free Hamiltonian of the transverse degrees of freedom of 
the field can be written as 

HB  = 1  f d3 x  [g2 ± fp] 
8ir 

--_, E tiWA (btA bA ± —1 ) 
2 

A 

1 = 87r f d3x [f2 ± A.(_,A)11] 

(8.15) 

The degrees of freedom of the electromagnetic radiation field will now be cou-
pled to the electronic degrees of freedom of a bound quantum system, an atom. 
for example, whose self-Hamiltonian is denoted by H. The Hamiltonian H1 de-
scribing the interaction between the electrons of the system and the radiation 
field can be written as 

Hi(t) = — f d3 x { .-./( -i, t) • if(i, t) +  e  AZ, t) •  fi(Z, t)}  .  (8.16) 
c  me  
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We treat the matter degrees of freedom in the non-relativistic approximation and 
neglect the diamagnetic term which is proportional to the square of the vector 
potential. The quantity j(, t)  is the paramagnetic electron current density, 

1 
je

(
,t), E —27n  Va)  (t)6 (I — I ( a) (t)) + 6 (.I — 20) (0) /5(a)  (t) } ,  (8.17) 

a 

whereas gri, t) is the electron spin density, 

Az, t) = E 6 (Z — I(a)  (t)) —h 6"(ct) • (t)  (8.18) 
2  

a 

Later on we shall also use the expressions for the electron density 

Q(, t) = E 6 (I — i(a)  (t)) ,  (8.19) 
a 

and for the orbital angular momentum density 

r(Z, t) ---, na x jtv, t) 
= E 1 { (a) (06 (I — Y(a)  (t))  + o (I — Z(a)  (t)) Da)  (t) } . (8.20) 

a 

In these formulae the index a runs over the electrons of the system, and i(a) (t), 
0'0 (0, i ( a) (t), and hei ( a) (t)/2 denote, respectively, position, linear momentum, 
orbital angular momentum, and spin operators of the particles in the interaction 
picture. Equation (8.16) thus describes the interaction of the electromagnetic 
field with the paramagnetic electron current density j and with the density of 
the magnetic moment associated with the electron spin density. Note that the 
interaction Hamiltonian Hi (t) as given in (8.16) involves the interaction picture 
operators for the field and for the matter degrees of freedom, such that H1  (t) is 
the interaction picture Hamiltonian. 

8.1.2 Determination of the QED operation 
Let us now derive the general expression for the operation pertaining to a con-
tinuous monitoring of the electromagnetic field variables. To this end, we first 
take an ideal case and suppose that we can perform a complete, orthogonal 
measurement of the one-photon states IA). This means that we assume some 
measurement device which is able to detect the quanta radiated by the source 
together with a measurement of a complete set of quantum numbers A of the 
photon. 

Following our discussion in Sections 6.2 and 6.3 we consider again the field 
vacuum 10) acting as the probe state. In accordance with our previous notation 
we denote by 7-  the considered time interval of the interaction between object and 
probe system, that is, between source and radiation field. The arbitrarily chosen 
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initial time is denoted by to , such that t = to  + T is the final time at which the 
measurement on the radiation field is performed. Also, the initial density matrix 
of the source at time to is written as 5- . 

Employing second-order perturbation theory we then find with the help of ex-
pression (8.16) for the interaction Hamiltonian that the corresponding operation 
is given by 

 

= QA&Q tA ,  (8.21) 

where the operator ft  takes the form (cf. eqn (6.86)) 

S-2 ),f  (A1111 - (e)10 =  
27c2  f dtteiwAti 
hci.JA 

t o  to  

x f d 3 x {:iV,t') • -0; (I) + --e—grY,e) • [t*  x -0]} . (8.22)
rue 

The operation for the event that no photon is detected over the time interval r 
can be written as 

(8.23) 

where 

t' 
1 

= —  f  f dt"(01H1(e)Hi(t")10).  (8.24) 
to  to  

Inserting a complete set of states, which may be restricted to the one-photon 
sector here, we get the equivalent expression 

J t fdt"Epo-Lt(e)10) -t(AIH,r(t")14 
to  to 

(8.25) 

These relations will be used below to determine the operation for the detection 
scheme. 

In order to deal with the time integration involved in the operations (8.22) 
and (8.25) we shall decompose the various densities into eigenoperators of the 
Hamiltonian Hs of the source. These eigenoperators are defined through (com-
pare eqn (3.120)) 

, w )  = E II(E)  0) II(E'),  (8.26) 
E' E=hw 

with analogous relations for the particle density p, the spin density and the 
orbital momentum density r. The operators f (i, 0), QV, 0),  0) and 4.z, 0) 
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denote the corresponding Schrödinger picture operators taken at a fixed time 
t = 0. Furthermore, II(E) denotes the projector onto the eigenspace of Hs 
corresponding to the energy eigenvalue E and the sums are extended over those 
energies E and E' which belong to a fixed energy difference of hw.  . We assume 
that H8  describes a bound system such that the interaction picture densities are 
given sums taken over a discrete set of system frequencies co, 

 

(  t) , E e-iwvry, w) + h.c.,  (8.27) 
w 

 

C iw t o(Z, w) + h.c. ,  (8.28) 
Lo 

 

AZ , t) = E e —i't g(Z, w) + h.c.,  (8.29) 
w 

t) = E ciwtrri, w) + h.c.  (8.30) 
w 

On using this decompositions into eigenoperators we can write the operator 
S-2À which determines the operation for the event that a photon with quantum 
numbers A is detected as follows, 

— 
!IA = E 

2 2 
 exp[i(wA co)tol

exp[i(coA co)7-1 — 1 c 

A  co,), — co w 

x f d3  x { -. i ( - i , c.4.)) • 03: (Z) + me  e ,§(i , c.4.1) • [f x ti'; (Z)] } ,  (8.31) 

Since the mode frequencies co), are positive the sum over the system frequencies 
w may be restricted to run over the positive frequencies only, which will always 
be assumed in the following. 

We see from eqn (8.31) that the operation defined by f2,), leads, in general, 
to complicated short-time behaviour of the object system. In the following we 
assume that the discrete system frequencies co are well separated with a minimal 
distance which is large compared to A — 1/7 - , the energy uncertainty associated 
with the interaction time r. Physically, this means that over interaction times of 
order 7-  we can distinguish the frequencies radiated by the system and identify 
uniquely the corresponding transition of the object system. In other words, we 
are considering a spectral detection of the object system with a finite resolution 
which is small compared to the widths of the transitions but large in comparison 
to the distance between their frequencies. 

Under this assumption, we see that for a given frequency cox of the field modes 
there is exactly one term which dominates the sum over co in eqn (8.31). This is 
the term which fulfils the condition 

wA E To  E [co — A, cd.., + ,A].  (8.32) 



396  APPLICATIONS TO QUANTUM OPTICAL SYSTEMS 

Thus, by keeping only the secular term in the operation we obtain for the QED 
operation (omitting irrelevant phase factors), 

27c2  exp[i(wA — w)7] — 1 
hCO À  C 4., A - CA1 

x f d3  x {—e  :I r Y , co) • (TX (i) + —e--.§4ri,w) - ['- x 043: rid} , (8.33) 
C  ITLC 

where the system frequency w is determined by condition (8.32). 

8.1.3 Stochastic dynamics of rnultipole radiation 
As an example let us discuss the case of the spectral and angular momentum 
measurement of the emitted photons. The complete set of quantum numbers A 
measured by the device consists of the frequency of the photons, the square of 
the total angular momentum, the component of the angular momentum in a 
fixed direction éz , and the parity quantum number. Hence, the index A is given 
by the set of quantum numbers 

 

A = (k, J,  M,  ii) ,  (8.34) 

where J = 1, 2, 3, ... , M =  — J, — J  + 1, . . . , J — 1, J, and  it = 0, 1. The one-
photon states IA) thus describe free photons with definite frequency WA --=_L- wk = 
ck. They are eigenstates of the square of the total angular momentum of the 
field, of the z-component of the total angular momentum, and of the parity 
operator with respective eigenvalues h2  J(J + 1), hM , and (-1).1-7 . Our aim 
is to derive a stochastic differential equation for the density matrix a(t) of the 
source corresponding to this measurement scheme. 

As is well known the mode functions OA(Z) represent electric multipole fields 
for it = 1 and magnetic multipole fields for it = 0 (Akhiezer and Berestetskii, 
1965). Coupling the orbital angular momentum and the spin of the photons, one 
can express the mode functions in terms of superpositions of products of vector 
spherical harmonics and Bessel functions, corresponding to their angular and 
radial part, respectively. They form a complete set and can be chosen to satisfy 
the normalization condition 

f d3  x -0;,` (i) • tiv () = (5(k —  (8.35) 

We do not need here the explicit expressions for the mode functions; they 
may be found, for example, in Shore (1990). In the range of optical frequencies 
we may use the approximation kd < 1, that is we assume that the wavelength is 
large compared to the linear extension d of the source. Consequently, only the be-
haviour of the mode functions in the vicinity of the origin is relevant. Substituting 
the explicit expressions into (8.33) one obtains for the operation corresponding 
to the detection of a photon with quantum numbers A =  (k, J,  M, it),  



7.7(w) = J(2J +1)[(2J — 1)!!]2  h 
2(J + 1) k2J+ 1 
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f2 1cJA17z - 
CA 
 

kJ 

rh (2J — 1)!! 
j +1 eXP[iPlc — WM — 1  IQ j  m7r(w). (8.36) 

J(2J +1)  

Here we have introduced the frequency components of the electric 2J-pole mo-
ments, 

Qjm ,7=1(W) = 
\I 

 47 
2J + 1 

f 
d3 x ep( -2,w)rly; 1 (Z),  (8.37) 

and of the magnetic 2 .1 -po1e moments, 

Qm,7r=o(w) =1/ 27:F 1  f d3 x inee  [ j  +1  , w) + 1  r( -2  W' -, cd • (Z )   

(8.38) 

In these formulae the Yjm(4 denote the ordinary spherical harmonics, r E IA • 
and n!! . 1 • 3 • 5 • for n odd. 

It follows from eqn (8.36) that the spectral angular momentum measurement 
of the radiated photons leads to a PDP with the quantum jumps 

 

Chm7(w)eiCifi1,(w) 

 

(8.39) 
tr s  

For each particular set of quantum numbers (co, J, M, 7r) we thus have a certain 
jump which is given by the application of the corresponding transition frequency 
component IQ jm 7r  (0) of the 2 .1 -pole moment. 

The rate corresponding to the jump (8.39) is given in the Markov and rotating 
wave approximation by the expression 

co 
1 
— f dk trs fi --21 jm„f2 kJm71-6- } ,rz--,' 7,7(w)tr s {Q tJA4-7,-(w)C 2J m7r(w)6- } ,  (8.40) 
T 

o 

where 

(8.41) 

These are the well-known expressions for the transition rates of electric and 
magnetic multipole radiation. 

Finally, we need to derive the expressions for the event of no photodetection. 
Invoking again the Markov and the rotating wave approximation, eqn (8.25) 
leads to 

(8.42) 
c..)J M7 



ih 
g (a) = — -y./(w)(c24-„(w)(2.7m7,-(coa+.0-QtJ„,(w)(2,/m7r(w)) 

ca M7r.  

+ih E 7,,(w)trs {Qtjm .n.(w)Q jm„(w)o - } a 
c.0,1 Mir 

(8.44) 
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where we have neglected the Lamb shift which yields a contribution to the Hamil-
tonian Ils of the source. Therefore, we get the following expression for the op-
eration of the zero photon detection event, 

 

Qo 6-  Q to  s'ss I — iG(a)dy, 
h 

(8.43) 
trs  

where the super-operator 

represents the generator for the deterministic parts of the PDP. 
Summarizing these results we have found that the spectral and angular mo-

mentum monitoring of the source results in a PDP which obeys the following 
stochastic differential equation for the density matrix (7(0 in the interaction 
picture, 

do- (t) = — G (0-  ( t))dt 
h 

± 
,Jmn- trs{w,„,„r (w)(2Jm7r(w),,-(01 1 a(t) dNwjm „(t). 

(8.45) 

The complete jump statistics of the PDP is embodied in the Poisson increments 
which satisfy 

dNuj j17r (t) dNuj i ji mi ir,  (t) =7 (5wc,) ,  (5 jj ,  (5m m/ (571- 7  , dNw  jm 7  (t),  (8.46) 

E [dN„,jm„ (0] = -yj(w)trs {W I m ,r (w)Q jm 7 (c.o)o- (t)} dt. (8.47) 

It is immediately clear that eqn (8.45) leads to a stochastic process for pure 
states. As already discussed in Chapter 6, this is directly connected to the fact 
that we have performed a measurement of a complete system of observables of 
the photon, and because the back-action induced by these measurements depends 
on the photon frequency c,., /, only through the frequency cd..) of the transition of 
the source. 

8.1.4 Representation of incomplete measurements 
Let us consider the specific case of electric dipole radiation (J = 1, 7 = 1). The 
jump operators may then be written as 

(2 1 m,„= 1  (w) E-. éli- • Â(w), M = 0, ±1,  (8.48) 
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where 

1 
•ect =  e±i =  [ix ± iiy] 

and 

= f d3  x  e, 

is an eigenoperator of the total dipole moment 

B(t) = f d3  x e Z, trX' Ee—uotif(w)± h.c. 

(8.49) 

(8.50) 

(8.51) 

corresponding to the transition frequency w. 
A complete measurement for electric dipole radiation thus encompasses the 

detection of the transition frequency w and of the angular momentum component 
hM of the photon along the fixed direction ez . The stochastic evolution equation 
(8.45) then directly yields the following stochastic equation for pure states, 

do(t)=_G(i,(0)dt+E E 
m=0,± 

[ Oil  • 24*(w)0(t)  0(01 corw,m(t), 
IICM • if(w)0(t)ii 

(8.52) 

where the generator of the deterministic pieces of the PDP is 

G(0) 

ih 
2  E-y(w)(41(w)•if(w)—(ift(w)-24*(w )) ,b)//) 

ih 
+ —2  E (c4) ) (Al  GO • if(w)) ,0 

The expectation values of the Poisson increments dN,,,, m  (t) are given by 

E [dN„,m (0] =-y(w) in, • if(c0)0(011 2 dt, 

\ 

 

where 

4 w3  
7(w./ = 3 he3  

EH  (8.53) 

(8.54) 

(8.55) 

which gives the well-known transition rate for electric dipole radiation. 
We now suppose that the measurement of the photon spin component hM 

is carried out on the non-selective level, that is the information on the photon 
angular momentum along ez  is thrown away. The stochastic process then loses the 
property of transforming pure states into pure states under the time evolution. 
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The dynamics must therefore be described in terms of a stochastic evolution 
equation for the density matrix  a(t) which takes the form 

do-  (t) = — —hi  G(o- (t))dt 

A(w)a(t)At (w)o-  Mill (w) 
±  ,.., [tr s {At (w) • if(w)0-(0} 1 o- (t) dN,(t).  (8.56) 

As can be seen the operation pertaining to the detection of a photon with fre-
quency c.,.) now involves an incoherent sum over the angular momentum compo-
nents, 

24*(w)(7211(w) = E (e11`1 • 24+(w))un • 24*(w)) f  . 
 (8.57) 

M=0,± 

This expresses the fact that no information on the angular momentum of the 
photons is obtained during the monitoring of the field. As a result the statistics 
of the Poisson increments depends only on the mean transition rate obtained by 
averaging over the angular momentum components, 

E [dN, (t)] = -y(w)tr s  {Al (w) • 2i(c4))0-(01 dt.  (8.58) 

One can easily imagine a situation in which even the information on the 
frequencies of the photons is thrown away. In this case we obviously have only one 
type of quantum jump. These jumps are counted by a single Poisson increment 
dN (t) which satisfies 

E [dN(t)] = E-y (w)tr s  {Al (w ) • if(w)0- (01 dt.  (8.59) 
w 

The stochastic differential equation for the resulting PDP thus reads 

do-  (t) =  

[  E, 7(4))24*(c4))o- (t)iff  (w) ±  o- (t) dN (t).  (8.60) 
trs { E, 7(w)ift (co) • A(w)a(t)} } 

In summary, we observe that by successively reducing the number of ob-
servables measured selectively in the detection scheme one obtains different 
stochastic evolution equations, involving different jump super-operators which 
contain an increasing number of summands. This results from the smaller amount 
of information which is extracted from the system: The coarse graining of the 
detection scheme leads to a back-action on the object system which describes a 
stronger increase of entropy. 
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FIG. 8.1. Level scheme leading to a dark state resonance by a quantum in-
terference effect. The figure shows the coupling between two J, = Jg  = 1 
angular momentum manifolds through two counter-propagating laser beams 
with different helicities o-± . 

On the other hand, as can be seen from the equations derived above, the 
generator g for the deterministic pieces of the PDPs is always the same. This is 
due to the fact that the deterministic part of the process corresponds to the event 
of zero photon detection and is, thus, not influenced by the specific form of the 
detection scheme. This can also be deduced directly from eqn (8.25) which shows 
that the operation for the zero detection event depends only on the one-photon 
subspace, but not on the specific basis of one-photon states chosen. The same 
situation already occurred in the case of homo  dyne photo detection (see Section 
6.4). 

8.2 Dark state resonances 
In order to illustrate the foregoing discussion we investigate in this section a 
transition between two angular momentum manifolds (Molmer, Castin and Dal-
ibard, 1993). This example leads to the emergence of a certain trapping state 
of the process, known as a dark state, which will play an important rôle in the 
following section. 

8.2.1 Waiting time distribution and trapping state 
We consider a two-level atom with transition frequency w o . Both levels are three-
fold degenerate forming manifolds with total angular momentum J, = 1 (excited 
level) and Jg  = 1 (ground level). The level scheme is depicted in Fig. 8.1. We 
introduce the energy eigenstates g, m g ) and e, me ) which are simultaneously 
eigenstates of the z-component of the atomic angular momentum operator with 
eigenvalues hrng  and hrne , respectively. The frequency component A(w 0 ) .,21_4  of 
the atomic dipole operator _6 can then be written as 
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ii4  =  E  19, Tng)(9, mg Iblejne)(e, me'. 
 (8.61) 

mg,me =0 , ±1 

Since b' is a vector operator, .244. can easily be expressed in terms of the reduced 
matrix element of the dipole operator, which will be denoted by d, and the 
Clebsch-Gordan coefficients (1m e 1M 1m9 ) which describe the coupling of the 
atomic angular momentum and the photon angular momentum with components 
M = 0, ± h. 

In addition to the coupling to the vacuum of the radiation field the atom 
is subjected to a resonant laser field with frequency coi, = wo , which is linearly 
polarized in the y-direction. One observes that the transition me  = 0 mg  = 0 is 
forbidden since the corresponding Clebsch-Gordan coefficient (1010110) vanishes. 
If we take some initial state in the manifold spanned by the states 1g, m y  = ±1) 
we then find that the dynamics is confined to the subspace spanned by the basis 
states 

le, m e  = 0), 1g, m g  = +1), g,mg  = - 1).  (8.62) 

The representation for the frequency component of the dipole operator in this 
subspace is found to be 

d A x  =  
id 

A y  = — -y (1g, +1)(e,01 - 1g, -1)(e,01), 

A, = 0. 

(8.63) 

(8.64) 

(8.65) 

On using the resonance condition the Hamilton operator describing the linearly 
polarized laser field can be written in the interaction picture as 

HL  = -Eo  (Ay  + Aty ) = ih9  -1 0 0 , 
2   (+1 0 0)  

(8.66) 

where 9 = dEo /h denotes the Rabi frequency and E0  the laser field amplitude. 
The second equation shows the matrix representation in the basis (8.62). If we 
note further that 

,214t • A=  AtAx + Aty Ay  = 41 2 1e, 0)(e, 0 1, 
 (8.67) 

we can write the non-Hermitian Hamiltonian ii in eqn (8.53) 

k =  HL  —ih; Y  L,  le,o)(e, 0  
ih ( 7  9 —9 ) = - — -9 0  o),  2 9 0 0 

(8.68) 

where the atom-laser interaction has been added to ft. Note that we have ab-
sorbed the square of the reduced matrix element into -y which thus has the 
dimension of inverse time. 
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o 
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On using these results it is easy to write down analytical expressions for the 
non-Hermitian evolution and the cumulative distribution F[0, t ]  for the random 
waiting time t for the PDP defined by the general equation (8.52). Since after 
any jump the state always ends up in the manifold spanned by the states g, ± 1), 
it suffices to determine these quantities for the states lying in this subspace, that 
is, for the states of the form 

On diagonalizing k one easily finds that for these states 

1  2  (V+ - V-) 9(0 
exp 

 (

--fit) co  = - (p+  (1 — h(t)) + cp_ (1 + h(t))  (8.70) 
h 

whereas the waiting time distribution is given by 

F [co,t] =  1—  Ilexp(—ikt/h)(P12  (8.71) 
1 = 1 - -2 (1+  h2 (t) + 2g2 (t)) - 1? ()  (1-  h2 (t) - 292 (t)) . 

Here we have introduced the abbreviations 

g(t) = _.it/4  sin (1) , 
tt 

h(t) = _e— t,' 4  [cos (1) + iii  sin ( ta , 

with 

,y2 
211 2  - 4' •  (8.72) 

In the following this quantity is assumed to be real and positive. 
The important property of this example is that the non-Hermitian Hamilto-

nian (8.68) has a zero mode which is given by the state 

 

o I. 
One = — (19,+1 ) +1g, -1)) = 

1 
r-(1), (8.73) 

that is, we have 

fhPric = o. (8.74) 

It follows that F[0,,,, t] E 0. The state O n, is therefore a stable state of the pro- 
cess for any measurement scheme, which means that, once this state is reached, 
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y t 

FIG. 8.2. Four realizations of the PDP for a two-level system driven by a res-
onant laser field polarized in the y-direction. For each realization OM the 
figure shows the population r(t) = 1(0nci0(t))I2  of the trapping state Onc• 
The stochastic process corresponds to the measurement of the photon angular 
momentum along the z-axis. The initial state is 0(0) = 1g, 1) and 0 = -y. 

no further jumps take place and the state vector becomes independent of time. 
Moreover, since the other eigenvalues of ft have negative imaginary parts, the 
state 0, is attractive under deterministic evolution and may therefore be called 
a trapping state of the process. 

From the physical point of view the emergence of the trapping state results 
from an interference effect as is easily seen by looking at the form of the non-
Hermitian Hamiltonian. The linearly polarized laser field may be represented by 
the superposition of two counter-propagating fields in the z-direction (see Fig. 
8.1). One component is right-circular polarized and one is left-circular polarized. 
The right-circular component induces the transitions 1g, —1) -4 le, 0), whereas 
the left-circular component yields the transitions 1g, +1) -4 le, 0). As can be see 
from k the amplitudes for these transitions interfere destructively and cancel 
exactly for the linear combination of the ground state manifold given the trapping 
state (8.73). Therefore, 0, does not couple to the external laser field, thus 
representing a dark state. 
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FIG. 8.3. The waiting time distribution function F[1g, - 1),t] and the corre-
sponding density f (t) = dF[Ig , - 1), t] / dt for the two-level system with a 
dark state and  12 = -y. 

8.2.2 Measurement schemes and stochastic evolution 
Following Molmer, Castin and Dalibard (1993) let us discuss two different mea-
surement schemes, namely the measurement of the photon angular momentum 
along the z-axis, and along the y-axis. For the measurement along the z-axis one 
finds from eqns (8.63)-(8.65) two non-vanishing jump operators 

.  d él` • A = ±— g, +1)(e, Ok  (8.75) 

where we have taken the polarization vectors éci = éz  and e'±  = +Vs  ± iey )/ 4. 
The jump operator él` • 1 implies that the photon carries away the angular 
momentum ± h along the z-axis, such that the atomic transition involves a change 
of the z-component of its total angular momentum given by Th. We observe that 
the trapping into the state 07„ results essentially from the non-unitary evolution 
generated by H. This is illustrated in Fig. 8.2 where we depict the occupation 

7r (t) E I(Onc10 (t))1 2  (8.76) 

of the trapping state for four realizations of the process corresponding to this 
measurement scheme. As can be seen, the quantum jumps put the state vec-
tor into either 1g, +1) or 1g, -1), for which r(t) = One of the realizations 
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FIG. 8.4. The same as Fig. 8.2, but now the photon angular momentum is 
measured along the y-direction. The quantum jumps put the state vector 
either directly into the trapping state, in which case 7r = 1, or into the state 
perpendicular to it, such that r = 0. 

shown in the figure evolves continuously into the dark state 0,,,. For the initial 
state 0(0) = lg, — 1) chosen in the figure such a realization occurs with a finite 
probability which is given by the corresponding defect 

1 
lim F{Ig , — 1), t] = . -  (8.77) t-00 

of the waiting time distribution. Figure 8.3 shows a plot of the cumulative dis-
tribution function F[1g, — 1), t] and its density. 

The situation is markedly different if we monitor the photon angular momen-
tum along the y-axis. For this case we take the polarization vectors 6 = gy  and 
è+± = +(é4z,  + iex)/ -f .  to obtain the jump operators 

è-'6' . Â =  

él . Â = +-i4Onc)(e, 13 1, 2 

(8.78) 

(8.79) 

where we have introduced the state 
1  

— 191 -1)),  (8.80) 
v h 
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yt 

One) (Onel FIG. 8.5. The different variances of the observable R =  as a function 
of time. The measurement scheme records the photon angular momentum 
along the z-axis. Var(R) has been determined from the solution of the density 
matrix equation, whereas Var i  (R) and Var2 (R) have been estimated from a 
sample of 104  realizations. 

which is perpendicular to the trapping state. The jump operator è-'8' • Â represents 
the back-action in the case that the photon angular momentum component along 
the y-axis turns out to be zero. It puts the atom into the state 1/),. By contrast, 
the expression for el • Â shows that both measurement results +h for the an-
gular momentum component put the atom into the trapping state 'One . Thus, 
the trapping state may be reached directly through a quantum jump which is 
illustrated in Fig. 8.4. 

Both these measurement schemes lead, of course, to the same density matrix 
equation and cannot be distinguished if one looks only at the corresponding 
ensemble of type Ep . As discussed extensively in Chapter 5, the two measurement 
schemes can, in fact, be distinguished if the measurement is performed on the 
selective level, that is, if we investigate the corresponding ensembles of type Sp. 
To demonstrate this we plot in Figs. 8.5 and 8.6 the variances introduced in eqns 
(5.12), (5.13) and (5.14) pertaining to the observable 

R = iOnc)(Onci, 
 (8.81) 

which is just the projection onto the trapping state. The population 7r(t) defined 
in eqn (8.76) is a random variable, which may be written as 
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yt 

FIG. 8.6. The same as Fig. 8.5, but with the measurement scheme recording the 
photon angular momentum along the y- axis. 

Thus we have 

7 (0 = (0(t)1R 10(0). 

Var. ' (R) = E [7r (0] E [r2  (t)] , 

Var2(R) = E [7 2 (0] — (E [7 (t)]) 2 
 Var(R) = E [ir(t)] — (E [7(t)] ) 2  . 

(8.82) 

(8.83) 

(8.84) 

(8.85) 

Obviously, the sum of Var i  (R) and Var2(R) is equal to Var(R) and is indepen-
dent of the measurement scheme. The figures clearly exhibit that after some 
time Var i  (R) becomes considerably smaller for the measurements along the y-
axis than for the measurement along the z-axis. This is easily understood in the 
context of quantum measurement theory. As we have seen above the measure-
ments along the y-axis put the state vector into the trapping state On, or, else, 
into the orthogonal state /P c . This measurement scheme therefore corresponds 
to a measurement of  R,  that is, the scheme tends to generate a basis in which 
R is diagonal. After all realizations have performed their first jump the mea-
surement scheme has produced an ensemble Ep consisting of eigenstates of R 
such that Var. '  (R) = 0. On the other hand, the measurements of the angular 
momentum along the z-axis project the state vector onto the states Ig, ±1) for 
which Var. '  (R) = . In this case it therefore takes much longer for Var i (R) to 
decrease to zero. 
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The variance Var 2 (R) is a measure of the dispersion of 7(0 over the ensemble 
Ep which, for the simulation of the figures, was taken to consist of 104  realiza-
tions. Since Var. '  (R) is larger for the measurement along the z-axis, Var2(R) is 
smaller for this measurement scheme. The conclusion is that, in order to mini-
mize the statistical fluctuations of 7(0 = (0(t)140(t)), one should try to obtain 
as less as possible information on the quantum observable R. If one is only in-
terested in a numerically efficient simulation method, then one should use the 
measurement along the z-axis to get better statistics. 

8.3 Laser cooling and Lévy processes 

The dynamics involved in the cooling of the translational motion of atoms by 
means of appropriately designed laser fields provides important and interesting 
examples for stochastic processes in Hilbert space. In fact, this is one of the first 
examples for which the stochastic wave function dynamics has been used with 
great success (Cohen-Tannoudji, Bardou and Aspect, 1992; Castin and Molmer, 
1995). It turns out that the stochastic method enables one to deal with a series 
of problems in the deep quantum regime (Cohen-Tannoudji, 1992a) where an 
enormous variability of relevant time scales is involved, and where a treatment 
on the basis of the optical Bloch equations is difficult. 

Let us consider for example the so-called Doppler cooling which employs the 
Doppler shift of the laser frequency as seen from the rest frame of the moving 
atoms. The basic physical principle underlying this cooling mechanism (Cohen-
Tannoudji, 1992 b)  is the following. We take two laser beams counter-propagating 
along the z-axis. The laser frequency wL, of both beams is tuned below the rest 
frame transition frequency w of a simple two-level atom in the laser fields, such 
that the detuning 5 E wL, w becomes negative. If the atom is moving into the 
positive z-direction, for example, it gets closer to resonance by the blue shift 
of the frequency of the laser field propagating in the negative z-direction. The 
atom is thus excited by the resonant absorption of photons from that beam 
and, by conservation of linear momentum, experiences a radiation pressure in 
the direction of the laser beam. The subsequent spontaneous emission of fluores-
cence radiation, however, is essentially isotropic in space which leads effectively 
to a dissipation of energy and a net friction force exerted on the atom. This 
friction force has the same direction as the laser beams. Thus, the two counter-
propagating beams yield a damping of the z-component p = pz  of the atomic 
momentum. 

The dissipation of the atomic momentum is accompanied by fluctuating forces 
which are due to the random momentum kicks of size hk = ha; / c caused by the 
spontaneously emitted photons. It thus appears that the variance Ap 2  of the 
atomic momentum cannot be smaller than a fundamental limit which is given in 
terms of the recoil energy 

h2 k2  1 
ERE 

 2M 
= - kBTR 2 

(8.86) 
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by the relation 

Ap2  > 2MER,  (8.87) 

where M denotes the atomic mass. The recoil energy may be associated with a 
certain temperature, known as the recoil temperature 

h2 k2  
TR - 7  .  (8.88) 

NI KB 

As an example, for the transition 2 3 S1  2 3 Pi  of helium one finds that TR 
4pK. 

This single photon recoil limit provided by the recoil temperature TR seems 
to be a fundamental limit for any cooling mechanism which involves spontaneous 
photon emissions. In order to overcome this limit one has to suppress in some way 
spontaneous emission processes. As we have seen in the preceding section this 
is indeed possible if the atomic wave function is driven into a dark state which 
does not couple to the laser fields as a result of a quantum interference effect. 
This is precisely the sub-recoil cooling scheme which will be discussed in this 
section (Cohen-Tannoudji, 1992a, 1992b; Bardou et al., 1994). By using variants 
of this scheme or by invoking carefully designed pulses it has been demonstrated 
in a series of beautiful experiments that cooling temperatures in the nanokelvin 
range can be achieved (Kasevich and Chu, 1992; Lawall et al., 1994; Reichel 
et al., 1995; Lawall et al., 1995). 

As will be discussed below the sub-recoil cooling mechanism leads to sev-
eral interesting properties of the statistics of quantum jumps. The destructive 
interference of the transition amplitudes for the atom—laser interaction gives rise 
to long-tail waiting time distributions which behave asymptotically like certain 
stable Lévy distributions. In addition to important practical applications, the 
sub-recoil cooling scheme thus provides a nice example of the emergence of Lévy 
statistics as a result of quantum interference phenomena (Bardou, Bouchaud, 
Aspect and Cohen-Tannoudji, 2001). 

8.3.1 Dynamics of the atomic wave function 
Up to now we have completely neglected translational degrees of freedom. This 
means that the centre of mass 11 of the atom has been fixed at the origin of the 
coordinate system where, making use of the dipole approximation, the electric 
field is evaluated. 

To derive the stochastic dynamics of the state vector for the cooling scheme 
we must take into account the motion of the centre of mass of the atoms (Cohen-
Tannoudji, Dupont-Roc and Grynberg, 1998). The translational degrees of free-
dom will be treated fully quantum mechanically, that is, the conjugated variables 
11 and atomic momentum P are regarded as operators satisfying canonical com-
mutation relations, 

[Pi,  =  (8.89) 
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The Hamiltonian Hs describing the free atom now consists of two parts, namely 
the kinetic energy of the centre-of-mass motion and the energy of the internal 
degrees of freedom. For simplicity we consider a two-level atom and denote by 
II, and 119 the projections onto the manifolds of excited and ground level, re-
spectively. Hence we have 

p2 
Hs =  + hr..oll, , 

2M 
(8.90) 

where c4.) is the atomic transition frequency. The ground state energy has been 
taken to be zero. 

The atom is subjected to two interactions: First, the interaction with a co-
herent laser field which will be described by a classical c-number field EL,(Y,t) 
and, second, the interaction with the quantized radiation field whose electric 
Schrödinger picture field operator will be denoted by E(ã). Invoking the dipole 
approximation we may thus write the atom-laser interaction as 

Ho), -15  • EL (ii,t),  (8.91) 

whereas the interaction of the atom with the radiation field takes the form 

HI  
 

(8.92) 

The quantity :64  is the atomic dipole operator. Note that both electric fields are 
evaluated at the centre of mass of the atom. The total Hamiltonian for the atom 
interacting with the coherent laser and the quantized radiation fields therefore 
reads 

H(t) = Hs + HL(t) + H.!.  (8.93) 

To be definite we consider in the following the cooling scheme sketched at 
the beginning of this section, namely, the electric field EL (ii, t) describes two 
counter-propagating laser beams along the z-direction (see Fig. 8.1). The beam 
propagating into the positive z-direction is right-circular polarized, the beam 
propagating into the negative z-direction is left-circular polarized. Introducing 
the corresponding polarization vectors, 

(8.94) 

we can write 

E0 
L41(fl,t) = —2 

(4 exp{+ikLz} + é_ exp{-ikLz}) e'L t  + c.c., (8.95) 

where E0  is the field amplitude. As in Section 8.2 we consider the case of a 
J, = 1 --> Jg  = 1 transition. The lowering part Â of the atomic dipole operator 



412  APPLICATIONS TO QUANTUM OPTICAL SYSTEMS 

is thus given by eqns (8.63)—(8.65). On using these expressions we find for the 
atom—laser interaction in the rotating wave approximation 

HL(t)  = 2_ /— (l e  0)(9 +11e—i(wLt+kLz) 
v 2 

—  e, 0) (g, —id e—i(wLt—kLz)) + h.c., 

(8.96) 

where 1  = Eod/h is the Rabi frequency. 
Since the centre-of-mass coordinate fi is canonically conjugated to the atomic 

momentum P the exponential exp(—ik fi) acts as a shift in momentum space, 
that is 

exp(  • fi ) , f d3p 1154)(1T + hk41,  (8.97) 

where the states 123) are momentum eigenstates of the centre-of-mass motion 
which are normalized as 

(AY ') =  (8.98) 

Hence we find 

1-10) = 
 d3p le,045) ((g,+1,15+ hkL  — ( 

 
1 ,71—  e —i wL t  

+h.c.,  (8.99) 

where -4, E kLez  and we have introduced the product states 

19,±1)01/5), le, 045)  le, 0)  (8.100) 

These are simultaneous eigenstates of the kinetic energy of the centre-of-mass 
motion and of the Hamiltonian for the internal degrees of freedom. 

Equation (8.99) has an obvious physical interpretation: The atom—laser in-
teraction induces transitions from the ground to the excited state manifold. By 
the conservation of angular momentum, in the transition g , — 1) -4  e , 0) the 
atom absorbs a right-circular polarized photon from the beam propagating in 
the positive z-direction. The conservation of linear momentum thus implies that 
the atomic momentum changes by an amount +h-4,. Likewise, in the transition 

+1) -4 le, 0) a left-circular polarized photon is absorbed from the beam prop-
agating in the negative z-direction such that the atomic momentum changes by 

The form (8.99) for the laser interaction suggests introducing, in analogy to 
the procedure of the preceding section (cf. eqns (8.73) and (8.80)), the states 

Onc(P1 ) =  + 1 , 15 +  +  1 45 —  )) 
1  

110c(A) — v2 .9,+ 1-,/1+ hiL) - ig -145 - 

(8.1 01 ) 

(8.102) 
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which satisfy the normalization conditions 

= 6iii 6 ( 54-  /5"),  (8.103) 

where j and ii stand for 'Tv' or V. In terms of these states we can write the 
atom-laser interaction Hamiltonian as 

hf2 
Hi, (t) = —2  f d 3p le, 045)(0, (fi) 1 e -i'L t  + h.c. (8.104) 

This form shows directly that the laser field couples only to the state 10 ( )), 
whereas One (p)) is a zero mode of this interaction, 

h("2 
110)10c(15)) = —2  le, 0 ,25)e -iwLt ,  (8.105) 

HL(t)Inc(p) = O.  (8.106) 

Let us now turn to the interaction of the atom with the quantized radiation 
field. Using plane wave field modes normalized in a box of volume V with periodic 
boundary conditions, 

1  
UÀ V) = 

VT/ 
(8.107) 

we may write the electric field operator evaluated at the position ./1 of the centre 
of mass as 

- i (w kt - k4  . fi )] bm(k) mil) , i E  27rru.ok  ( m(k) exp  
V 

- qi  (ij) exp [+i(wkt - k • lid btm  (k)) . (8.108) 

Here h -k' is the photon momentum, Wk  = ck the frequency, and the vectors ém (k) 
denote the corresponding polarization vectors. We take here M = ±1, where 
M = +1 corresponds to a right-circular, and M = -1 to a left-circular polarized 
photon (helicity +1 and - 1, respectively). 

The operators bm(k) and btm  (k) denote the annihilation and creation opera-
tors for photons with wavenumber k and polarization M. The operation describ-
ing the measurement of such a photon over the time interval T = t — to is found 
to be 

t 
i  , 
h  f e(ii -  d  MIlii(e)10) 

t o  
i(Wk -007 _ 1 244  71%  it,,, k _w)t o e   e  (k) • 2 -44.e -4.R  .  (8.109) 

hV  cok - (-0 
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Thus we deduce that the back-action for the photon measurement is given by 
(omitting an irrelevant phase factor) 

g'74(k) • ife —ik.44 0 

We see that the operation  1kM acting  on the atomic wave function V) involves 
the operator exp(—a•fi) which induces a shift of the atomic momentum by --hi 
(see eqn (8.97)). This shift describes the recoil of the atomic momentum caused 
by the emission of a photon with momentum +hi. 

Thus we observe that the measurement of the linear momentum of the photon 
amounts to an indirect measurement of the recoil momentum of the centre of 
mass of the atom. This is also seen directly from the explicit form for the back-
action which is obtained by making use of eqns (8.97) and (8.63). We find 

—Md  (k) ife' R  = 
2  

f d3 p  (cos 0 — M)Ig, +1,11 — hk)(e, 0,231 
A/2 

+ 0' 4' (cos + M)1g , — 141 — hi) (e,  0,p). (8.111) 

This equation shows that the excited state decays spontaneously into a linear 
superposition of the ground states of the atom whereby the atomic momentum 
changes by —hk'. The amplitudes of the ground states depend on the direction 
of the photon momentum hk through the polar coordinates (0, cp) of k. 

With the help of eqn (8.111) we get for the rate dF of the emission of a photon 
into the solid angle c/1'2(k) with polarization M 

dF(k,M) = — E imp,m0112  (8.112) 
T  fi'EcIS-2(I;) 

3 
= 32r  'Y(1  + cos 2  11,b)aNk),  (8.113) 

where -y =  dI 2  / 3  he3. Equation (8.113) shows that the rate of spontaneous 
radiation is independent of M and of the azimuth (p. It only depends on the 
z-component 

u hk = hk cos°  (8.114) 

of the photon momentum. According to eqn (8.113) the random variable u follows 
the distribution 

which is normalized as 

31 1   u )2]  
q(u)  =  (

* 
(8.115) 

(8.110) 
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± hk 

f du q(u) = 1.  (8.116) 
hk 

The above results yield the full three-dimensional structure of the process. 
An effective one-dimensional description is obtained if we average over the un-
observed x and y-components of the atomic momentum and over the azimuth 
cp and the polarization M.  This means that we now describe the process on the 
non-selective level with regard to these degrees of freedom. The jump operators 
describing the back-action on the atom then depend only on the z-component u 
of the photon momentum and project either on  1m  +1) or on 1g, — 1), that is we 
have the following two types of jump operator 

4(u)  =  1  f dplg 1 +1 1 p — 
12-  

J_ (u) = 1  f dpl. q, —1,p — 
V-2-  

(8.117) 

(8.118) 

where p E la, denotes the z-component of the atomic momentum. 
Collecting our results we obtain the following stochastic differential equation 

for the PDP describing the dynamics of the internal degree of freedom and of 
the z-component of the translational motion of the atom, 

± hk 

d(t) = --Ki  G(0)dt + f du E [  J8(*)  ,  s_, ivs(u)011 0] 
dNu , s (t), 

where the Poisson increments satisfy 

E[dNu, s  (0 ]  = 2 I1J8(u)0(t)11 2  q(u)dt, 
dN„,s (t)dN„, , s , (t) = 6,,, 6(u — OdNu , s (t). 

(8.119) 

(8.120) 
(8.121) 

One should note that dN, s  is a field of Poisson increments (see Section 1.5.4) 
indexed by a continuous variable u for the jump sizes. The generator G(0) of 
the deterministic motion is given by 

G(0) = II 0 + —
2 (01 1140,  (8.122) 

and the non-Hermitian Hamiltonian takes the form 
,  p2 

H =  ±  h (-6 — ) 11, + HL. 2M (8.123) 

The quantity 6 = wi, — w is the detuning between atomic transition frequency 
co and laser frequency coL, which will be taken to be zero in the following, i.e. 
O = 0. Here we have also performed a canonical transformation with the unitary 
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operator exp (—icoLll e t) in order to remove the explicit time dependence of the 
Hamiltonian, such that the atom—laser interaction reads 

hQ 

 

I/L, = -- dl*,0,P)(0(p)1+  h.c.  (8.124) 

These equations describe the PDP for the cooling mechanism. 

8.3.2 Coherent population trapping 

To understand the essential features of the stochastic dynamics of the cooling 
mechanism we introduce the family of the manifolds 

M(p)=- span fle, 0,p), 1g, +1,p+ hkL),Ig, - 1,1) — hki,)} 

 

= span {1e, 0 ,P), 10724)), 104))} ,  (8.125) 

which are labelled by the momentum p. We denote by II(p) the orthogonal pro-
jection onto the manifold M(p). It is then easily verified that this projection 
commutes with the Hamiltonian ft, that is, 

= 0.  (8.126) 

This fact is connected to the conservation of the total linear momentum of the 
atom—laser system and implies that the manifolds M (p) are invariant under the 
deterministic evolution of the process, which means that, once the state vector 
has reached .A4 (p) through a jump, it remains in M (p) until the next jump 
occurs. If we rewrite the jump operators as 

1 
— u ± hkï, )) 1  1'04 — ./± (u) = —2  f dP (lOnc(P  u+ hkL))) (e,  0,p  (8.127) 

we see that a jump with J±(u) leads to a change of the manifold given by 

.A4  (P) ---4  M (p — u ± hkL). (8.128) 

Remember that u is a random number in the interval [—hk, +hk], which is dis-
tributed according to the density q(u) given in eqn (8.115). Physically, u describes 
the random recoil due to spontaneous emissions. 

Let us take the states le, 0,p), lOne(P)), lOc(P)) as basis states of a certain 
manifold .A4 (p). The non-Hermitian Hamiltonian ft(p) which generates the de-
terministic evolution periods in M(p) can then be written as 

/ n2 

ft(p) = 2I'm  + ER) / + f/(P), (8.129) 

where I denotes the 3 x 3 unit matrix, ER is the recoil energy (8.86) and we 
have introduced the non-Hermitian 3 x 3 matrix 
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FIG. 8.7. Plot of the widths  F(p) and Fe (p) of the ground state manifolds as 
a function of the atomic momentum p. The parameters chosen correspond to 
the transition 23 S1  23 P1  of helium. 

 

( — ER — ih7/2 0  hQ/2 
1-7'(p) =  0  0  hkplM 

hf2/2  hkplM 0 
(8.130) 

Note that the off-diagonal elements describe the various couplings, namely the 
atom—laser interaction 

(e,O,p`IftiOc(P)) = (e, O I PI IHL 10(p))  

and the coupling between the ground state levels, 

(04101- 10nc(P)) = (041 )1P2 /2MOne(P)) = hmkP  11), 

(8.131) 

(8.132) 

leading to the Doppler energy hkpIM. It is this last term which yields a coupling 
between the internal degree of freedom and the translational motion, called the 
motional coupling. 

For simplicity we set h = 1 in the following. As a specific example we shall 
investigate below the laser cooling on the transition 23 Si  23 P1  of helium for 
which we have 27r/k = 1.083 p,m, 7/27r = 1.6 MHz, and ERIh-y = 0.027. The 
Rabi frequency is chosen to be 1  = 0.37. This was the first system for which the 
cooling mechanism described below has been demonstrated experimentally. All 
numerical values and simulations given below refer to this example. 
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The key point of the sub-recoil cooling process is the spectrum of the complex 
eigenvalues of the non-Hermitian Hamiltonian '1'7(p) and the resulting structure 
of the waiting time distribution 

F[0, T] = 1 —  i f/ (P)T)0 1 2  • 
 (8.133) 

If p = 0 we immediately read off from eqn (8.130) that ionc (o)) is a zero mode of 
17(0). This is precisely the dark state which was already encountered in Section 
8.2. Due to the atom—laser interaction and the motional coupling all three levels 
develop a finite width for non-vanishing momentum p. These widths are defined 
as twice the negative imaginary parts of the complex eigenvalues Ee(p), Enc (p), 
and e c (p) of f 7  (P), 

Fe (p) =  (8.134) 
F„(p) = —2a 6„,(p), (8.135) 
Fe (p)  (8.136) 

The corresponding exact eigenvectors of the non-Hermitian Hamiltonian 1 7 4) 
will be denoted by 1.t e  (p)) , (1)nc(P))1 and (1>c(p)). Here we have labelled the 
eigenstates such that their continuously connected states at p = 0 have the largest 
weight on the states 10,(0)), 10n,(0)), and 10,(0)), respectively. In particular, 
F(p) -4 0 and 14 nc(P)) -4  One (0)) for p -4 0. In fact, it is easily found with 
the help of the characteristic eigenvalue equation that  F(p) is given for small 
p by the expression 

- 4ER  ) 2  (p 2 F n, (p) = 7 (  —) + 0(p4 ).  (8.137) Q  k 

The width of the state 143,2 (p)) which has a large contribution from the state 
10/2 (p)) thus vanishes as /32 . This is illustrated in Fig. 8.7 which shows a plot of 
F, (p) and Fc (p) as a function of the momentum p.  The third width re  (p) may 
be found from the condition that the sum of the widths is identically equal to 7. 
We observe a dip in the curve for  F(p) and a peak of the width  F(p) around 
p = 0. For large values of the momentum both widths are of the same order and 
decrease due to the Doppler shift. 

The plot of the decay rates shows that around zero momentum  F(p) and 
F(p) differ by orders of magnitude. This fact has a drastic influence on the 
properties of the waiting time distribution (8.133). As we have seen the atomic 
state vector enters some manifold .A4 (p) (eqn (8.125)) through a jump. If p is 
exactly equal to zero, then with a probability of 1/2 the atom remains trapped 
forever in the manifold .A4 (p = 0). This is due to the fact that in both states 
1g, +1, +k) the amplitude for being in the non-coupling state 17,G,(p = 0)), which 
is an exact zero mode of 1 7 - (p = 0), is equal to 1/Na We illustrate this in 
Figs. 8.8 and 8.9 which show the waiting time distribution (8.133) for the initial 
states 1g, +1,p + k) and 10,(p)) as a function of the waiting time T and of the 
momentum p.  
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FIG. 8.8. The waiting time distribution F{Ig , +1, p + k), r] as a function of the 
waiting time T and of the momentum p. As a result of the quantum interfer-
ence in the laser excitation, with probability an atom which is initially in 
the state I g,  +1, k) never leaves the manifold M(0). 

For small but non-zero momentum p the atomic state vector leaves the man-
ifold M (p) with certainty. However, the waiting time T for the next jump can be 
extremely long: Both states I g,  ± 1, p ±  k) have a large contribution (of approx-
imately 50%) from the state 14',,,(p)) which is an exact eigenstate of 'f/(p) with 
an extremely small width F„(p). What happens is that during the deterministic 
evolution period following the jump into M (p) the atomic state vector is rapidly 
driven into the state 14'724))  where it remains trapped for a long time. The 
approach to the state 14.„,(p)) is very fast since the widths Fe  (p) and Fe (p) are 
by orders of magnitude larger than the width F(p). 

The above picture is confirmed by numerical simulations of the process de-
fined by the stochastic differential equation (8.119). We show in Fig. 8.10 a single 
realization of the PDP describing the cooling process. The realization involves a 
total number of 104  quantum jumps. The picture shows a remarkable fact which 
is typical for the sample paths of the process, namely that the total evolution 
time is dominated by the waiting time T for a single quantum jump of about 
7T = 5 107 . Note that the momentum is constant between the jumps. As will 
be demonstrated in the next subsection the statistics of the waiting times is 
governed by a long-range distribution similar to a stable Lévy distribution. 

It is also obvious from the figure that the long waiting times are interrupted by 
a series of very small ones. This is illustrated in Figs. 8.11 and 8.12 where we have 
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FIG. 8.9. The waiting time distribution F[1(p)), 71 for the initial state 
1624)). Due to the quantum interference in the laser excitation, the prob-
ability of a jump out of the state I0 7„(p)) is strongly suppressed for small 
momenta p. 

depicted enlarged sections of Fig. 8.10. It is this proliferation of vastly different 
time scales which makes the dynamics so difficult for a treatment based on the 
optical Bloch equations. In the stochastic simulations, however, the treatment 
of the long-range waiting time distribution does not cause any problems: On 
using the inversion method, for example, even the longest waiting time period 
can be calculated in a single step. It is thus not necessary to adapt the numerical 
time step to the smallest time scale of the problem; the stochastic simulation 
algorithm chooses an appropriate time step automatically. 

Since I 4)72c (P)) is very close to 10,24)) for small p we can thus say that the 
atoms that fall into a small region around p = 0 can be trapped coherently with 
a high probability for a long time and that an extremely large fraction of those 
atoms is with certainty in the state IOnc (p)). In order to have really a cooling 
process we need, however, a further mechanism which brings at least a part of the 
atoms into the vicinity of p = 0. Such a mechanism is provided by the momentum 
diffusion due to the random kicks caused by the spontaneous emission processes. 
Thus we see that the cooling of the atomic momenta results from the interplay 
of two basic processes, namely from the diffusion of momentum, which is due 
to spontaneous emissions, and from the coherent population trapping, which 
stems from a quantum interference effect. One may interpret this by saying that 

the quantum interference effect gives rise to a diffusion in in space 
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FIG. 8.10. Stochastic simulation of sub-recoil laser cooling. The plot shows the 
momentum 1)(0 for a single realization of the stochastic process defined by 
the differential equation (8.119) involving 104  quantum jumps. 

involving a diffusion coefficient which strongly depends on the momentum. In 
contrast to the usual scheme of Doppler cooling the basic physical mechanism is 
not an effective friction force, but rather a velocity selective coherent population 
trapping. 

8.3.3 Waiting times and momentum distributions 
To get further insights into the statistics of the random waiting times we fix 
a region Ipl < pt  of momenta smaller than some trapping momentum p t . It is 
assumed here that Pt  is chosen so small that the escape rate rnc(P)  from the 
states 14)„,(p)) behaves to a good approximation as p2  for Ipl < Pt  (see eqn 
(8.137)), and that Pt  < k. Suppose that an atom lands in this region through 
a quantum jump starting outside the trapping region with momentum II  > Pt. 
Since the size of the jumps is of the order k it may be assumed further that 
the atoms land somewhere in the trapping region with a uniform momentum 
distribution. 

As discussed in the preceding subsection, with a high probability the atomic 
state after the jump is driven nearly immediately into the state (1.„,(p), from 
which it may escape with a rate F ric (p). Under the condition that a specific 
momentum p is given the density of the waiting time distribution for the next 
quantum jump is approximately 
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FIG. 8.11. Enlarged section of Fig. 8.10 showing a succession of a large number 
of jumps with small waiting times. These jumps finally drive the atom into 
the vicinity of zero momentum where it remains trapped for a long time. 

f (p, T) = F(p) exp (—F„, (p)y) .  (8.138) 

If we combine this with the above assumption of a uniform momentum distribu-
tion we get the following expression for the unconditioned probability density of 
the waiting times, 

+pt  rnc(P)T 
\  1  1 

s( r) ) = — f f (p, r)dp =   f  due.  
2.Pt  2rnc(pt)1/27-3/2  

— Pt  0 

(8.139) 

For rne(Pt)T » 1 the integral converges to r(3/2) = Vi/2 which leads to the 
asymptotic expression 

s(r) 

fi — 1 r) 3 / 2  
P...,) —  —  ,  (8.140) 

47  7 

where we have defined the characteristic trapping time Tt associated with pt , 

Tt =  {r nc(pt)] -1  •  (8.141) 

By virtue of eqn (8.137) this yields 
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FIG. 8.12. Enlarged section of Fig. 8.11 showing that the atom lands in the 
trapping region with a very small momentum of less than 0.5 • 10 -3 k. 

'rrt (   24E9R) ( k2  Pt) 
(8.142) 

The distribution (8.140) for the waiting time shows a slowly decaying power 
law behaviour  s(r) T -3 / 2 , which is characteristic of a stable Lévy distribution 
with scaling exponent a = By an appropriate choice for the scaling parameter 
we find that the Lévy distribution 

2 ) 1 (Tt)3/2  Tt 
SL(T) =  eXp (--

16 
—7 Tt T 

(8.143) 

has the same asymptotic behaviour as the waiting time distribution s(r). The 
distribution (8.143) has already been encountered in eqn (1.264) as an example 
of a stable Lévy distribution whose explicit analytical expression is known. We 
have thus found that the quantum interference effect which leads to a vanishing 
width of the non-coupling state  „,c (p = 0)) gives rise to a long-range waiting 
time distribution (Bardou et al., 1994). 

The power law decay of the waiting time distribution is characteristic of the 
asymptotic behaviour of a random variable which follows asymptotically a stable 
Lévy distribution. Figure 8.13 shows the result of a numerical simulation of the 
waiting time distribution and compares it with the distribution (8.143). One 
clearly observes the slow decay of the distribution. In the simulations we have 
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FIG. 8.13. Distribution  s(r) of the waiting times T for initial states with mo-
mentum inside the trapping region II  < pt . The figure shows a histogram of a 
simulation with 106  realizations with Pt  = 0.1k corresponding to a trapping 
time of about -yrt  = 771. For comparison the figure also shows the stable 
Lévy distribution with scale parameter a = (solid line). The last bin of the 
histogram contains all waiting times larger than those shown. 

used pt  = 0.1k corresponding to a trapping time of about -yrt  = 771 by virtue 
of eqn (8.143). As expected the simulation data are in good agreement with the 
distribution (8.143) for times much larger than this trapping time Tt. 

As explained in Section 1.6.3 the distribution (8.143) is infinitely divisible 
and stable with a scaling exponent of a = It follows that the random variable 

following SL (r)  has the following property. We take N independent copies 
T2 ,  TN of T and define the scaled sum 

1  1 
7-   

N 1 /a E Ti  N2  E Ti.  i=1  i=1 
(8.144) 

The new random variable f-  is then again distributed according to the Lévy 
distribution (8.143). Note that the scaling factor is 1/N2  and not 1/N as it 
would be in those cases where the central limit theorem could be applied. The 
quantity E ri /N scales as Nt which shows that the ordinary mean value of 
a large number N of copies of T is with a high probability larger than any given 
term of the sum. This demonstrates the drastic departure of the waiting time 



LASER COOLING AND LEVY PROCESSES  425 

FIG. 8.14. Illustration of the renormalization transformation (8.145) of the ran-
dom waiting time in laser cooling for N = 5. The figure shows double log-
arithmic plots for a simulation with a total number of 106  realization with 
Pt = 0.1k (symbols) and the corresponding stable Lévy distribution (solid 
lines). Top: original data, middle: first application of .F5, bottom: second 
application of .F5. 

statistics from the usual behaviour described by the central limit theorem which 
is not applicable here since the moments of T diverge. 

The above scaling relations are exactly valid only for the Lévy distribution 
8L (r) and not for the true waiting time distribution s(r). However, we can invoke 
the stability property of the Lévy distribution to derive universal scaling rela-
tions. To this end, we consider an infinite sequence r , j = 1, 2, 3, ... , of copies of 
a random variable following the distribution s(r) and take a fixed N. Equation 
(8.144) can then be viewed as defining a transformation 

Ira 
 

(8.145) 

to a new sequence , j = 1, 2,  , of random numbers given explicitly by 

Nj 
1 =   Tk. 

Nl/a 
k=l+N(j-1) 

(8.146) 

The map -FN can be regarded as a renormalization transformation: The sequence 
ri  is grouped into sets of N elements each, the elements of each set are summed 
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FIG. 8.15. The distribution w(p) of the atomic momentum at time Pyt = 104  
obtained from a simulation with 104  realizations. The distribution shows two 
sharp peaks at p = 1k with a width Sp which is much smaller than the 
recoil momentum k. The initial momenta have been drawn from a Gaussian 
distribution with a standard deviation of 3k (solid line). 

and the sum is scaled by a factor of N-1 /a. This yields a new, coarse-grained 
sequence of random variables 'T-j . 

It can be shown that under successive application of the renormalization 
transformation .FN the distributions of the coarse-grained sequences converge to 
a corresponding a-stable Lévy distribution, which is (8.143) in the present case. 
The renormalization transformation thus drives the waiting time distribution 
s ( r) into the i-stable Lévy distribution (8.143). 

The mathematical reason for this behaviour is that the attractive fixed points 
of the renormalization transformation .FN, considered as a map in the space of 
probability distributions, are given by the a-stable distributions. In this context 
the central limit theorem can be understood as expressing the existence of a fixed 
point characterized by a = 2. The waiting time distribution  s(r) discovered 
above belongs to the basin of attraction of the fixed point characterized by 
a = 1/2. This is the origin of a universal behaviour in the statistics of the 
waiting times. The renormalization transformation is illustrated in Fig. 8.14 for 
the case N = 5. 

Let us finally look at the resulting distributions of the atomic momenta (As-
pect et al., 1989). Such a distribution may be defined by 



LASER COOLING AND LEVY PROCESSES  427 

4 

3.5 

3 

2,5 

2 

1.5 

1 

0.5 

 

-
0
2 

•   

        

-1.5 -0,5 0 
p/k 

0.5 1 1.5 2 

FIG. 8.16. The distribution v(p) (eqn 8.150) at time ryt = 104  obtained from 
a simulation with 104  realizations. The distribution shows a single peak at 
p = 0 with a width much smaller than the recoil momentum k. The initial 
momenta have been drawn from a Gaussian distribution with a standard 
deviation of 3k (solid line). 

w(P) = (Pltrint (P)1P), 
 (8.147) 

where p = Ell 0) (0 is the atomic density matrix and trint  denotes the trace over 
the internal degrees of freedom of the atom. This normalized density describes the 
distribution of p as it will be found if a momentum measurement is performed 
on a sample of atoms. Since in the trapping region an appreciable amount of 
the total number of atoms will be in states 117bnc(P'))  with p' small and since 
(Pi One (P')) consists of two 6-peaks at p = p' k we expect that the distribution 
w(p) contains two peaks at positions p = +k over a broad background. 

For a rough estimate of the width 6p of these peaks we fix some interac-
tion time t and ask for the range 'Pi < 6p of momenta such that the atoms 
remain trapped with appreciable probability during time t. Clearly, this range of 
momenta is found from the relation F„c (6p)t 1, which yields on using (8.137) 

6p Çl  1  
k  4ER .-15(i •  (8.148) 

This estimate shows that (5p scales as SI/Vi. It implies that there is, at least 
in principle, no lower limit for the width of the momentum distribution; for 
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sufficiently large interaction times the width 6p becomes much smaller than the 
recoil momentum k. Consequently, the associated cooling temperature T, defined 
by 

1  61)2 
—2 kBT, = 2M 

(8.149) 

is much smaller than the recoil temperature TB. This is illustrated in Fig. 8.15 
which shows the distribution 11(p) of the atomic momenta at time -yt = 10 4  
obtained from a stochastic simulation with 104  realizations. 

Another momentum distribution may be defined as 

v(P) = (Onc(P)Ip lOrte(P)), 
 (8.150) 

which yields the fraction of atoms that will be found on measurement in the 
state 10(p)). Here we expect a single peak at p = 0 which is clearly seen in 
Fig. 8.16. 

Concluding, it must be emphasized that it makes no sense to define the 
cooling temperature in terms of the mean kinetic energy of the atoms. The 
reason for choosing definition (8.149) for 11, is that the trapped atoms are with a 
high probability in the states 10(p)) which represent coherent superpositions of 
momentum eigenstates. The definition of Te  thus takes into account the quantum 
correlations between the internal and the translational degrees of freedom of the 
atoms. 

8.4 Strong field interaction and the Floquet picture 

The situation encountered in the preceding sections was that of a bound quantum 
system which is coupled to an environment consisting of a continuum of electro-
magnetic field modes, and to a coherent external driving field. The procedure to 
treat this situation was simply to add the Hamiltonian describing the external 
driving to the coherent part of the equation of motion. However, following the 
derivation of the quantum optical master equation, one observes that this proce-
dure is only justified if the external driving field represents a small perturbation 
and may be treated on an equal footing with the coupling between the reduced 
system and its environment. Adding the Hamiltonian of the external field to the 
coherent part of the dynamics without also changing the dissipative part of the 
dynamics, amounts to making the rotating wave approximation for the interac-
tion between system and driving field. It is obvious that these conditions are 
violated if the external field is strong. 

An appropriate strategy to deal with strong periodic driving fields is to treat 
the interaction between the open system and external driving field exactly by 
employing the Floquet basis of the open system, rather than the stationary eigen-
states of the unperturbed system Hamiltonian. This idea leads to a Markovian 
quantum master equation for the reduced density matrix which is in Lindblad 
form when written in the Floquet basis. Such an approach has been applied to 
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the description of Rydberg atoms in strong microwave fields under the influence 
of external noise (Bliimel et al., 1991), and to a parametrically driven harmonic 
oscillator (Kohler, Dittrich and Hânggi, 1997). 

In the present section we shall connect the idea of treating dissipative quan-
tum systems in strong driving fields in the Floquet picture with the stochastic 
representation of the continuous monitoring of the environment. We derive the 
PDP describing the spectral detection in the presence of strong external driving. 
As will be seen the jumps of the PDP occur between manifolds spanned by Flo-
quet states of the system, reflecting the back-action resulting from the emitted 
radiation. The observed frequencies of the radiation spectrum turn out to be the 
differences between Floquet eigenvalues. We will also discuss a simple example 
which serves to demonstrate the connection of the Floquet theory to the dressed 
atom picture of resonance flourescence. 

8.4.1 Floquet theory 
The free evolution of the reduced quantum system is generated by some time-
independent Hamiltonian M. The coupling to the driving field is represented 
by a Hamiltonian HL(t) which is assumed to be periodic in time, that is 

HL (t + TL) = HL(t),  (8.151) 

where TL 271- 1c.oL and wi, denotes the driving frequency. Thus, the Hamiltonian 
that describes the reduced system without its interaction with the environment 
is given by the TL-periodic operator 

Hs(t) = H,., + HL(t).  (8.152) 

The strategy is now to treat exactly that part of the dynamics which is 
described by the system Hamiltonian  H(t). By this procedure one avoids the 
rotating wave approximation for the interaction between system and external 
driving, as well as any perturbative treatment for this part of the dynamics. 
To this end, we invoke the Floquet theory of quantum mechanical systems with 
a time-periodic Hamiltonian (Shirley, 1965; Zeldovich, 1967). The Schrödinger 
equation 

d  i 
Tft11)(t) --hHs(t)0(t) (8.153) 

is a differential equation with time-periodic coefficients. According to Floquet's 
theorem there exists a complete set of solutions 0,40 of eqn (8.153) which are 
labelled by an index r and which can be written in the form 

Or  (t) = Ur (t) exp {—iE rt/h} .  (8.154) 

The form of these solutions is quite similar to that of the stationary states of a 
system with a time-independent Hamiltonian. The quantities 6r  appearing in the 
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phase factors exp(—k rt/h) are time independent and are called quasi-energies 
or Floquet indices. The state vectors ur(t) depend periodically on time, 

u r (t + TL ) = ur(t),  (8.155) 

and are referred to as Floquet states. The completeness of the Floquet solutions 
is expressed by the relation 

E iur(oxurn = /-,  (8.156) 

which shows that, for each fixed time t, the  Ur(t) form a complete set of basis 
states. Moreover these states can be chosen to be orthogonal, 

(Ur  (t) 'Ur' (t )) = 
 (8.157) 

Thus, the Floquet states form a time-dependent basis in the Hilbert space of 
the system under consideration. It follows that any solution 'OM of the time-
dependent Schrödinger equation (8.153) can be decomposed as 

0(t) , E ar ur (t)exp {—iE rt/h} .  (8.158) 

The important point to note is that according to Floquet's theorem the ampli-
tudes ar  are time independent. 

Inserting eqn (8.154) into the time-dependent Schrödinger equation we ob-
serve that the Floquet wave functions  Ur (t) may be obtained from the eigenvalue 
equation 

Hur (t) E {Hs(t) — iha}  74(0 = erur (t)  (8.159) 

by imposing periodic boundary conditions of the form (8.155). The operator H 
in eqn (8.159) is the Floquet operator which has to be considered as an operator 
on the extended Hilbert space 

HF  -  'HS  0 '1"-1 71 ,  ( 8.160) 
where 7-la is the Hilbert space of the open system, and WT I, denotes the space 
of square-integrable TL -periodic functions. The scalar product in the extended 
Hilbert space is given by 

(NV)) E fTL  C - (0)11)(0), 
T1, 

0 

(8.161) 

such that the expression — ihOt  in the eigenvalue eqn (8.159) becomes a Hermitian 
operator on  IF.  
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It is important to remark the following fact. Given some solution 74(0 of the 
Floquet eigenvalue equation (8.159) with quasi-energy Er , then for any integer n 
also 

tt r , n (t) E Ur (t) exp{iwLnt} 

is a solution with quasi-energy 

Er,n, E Er + hwLn. 

On the other hand, for all integers n the states (8.162) lead to one and the same 
solution of the time-dependent Schrödinger equation since 

ur,„(t)exp{ —iE r,„t/h} = ur (t)exp{—iE rt/h} .  (8.164) 

The class of states (8.162) belonging to a fixed r and to different integers n are 
therefore physically equivalent. 

The time-evolution operator Us(t, t') corresponding to the Schrödinger equa-
tion (8.153) obeys 

o  i —at us(t,e) ,  – H-Aus (t,e), us (ti ,e) = I. 
h 

By virtue of the Floquet representation (8.158) it takes the form 

(8.165) 

us(t, ti) = E iu,(0)(ur(tt)lexP {–iEr(t — t i )/h} 1  (8.166) 
r 

as is easily checked with the help of eqn (8.159) and the completeness relation 
(8.156). 

8.4.2 Stochastic dynamics in the Floquet picture 

In order to derive a stochastic process for the dynamics of the reduced system 
coupled to the continuum of radiation modes we consider the dipole operator 

_6 (t) = u,f, (t, o)us (t, o).  (8.167) 

This is the exact Heisenberg picture dipole operator for the system plus external 
driving field. We are seeking a decomposition of /5(t) into frequency components 
A(w) such that we can write 

15 (t) = E exp{—iwt}A(w) + h.c.,  (8.168) 
w 

where the sum is extended over a certain set of positive frequencies w. Employing 
the Floquet decomposition (8.166) of the time evolution operator Us(t, 0) one 
finds 
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id(t)  E lur(0))(ur(t)i13iuri(t))(ur,(0)1 expl-i(Er, - Er)00. (8.169) 
r,r/ 

Here, the dipole matrix element depends periodically on time and we may use 
the Fourier decomposition to get 

(ur(t)1Blur'(t)) = E((ur,71113lue)) exp{iwLnt},  (8.170) 

where we have used the states (8.162) and the scalar product (8.161) in the 
extended Hilbert space. Thus, we can write the dipole operator as 

b(t) = E iur(0))((ur,noluri))(uri(0)1expl-i(er, — Er  —  
r,r',n 

which finally leads to 

4(w)  E lur(0))((ur,nolurmur ,  (0)1. 
r,r 1 ,n 

The sum in this expression runs over all sets (r, r', n) of quantum numbers that 
satisfy the condition 

Er / — Er  — hWL11 = hr..0 > 0.  (8.173) 

For a given frequency w there are, in general, several sets (r, r', n) that fulfil this 
constraint. The frequency component 4.(w) of the dipole operator is different 
from zero if at least one of the corresponding matrix elements is different from 
zero, that is, if 

TL  

 

f dt  n  
(04,7101 24i )) E  

 

TL  
"/L t (tir(t)IblUr F  (t))  O.  (8.174) 

o 

This means that the n-th Fourier component of the oscillating matrix element 
of the dipole operator in the Floquet basis must be non-zero. Let us denote by 
grad the set of positive frequencies w given by eqn (8.173) and the additional 
selection rule (8.174). The set (Arad determines the positions of the peaks in the 
radiation spectrum emitted by the system. 

At this stage we can now proceed in a similar manner as in Section 8.1, 
whereby the frequency decomposition (8.51) of the interaction picture dipole 
operator is to be replaced by the decomposition (8.168) of the Heisenberg picture 
dipole operator. In order to be able to apply the rotating wave approximation 
with respect to the system—environment coupling the condition 

lw  w'l » 7(w)1((ur,n1 13 lur , ))1 2 
 

(8.175) 

must be satisfied for the different frequencies of the radiation spectrum. The 
result is then that the spectral detection leads to a PDP for the state vector of 
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the source which is given by (Breuer and Petruccione, 1997; Breuer, Huber and 
Petruccione, 2000) 

d(t) = —  (0(t))dt Y'  [  e'54 • -,zr (w)0(t)  dNw ,m(t). 

 

h,  ivitd,±   • 21(w)0(011 
(8.176) 

The expressions for the generator G(0) and for the expectation values of the 
Poisson increments dAT,,m(t) are formally identical to the ones derived in Section 
8.1 (see eqns (8.53) and (8.54)). However, the new feature is that the jump 
operators Â(c.,.)) are defined in terms of the Floquet representation, involving the 
exact time evolution due to the periodic driving force. According to eqn (8.172) 
the 1.(w) are lowering operators pertaining to the positive transition frequencies 

E grad of the source and describe quantum jumps between manifolds spanned 
by Floquet states. 

Summarizing, we find that the positions of the peaks of the fluorescence 
spectrum are determined by the differences of the quasi-energies modulo inte-
ger multiples of ricoL. A given frequency co appears in the radiation spectrum 
if the matrix elements ((u r Iblur , )) do not vanish, since otherwise the corre-
sponding jump operator would be zero, according to the selection rule (8.174). 
Besides the usual selection rules for these matrix elements caused by symmetry, 
those selection rules that arise from the Fourier content of the Floquet states 
are important. For example, the condition for the generation of high harmonic 
radiation (L'Huillier, Schafer and Kulander, 1991), i.e. large n in eqn (8.173), 
is that high Fourier modes of the Floquet states are considerably excited. This 
condition is fulfilled in particular in the vicinity of near degeneracies or avoided 
crossings in the quasi-energy spectrum plotted as a function of the driving field 
amplitude (Breuer, Dietz and Holthaus, 1988). 

The equation of motion for the reduced density matrix of the source is easily 
obtained by determining the equation of motion for the covariance of the PDP 
derived above. Transforming back to the Schrödinger picture we get the master 
equation 

d 
Ps(t) =  [HO), ps(t)] + Dt(Ps(t)),  (8.177) 

where 

 

vt (ps)  E  (w) OP, Opslf  ( A), t) 
 

(8.178) 

1 _  (w, t) • Z(A.r, t)ps — —
2 

psift ( A), t)  t)) 
2 

is the dissipator involving the time-dependent operators 
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A.(w,t)= E iu,comur,nifilur,murqoi.  (8.179) 
r,r' ,n 

Again, the sum runs over those sets (r, r', n) that correspond to the given fre-
quency w of the radiation spectrum. For each fixed t the dissipator  Vt  is in 
Lindblad form. However, by contrast to the case of the quantum optical master 
equation, it depends explicitly on time. The physical reason for this fact is easily 
understood. The external driving leads to a strong distortion of the dipole mo-
ment. Since the system couples to the environment via its dipole moment, the 
driving field also strongly influences the dissipation mechanism. 

8.4.3 Spectral detection and the dressed atom 
Let us consider a two-level atom which is strongly driven by a resonant driving 
field. Assuming the rotating wave approximation to be valid, we may write the 
system Hamiltonian as 

Hs(t) = wo o-±   0-  — ( 0-± e–iwLt a_ e iwLt) 
2 (8.180) 

where wo denotes the level spacing, Ç1 is the Rabi frequency and we have set 
h= 1. At resonance, that is for wL = wo , a basis of Floquet states is given by 

1 ( +e –zw.o )  
(8.181) U±(t) =  1 

with corresponding quasi-energies 

 

6±   = –
1

Q.  (8.182) 2 
Note that the Floquet states have been chosen such that their corresponding 
quasi-energy difference is equal to the Rabi frequency O. The Schrödinger picture 
dipole operator is given in the present notation by 

D =  -F a .  (8.183) 

Thus, in the weak driving case we have just one jump operator which is given 
by the lowering operator a_. The resulting PDP defined by means of this jump 
operator is precisely the process that has been used to simulate the quantum 
optical Bloch equation in Section 6.3. 

To determine the jump operators in the strong driving case we employ the 
Floquet representation (8.166) of the time-evolution operator to obtain the Hei-
senberg picture dipole operator, 

D(t) = *t,O)DUs  (t, 0) = I u±(0))(u±(01-13 1u+(t))(u40)1  (8.184) 
-Hu_(0))(u_(t)IDIu_  (t)) (u  (0)1 
+itt+  (0)) (u +  (t)IDIu _ (0) (u_ (0)le  )t  
+lu_(0))(u_MIDItt±(t))(u±(0)le(E--E+)t. 
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Since 

we get 

(u±(t)1131u±(0) = + -1 (e iwLt  Lt) , 

(it + (01-Diu —(t)) = (eiu)Lt  e—t), 

1 
D(t) = —2 (e twi• t  +  et)  + (0)) +  — — ( 0)) — 

1 
±-2 (e i( u) L+n) t —  

1 (ei(wL  _s-2)t  e—i(wL+s-2)t)iu_(0))(u+(0)1. 
2 

(8.185) 

(8.186) 

(8.187) 

From this relation we immediately infer that we have three jump operators be-
longing to the positive frequencies wL and coL Q, namely 

1 
APL) = au± (0))(u± (0)1— 1u_(0))(u_ (0)1) ,  (8.188) 

1 
A(wL +  = lu—(0))(u-F(0)i,  (8.189) 

.i4(c.4.)L —  = --21 1u± (0))(u—(0)1.  (8.190) 

Thus, instead of one jump operator a _ we get three jump operators in the strong 
driving case. The condition for strong driving is provided by (8.175) which leads 
here to the condition  1 » y. 

To write the corresponding PDP defined by eqn (8.176) more explicitly we 
decompose the state vector in the Floquet basis as follows, 

0(0  0+(t)lu-F(0)) + 0-(01u-(0)), 
and represent it through a two-component vector, 

0(t) —= ( °±(t) ) 0_ (t) • 

(8.191) 

(8.192) 

The jump operators given in eqn (8.188) are represented by Pauli matrices, 

1 
APL ).  2 °' 

 APL 
2 

(8.193) 

Equation (8.176) therefore leads to the stochastic differential equation 

a3 0(t) 
d0(t) = [

110_30(011  
( t) dN3(t)  E ag  o( t)  0(t)1 dNg (t).  (8.194) 

q=±  I laq0(011 
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We observe that the generator of the deterministic evolution periods of the PDP 
vanishes, such that the process becomes a pure jump process. The statistics of 
these jumps is determined by the Poisson increments which satisfy, 

'Y  'Y E [dN3 (t)] = –dt, E [d/V± (t)j = I(/) –(t)1 2 dt.  (8.195) 
4  4  

It follows from the relative weight of the jump rates that, provided the system is 
known to jump at some time t, the jumps with o-±  occur with the probabilities 

I OT (t)12, while the jump with o-3  takes place with probability 1 . 2 
The physical meaning of the PDP can be elucidated by drawing on the cor-

respondence between the Floquet picture and a full quantum treatment of the 
driving mode (Shirley, 1965). This correspondence leads directly to an interpre-
tation of the process in terms of the dressed atom picture (Cohen-Tannoudji and 
Reynaud, 1977, 1979). In accordance with the notation used in eqn (8.162) we 
define 

 

= u± (t)einwL t .  (8.196) 

These Floquet states have quasi-energies 
1 

E± ,n = +-2 O + nwL.  (8.197) 

For strong driving fields the Floquet states correspond to the dressed states of the 
atom, that is to the stationary eigenstates of the combined system consisting of 
atom and quantized driving mode. For large photon numbers N the eigenenergies 
E± , N of the dressed states 1+, N) of the atom are approximately given by 

1 
E± ,N P.J., +-

2 11 + NwL •  (8.198) 

Comparing this expression with the quasi-energies (8.197) of the Floquet states 
(8.196) we see that we have the following correspondence 

u(t) .4-----? l +)N + n)  (8.199) 

between the Floquet states and the dressed states. On using this correspondence 
we find that the transition with jump operator A(wL + SI) corresponds to the 
transition 

I+, N + 1 ) —> 
 

(8.200) 

whereas the jump with the operator A(wL – S2) corresponds to the transition 

1–, N + 1) I+ , N) (8.201) 

between the dressed atomic states. Likewise, the transition induced by the jump 
operator A(wL) can be interpreted as the transition 

al+, N + 1) + 131– , N + 1) —> al+,N) – M – , N).  (8.202) 

Thus we conclude that the Floquet representation yields a simple jump process 
describing quantum jumps between dressed atomic states. It is also obvious that 
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the three types of quantum jump correspond to the three peaks of the strong-
driving Mollow spectrum (3.306): We have a central peak at frequency coL and 
two sideband peaks at frequencies coL + O. Since in the stationary case both 
Floquet states are found with probability  it follows from (8.195) that the 
integrated intensities of the two sideband peaks coincide and are equal to 
times the integrated intensity of the central peak. 
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Part IV 

Non-Markovian quantum processes 
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PROJECTION OPERATOR TECHNIQUES 

As discussed in Chapter 3 the laws describing the dynamics of open quantum 
systems can be derived from the unitary dynamics of the total system. In general, 
the reduction of the degrees of freedom in the effective description of the open 
system results in non-Markovian behaviour. It is the aim of this part to introduce 
the reader to some powerful techniques which allow a systematic description of 
the non-Markovian features of the dynamics of open systems. 

A general framework to derive exact equations of motion for an open system is 
provided by projection operator techniques. These techniques were introduced by 
Nakajima (1958) and Zwanzig (1960) and independently by the Brussels school 
(Prigogine, 1962). They are widely used in non-equilibrium statistical mechanics 
(Haake, 1973; Balescu, 1975; Grabert, 1982; Kubo, Toda and Hashitsume, 1985). 

The basic idea underlying the application of projection operator techniques to 
open quantum systems is to regard the operation of tracing over the environment 
as a formal projection pl— ,  Pp  in the state space of the total system. The super-
operator P has the property of a projection operator, that is P 2  = P, and the 
density matrix Pp  is said to be the relevant part of the density p of the total 
system. Correspondingly, one defines a projection p J— Qp onto the irrelevant 
part Qp, where P + 2 is equal to the identity map. The aim is then to derive a 
closed equation of motion for the relevant part  Pp.  

We are going to discuss in this chapter two variants of projection operator 
techniques, the Nakajima—Zwanzig and the  time- convolutionless technique. Both 
methods lead to an exact equation of motion for the relevant part  Pp.  In the 
case of the Nakajima—Zwanzig method this is an integro-differential equation in-
volving a retarded time integration over the history of the reduced system, while 
the time-convolutionless equation of motion provides a first-order differential 
equation which is local in time. 

The time-convolutionless projection operator technique leads to a time-local 
expansion of the equation of motion with respect to the strength of the system—
environment coupling. It thus supports an investigation of non-Markovian effects 
beyond the Born approximation. To each order in the coupling the equation of 
motion involves a time-dependent but local generator. The rules for the per-
turbation expansion of the convolutionless generator will be developed. We are 
mainly concerned in this chapter with the derivation of the most important gen-
eral results; specific physical applications will be studied in the next chapter. 
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9.1 The Nakajima—Zwanzig projection operator technique 

We consider the general physical situation of an open system S coupled to an 
environment B. The dynamics of the density matrix p(t) of the combined system 
is specified by some microscopic Hamiltonian of the form 

H = Ho + celli,  (9.1) 

where Ho  generates the uncoupled time evolution of the system and environment. 
Hi- describes their interaction, and a denotes a dimensionless expansion param-
eter. When working in the interaction representation, the equation of motion for 
the density matrix reads 

—a p(t) = —ice[Hi (t), p(t)]  at (9.2) 

where we have set h = 1 and the interaction picture representation of the inter-
action Hamiltonian is defined by 

 

H1  (t)  = exp(illo t)HI  exp(—iHo t).  (9 . 3 ) 
The Liouville super-operator is denoted by f(t). 

9.1.1 Projection operators 
In order to derive an exact equation of motion for the reduced density matrix 
ps of the open system it is convenient to define a super-operator P according to 

 

p 1— P p = trB {p} 0 pB E PS 0 pB, 
 (9.4) 

where pB  is some fixed state of the environment. This super-operator projects on 
the relevant part of the density matrix p in the sense that Pp  gives the complete 
information required to reconstruct the reduced density matrix ps of the open 
system. Accordingly, a complementary super-operator Q, 

2P = P — P P,  (9.5) 

may be introduced, which projects on the irrelevant part of the density matrix. 
The super-operators P and 2 are maps in the state space of the combined system. 
that is in the space of density matrices of the total Hilbert space R = 7-is 0 RB• 
They have the obvious properties 

(9.6) 
p2 _ p ,  (9.7) 
Q2 _ Q ,  (9.8) 

P2 = 2P = 0, (9.9) 

which can be easily checked using the definitions (9.4) and (9.5) and assuming 
pB  to be normalized, trB pB  = 1. 
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The density matrix pB  used in definition (9.4) is an operator in 7-1 B . It may 
represent a quite arbitrary, but known environmental state, called the reference 
state. The choice of pB strongly depends on the specific application one has 
in mind. In the following we shall suppose this state to be time independent. 
Typically, it is taken to be the stationary Gibbs state of the environment. In 
many cases it may also be assumed that the odd moments of the interaction 
Hamiltonian with respect to the reference state vanish 

trB  {1/ 1 (t 1 )Hi(t2 )...H/(t2n+1 )pB 1 = 0,  (9.10) 

which leads to the relation 

Pr(t1 ),C(t2)... f(t2)P = 0  (9.11) 

for n = 0, 1, 2, .... This technical assumption is not required for the derivation 
of the equation of motion. It will however be used later on in order to simplify 
the expressions of the perturbation expansion. It is important to remark that 
we do not demand any particular form for the initial conditions at this point. In 
particular we do not assume factorizing initial conditions. 

9.1.2 The Nakajima-Zwanzig equation 
Our aim is now to derive a closed equation for the relevant part Pp(t), i.e. 
for the density matrix ps(t) = trB p(t) of the open system. By applying the 
projection operators P and Q to the Liouville-von Neumann equation (9.2) 
and by invoking the time independence of the reference state the following set 
of coupled differential equations for the relevant and the irrelevant part of the 
density matrix is obtained, 

a  a 
—
at

Pp(t) = P —at
p(t) = aP f(t)p(t),  (9.12) 

a  a — Qp(t) = Q— p(t) = a2r(t)p(t).  (9.13) at  at 
On inserting the identity / = P + 2 between the Liouville operator and the 
density matrix p this may also be written as 

a 
—
at

Pp(t) = aPE(t)Pp(t) + aP,C(t)Qp(t),  (9.14) 

a 
—
at

Qp(t) = aQ,C(t)Pp(t) + a2r(t)Qp(t).  (9.15) 

To get a closed equation for the relevant part of the density matrix we solve eqn 
(9.15) and insert the solution into eqn (9.14). The formal solution of eqn (9.15) 
corresponding to a given p(to ) at some initial time to  may be expressed as 

t 
Qp(t) = g(t,to )Qp(to ) + a f dsg(t,$)Qr(s)Pp(s),  (9.16) 

to 
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where we have introduced the propagator 

t 
g(t, 8) E T , exp [ce f ds'2,C(s1 . 

s 
(9.17) 

As usual, the operator T, describes the chronological time ordering: It orders 
any product of super-operators such that the time arguments increase from right 
to left. The propagator G(t, s) thus satisfies the differential equation 

with the initial condition 

a 
—
at

G(t
' 
8) = aQ,C(t)G (t, s) (9.18) 

g (8 , 3) = I.  (9.19) 

Inserting the expression (9.16) for the irrelevant part of the density matrix 
into the equation of motion (9.14) for the relevant part we obtain the desired 
exact equation for the time evolution of the relevant part of the density matrix. 

a 
Pp(t) = al) c(t)g(t, to)2p(to) + al) r(t)P p(t) 

t 

+02  f dsP f(t)G(t, .9)2,C(s)P p(s). 
to 

(9.20) 

This equation is known as the Nakajima—Zwanzig equation. It is an exact equa-
tion for the relevant degrees of freedom of the reduced system. The right-hand 
side involves an inhomogeneous term  Pr(t)o, to ) 2p(to) depending on the ini-
tial condition at time t o , and an integral over the past history of the system in the 
time interval [to , t]. It thus describes completely non-Markovian memory effects 
of the reduced dynamics. If condition (9.11) is satisfied for n = 0, the second 
term in the Nakajima—Zwanzig equation vanishes and we may cast it into the 
compact form 

t a atP p(t) = f ds  (t,  s)P p(s) + aP CMG (t, to)2 p(to). 
to 

The convolution or memory kernel 

/C(t,$) = ct 2 P r(t)G(t, s) 2 C(s)P 

(9.21) 

(9.22) 

represents a super-operator in the relevant subspace. 
The integro-differential equation (9.21) is exact and holds for all initial con-

ditions and for almost arbitrary systems and interactions. Unfortunately, the 
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Nakajima—Zwanzig equation is usually as difficult to solve as the Liouville equa-
tion describing the dynamics of the total system. This means that perturbation 
expansions are needed in order to discuss the relevant dynamics in a way acces-
sible to analytical or numerical computations. Obviously, the equation may be 
expanded in the coupling constant a, i.e. in powers of the interaction Hamilto-
nian HI. Alternatively, it may be expanded around t in powers of the memory 
time, i.e. in the width of the kernel 1C(t, s), where, of course, for 1C(t, s) ,c:-.', (5(t — s) 
in the absence of memory effects we obtain the Markovian description. Some-
times it might also be convenient to perform the perturbation expansion for the 
Laplace transform of  Ps  (t) in the Schrödinger picture. 

For a factorizing initial condition p(to ) = ps (to) 0 pB we have P p(to) = P(to) 
and, therefore, Qp(to ) = O. Hence the inhomogeneous term of the Nakajima-
Zwanzig equation (9.21) vanishes and the exact equation for the relevant part of 
the density matrix reduces to 

t 
a 
N TI p(t)  = f ds1C(t, s)P p(s). 

to 

(9.23) 

To second order in the coupling strength a we obtain 

/C(t,$) = a2 2.C(t)2,C(s)P + 0(a3 ),  (9.24) 

which leads to an equation of motion of second order for  Pp(t) 

t a NPp(t) = a2 f dsPE(t),C(s)Pp(s),  (9.25) 
to 

where we again made use of P,C(t)P = O. If we now introduce the explicit 
expressions for the projection operator P and for the generator f(t) we get the 
Born approximation of the master equation 

t a 
—atps(t)= 

 _2 f  ds trB  [Hr (0, [Hr (8), Ps(s) 0 PB1 
to 

(9.26) 

which we already met in eqn (3.116). 
This approach to the non-Markovian dynamics of open quantum systems has 

some practical disadvantages. The perturbative approximation of the memory 
kernel simplifies the derivation of the equations of motion, but unfortunately 
not their structure. The approximate equation of motion is again an integro-
differential equation, whose numerical solution may be quite involved. 

9.2 The time-convolutioniess projection operator method 
In practice the time convolution in the memory kernel of the Nakajima—Zwanzig 
equation is difficult to treat. In this section we show how to remove the time 
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convolution in the master equation. This is achieved through a method which is 
known as the time-convolutionless projection operator technique. This technique 
has been developed by Shibata et al. (Shibata, Takahashi and Hashitsume, 1977; 
Chaturvedi and Shibata, 1979; Shibata and Arimitsu, 1980) and we are going 
to apply it here to the microscopic theory of an open quantum system which 
is coupled to an environment. The method yields a systematic expansion of the 
dynamics of the system of interest in terms of the coupling strength. In particular, 
we will develop expressions for the quantum master equation up to fourth order 
in the coupling for factorizing and for non-factorizing initial conditions. 

9.2.1 The time -local master equation 
The idea of the time-convolutionless projection operator technique is to eliminate 
the dependence of the future time evolution on the history of the system from the 
Nakajima—Zwanzig master equation and thus to derive an exact master equation 
for the open system which is local in time. In order to achieve this objective we 
proceed in the following way: The density matrix p(s) on the right-hand side of 
eqn (9.16) is replaced by the expression 

p(s) = G(t, s)(P + 2) p(t),  (9.27) 

where G(t, s) is the backward propagator of the composite system, i.e. the inverse 
of the unitary time evolution of the total system. Formally, we may write 

t 
G (t, s) = T  [, exp — a f ds' 

s 
(9.28) 

where T„ indicates the antichronological time-ordering. 
With the help of the relation (9.27) the equation (9.16) for the irrelevant part 

of the density matrix may now be written as 
t 

QP(t) = g(t, to)2P(to) + a f ds G(t, 8)2 r(s)P G (t, s)(P + 2)p(t). 
to 

Introducing the super-operator 
t 

E(t) = a f ds G(t , s)2,C(s)PG(t, s), 
to 

we can express the irrelevant part of the density matrix through 

[1 — E (0] Qp(t) = G(t, to ) Qp(to ) + E(t)Pp(t). 

(9.29) 

(9.30) 

(9.31) 

Note that the super-operator E(t) contains both propagators g and  G,  so that 
it does not specify a well-defined chronological order. E(t) has the obvious prop- 
erties E(t0 ) = 0 and E(t)1„ 0  = 0. Hence, 1 — E(t) may be inverted for not too 
large couplings and in any case for small t — t o . Thus, we get 
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2p(t) =  [1-  E(t)] -1  E(t)Pp(t) 4-  [1-  E(t)F 1  g(t,to)QP(to).  (9.32) 

This equation states that the irrelevant part Qp(t) of the density matrix can in 
principle be determined from the knowledge of the relevant part Pp(t) at time 
t and from the initial condition Qp(to ). The dependence on the history of the 
relevant part which occurs in the Nakajima-Zwanzig equation has thus been 
removed by the introduction of the exact backward propagator G (t, s). It must 
be noted, however, that for strong couplings and/or large time intervals t - to  it 
may happen that eqn (9.31) cannot be solved uniquely for Qp(t) such that the 
inverse of 1 - E(t) does not exist. We are going to exemplify this situation in 
Section 10.1.2. 

To complete the derivation of the time-convolutionless master equation, we 
insert eqn (9.32) into the equation of motion for the relevant part (9.14) and 
obtain the following exact time-convolutionless (TCL) form of the master equa- 
tion 

, 

—8 Pp(t) =1C(t)Pp(t) +I(t)2P(to), 
at 

with the time-local generator, called the TCL generator, 

/C(t) = a'Pr(t) [1 - E(01 -1  7) , 

and the inhomogeneity 

(9.33) 

(9.34) 

1(t) = (ARCM [1 - E (O]' g(t,t0 )Q.  (9.35) 

The equation of motion (9.33) is exact and local in time. Although the super-
operators /C(t) and 1(t) are, in general, extremely complicated objects, eqn (9.33) 
can be used as a starting point of a systematic approximation method by ex-
panding 1C(t) and 1(t) in powers of the coupling strength a. This will be shown 
in the following subsections. 

9.2.2 Perturbation expansion of the TCL generator 

Of course, the super-operator k(t) only exists when it is possible to invert the op-
erator [1- E(t)]. Let us assume then that E(t) may be expanded into a geometric 
series 

00 

[1 - E(t) ] -1  = E [(t)].  (9.36) 

On substituting this into the expression (9.34) one gets 

DO  00 

/C(t) = a E RCM  [E(t)]  P = E an/Cn (t).  (9.37) 
rt-------0  n-_-_-1 
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To determine the contribution kri (t) of n-th order in a to the TCL generator 
1C(t) we also expand E(t) in powers of a, 

DO 

E(t) = E anEn (t),  (9.38) 

insert this into eqn (9.37), and sort equal powers of a. For example, to fourth 
order in a this gives: 

K: 1  (t) =  (9.39) 
1(2(0 =  (9.40) 
1(3(0 = PL(t) { [El MP + E2(01 7) ,  (9.41) 
/C4 (t) = RCM {[Ei (t) ] 3  + Et (0E2 (t) + E2 (t) E1 (t) +  3 (t)} P. (9.42) 

Finally, the contributions E n  (t) are found with the help of eqns (9.30) and (9.38) 
by expanding also the propagators 0,8) and G(t, s) defined in eqns (9.17) and 
(9.28) in powers of a. 

Let us determine more explicitly the first four terms of the expansion. To 
simplify the expressions we use condition (9.11) and take t o  = 0. Equation (9.39) 
immediately gives 

1( 1 (0 = RCMP = 0.  (9.43) 

The first-order term E i (t) is given by 
t 

= f dt i  Qr(ti  )P,  (9.44) 
o 

which yields 
t 

/(2 (t) = f dtiP,C(t),C(ti YP.  (9.45) 
o 

The second-order term E2  (t) is found to be 

 

i  ti 
E2 (t) = f dt i  f dt2 [Q,C(4)2,C(t2)P — 2E(t2)Pr(t1)] .  (9.46) 

 

o  o 

Since P2 = 0 we conclude from eqn (9.44) that [Ei  (O] 2  = 0 and, therefore, 
t  t i  

1C 3 (t) = PC(t)E2(OP = f dti f dt2P,C(t)C(t i )C(t2 )P = 0,  (9.47) 
o  o 
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where we made use of condition (9.11) for n = 0 and n = 1. To find /C 4 (t) we 
first note that [El(t) ] 3  = Ei (t)E2(t) = 0 because of P2 = 0. Thus we have from 
eqn (9.42) 

1C4 (t) = P r(t)  [ 2 (t) 1  (t) + E3  (t)] P.  (9.48) 

Invoking eqns (9.44) and (9.46) the first term is found to be 

 

t  t i  t 2  
P r(t)E2(t)El (t)P = — f dt i  f dt2 f dt 3  (9.49) 

 

o  o  o 
xPr(t)[r(t2)PE(ti),C(t3)P + 03yp,02),c(t1)P + r(t3)P r(ti) 02)P1 • 

Note that to get this expression the triple time integral has been brought into 
time-ordered form, t > t 1  > t2 > t3 > O. Similarly, one finds 

Pr(t)E3(t)P  (9.50) 

 

t  t 2  
= f dt i  f dt 2  f dt3P.C(t)[f(t1)2f(t2),C(t3)P+ r(t3)7) ,C(t2),C(ti)Pl. 

 

o  o  o 

Summarizing, the fourth-order contribution to the TCL generator takes the form, 

t2 

(t) = f dtl f dt2 f dt3 (Pf(t)r(t1 )r(t2),C(t3)P Pr(t),C(ti)P,C(t2),C(t3)P 

 

0  0  0 

—Pr(t),C(t2)P,C(t 1 ),C(t3)P —Pf(t),C(t 3 )P,C(t i ),C(t2)P). 

(9.51) 

The second-order generator /C2 (t) of the TCL master equation leads to the 
following equation for the reduced density matrix ps(t), 

a 
—atps(t)= —a2  f ds tr B [I / (t), [1-1/(8),Ps(t) pg, 

o 
(9.52) 

which should be contrasted to the corresponding second-order approximation 
(9.26) of the Nakajima—Zwanzig equation: Both equations are of second order 
and it is therefore to be expected that they approximate the exact dynamics 
with the same accuracy. This point will be illustrated in Section 10.1.2 with the 
help of a simple example. In practice, the TCL form is to be preferred because 
it involves a time-local generator instead of a convolution kernel. 
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The expressions (9.45) and(9.51) can be made more explicit if one writes the 
interaction Hamiltonian as a sum of products of Hermitian operators Fk and Qk 
which act in the system's and the environment's Hilbert space, respectively, 

1/1- =  Fk Qk.  (9.53) 

Such a decomposition of the interaction into Hermitian operators is always possi-
ble. It is usually identical to the physically given form of the system—environment 
interaction. 

Let us assume that the reference state pB of the environment is a Gaussian 
state. This implies that all moments of Hi- with respect to pB  can be expressed 
in terms of moments of second order. Thus, we define the correlation functions 

 

vii (ti t2) = ai trB {Qi(t 1 )gi (t2)PB} 
 

(9.54) 

 

t2) = trB {Qi(ti)Qi(t2)PB} 
 

(9.55) 

where and denote the real and imaginary part, respectively. It will be con-
venient to introduce the following shorthand notation, 

Ô = 

and 

1101 = 

With these definitions any moment of Hi- may be expressed in terms of the 
system operators Fi and of the correlation functions vii  and ?pi  in a compact 
way. For example, we have for the second-order moments, 

trB  {H/(t)H/(t i )ps 0 pB} =  E (vol + iqoo ups,  (9.59)  
io,ii 

and, by virtue of the Gaussian property, for the fourth-order moments, 

trB fli1(t)Hr(t1)H1(t2)H1(t3)ps 0 PB} 

= E R u01 + i 1)01 ) ( v23  + i1)23) + (u02 + ii/02)(v13 + i 1) 13) 
i0  ,i3 

+(v03  + i1)03)(v12 + i2-1 12)] 0:4)s.  (9.60) 

Invoking the above shorthand notation we can write the second-order contri-
bution (9.45) to the TCL generator as follows, 

(t),  î  = F 1  (t1), = Fi2(t2), • • • • (9.56) 

Vol = P12 = ( t l, t2), • . (9.57) 
1)01 (t, t 1 ),  1)12 = (67 t2)7 • • •  • (9.58) 

K2(ops pi3 = —  dt, (poi [6, ri,psll +  [6, {i,Ps}] ) PB, 
io,ii 

(9 .61) 
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while the fourth-order contribution (9.51) becomes 

t  ti  t2 

1C4 (t)PS 0  PB = E f chi f dt2 f dt3 
io,i,,i27i 0  0  0 

x (vo2 vi3  [6,  [[î,]  , [', ps]]] + i/o27713 [6,  [[î,]  , {A, Ps }]] 

+ii/o2v13 [O, { [ i-,*] , [A, Ps] }] — qogin [6, { [i, '] , { A, Ps} 1] 
+vo31'12 [6,  [[î,]  , [, Ps]]] + ivo37/12 [6,  [[î,] , {*, Ps }]] 

+inovin [6, { [i, 'A] , [, Ps] }]  —1/o3 î 12  [6, { [i, "A] , {2, p OH 
+(vo3v12  —1)031)12)  [6, [i, [[, 'Al , Ps] ]] 

+i(v0312 + n03v12) [6, PI, { [, A] ,Ps } ]] ) ® p B. 
 (9.62) 

These formulae will be employed in Chapter 10 to derive the TCL generators of 
quantum master equations for specific microscopic models. 

9.2.3 The cumulant expansion 

A general formula for the n-th-order contribution  .C(t) to the generator of 
the T,CL master equation can be derived by employing a technique which was 
originally designed by van Kampen (1974a, 1974b) for the perturbation expan-
sion of stochastic differential equations. Let us restrict to the homogeneous case 
Pp(0) = p(0) and introduce the notation 

(X) E P XP  (9.63) 

for any super-operator X. The formal solution of the Liouville—von Neumann 
equation (9.2) then leads to the representation 

t 
P p(t) = (T, exp [a f dsr(s)1 ) Pp(0) 

o 
(9.64) 

for the relevant part of the density matrix. Of course, this is just a shorthand 
notation for 

 

t  t  t l  

Pp(t) = 1 + 0 f dti(r(ti)) + 02  f dt i  f dt2 (f(t i ),C(t 2 )) 

 

o  o  o 
t  ti  t 2  

+03  f dt i  f dt 2  f dt3(G(t1),C(t2),C(t3)) + • • • Pp(0). (9.65) 
o  o  o 

Differentiating this equation with respect to time we get 
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a 
—P p(t) = a(r(t)) + a2  f dt i  (f(t),c(to) at 

o 
t 

 

+a3  f dt i  f dt 2 (f(t),C(t 1 ),C(t2)) + • • • 'Pp(0).  (9.66) 
o  o 

The trick is now to invert the expansion on the right-hand side of eqn (9.65) to 
express Pp(0) in terms of Pp(t) and to insert the result into eqn (9.66). As was 
shown by van Kampen this procedure may be carried out in a systematic fashion 
to yield an expansion for the equation of motion in powers of a. Comparing this 
expansion with the TCL master equation one is led to the following result for 
the n-th-order contribution of the generator  K(t), 

t  ti 

= f dt i  f dt2  f dt n_ i (r(t),C(t i ),C(t2 )... r(tn _ i  » 0,,  (9.67) 
I o 

where the quantities 

 

(0)01)02)  f(tn---1))oc  (9.68) 

are called ordered cumulants. They are defined by the following rules. 
First, one writes down a string of the form 2L.  f`P with n factors of f in 

between two Ps. Next one inserts an arbitrary number q of factors P between the 
Ls such that at least one f stands between two successive P factors. The resulting 
expression is multiplied by a factor (-1)q and all Es are furnished with a time 
argument: The first one is always G(t). The remaining Ls  carry any permutation 
of the time arguments  t 1 ,  t 2, • • • tn-1 with the only restriction that the time 
arguments in between two successive Ps must be ordered chronologically. In eqn 
(9.68) we thus have t > > ti , ti  > . > t k , t i  > . > tin , etc. Finally, the 
ordered cumulant is obtained by a summation over all possible insertions of P 
factors and over all allowed distributions of the time arguments. 

For commuting Cs the ordered cumulants reduce to the ordinary cumulants. 
The reader may easily check that under the condition (9.11) all odd contributions 
K2n-hi (t) vanish and that these rules immediately yield the expressions (9.45) and 
(9.51) for the second and the fourth-order contribution of the TCL generator. 

9.2.4 Perturbation expansion of the inhomogeneity 

As in the Nakajima-Zwanzig equation the inhomogeneity1(t)Qp(0) in the time-
convolutionless quantum master equation (9.33) depends on the density matrix 
p(0) at the initial time to = O. For factorizing initial conditions Qp(0)  vanishes  
and the resulting exact equation of motion is homogeneous. In this section we 
discuss the effect of non-factorizing initial conditions of the form 
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p(0) = E OkPeqPk E APeq,  (9.69) 
k 

where the operators Ok and Pk act in the Hilbert space Rs of the open system 
and peq  denotes the equilibrium density matrix of the combined system. This 
type of initial condition arises for example in the determination of equilibrium 
correlation functions of system observables. It can also be used to describe the 
preparation of the system through a quantum measurement since the super-
operator A defined in eqn (9.69) takes the form of a quantum operation if one 
chooses Pk =  O Section 2.4.2). 

The perturbation expansion of the inhomogeneity 1(t ) Qp(0) may be per-
formed in two steps: First, one expands the super-operator 1(t) given in eqn 
(9.35) in powers of the coupling strength a, and, second, one determines Qp(0). 
The expansion of 1(t), 

DO 

1(t) = E anlii (t),  (9.70) 

is very similar to the expansion of the generator 1C(t) and takes the form (Chang 
and Skinner, 1993) 

11 (t) = PL(t)Q,  (9.71) 
t 

12(t) = f dt1P,C(t)f(t1)2,  (9.72) 
0 

t  ti 
13 (0 = f dt i  f dt 2  [P,C(t)r(t1)Qr(t2)Q — Pr(t)r(t2)P,C(ti )2], (9.73) 

 

o  o 
where we again use condition (9.11). 

The next step consists in the determination of Qp(0) = 2Ap eq . Since the 
super-operators A and Q commute, this amounts to the computation of 2peq  
which can be achieved by the following method (Breuer, Kappler and Petruc-
cione, 2001). We define for any fixed T > 0 the density matrix [Mt) to be the 
density of a system which has been prepared in such way that the state p,( - 7- ) 
at time t = -T is some factorizing state. Thus, we have  7-'p7- ( — r)  = pr(Y) and 
2p,-(-7-) = 0. Assuming the total system to be ergodic, we get 

peq  = lirn p,-(0).  (9.74) 
T -} CO 

This enables one to express Qpeq  as 

Qpeq  = lim Qp,(0).  (9.75) 
T -> CO 

On the other hand, eqn (9.32) yields a relation between the relevant part  P1),(0) 
and the irrelevant part Qpy  (0). Using this relation for to  = - T we obtain 
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2p,(0) = [1 — E T (0)] -1  ET (0)PpT (0), 

o 
ET (0) = a f ds g(o, s)2E(s)P G(0, s). 

454 

where 

- T  

Combining eqns (9.75) and (9.76), we get 

2Peq = R PPeq, 

where the operator R. is defined as 

(9.76 ) 

(9.77) 

(9.78) 

DO 

R. = lim [1 — E T (0)] -1  ET (0) = lim Y (E T  (0)) n .  (9.79) 
T -} CO  n=1 

The relevant part P peg  of the equilibrium density matrix and the irrelevant part 
QPeq are therefore related by the exact equation (9.78). 

Also the operator R. may be expanded in powers of a, namely 
DO 

'R. = E anR.ri . 

 (9.80) 
n:.----1 

Again, this expansion is accomplished by expanding ET (0) in powers of a, which 
yields 

o 
R, 1  = f dt i r(ti )P,  (9.81) 

0  t i  

R,2 = f chi f dt2Q,C(t1 ),C(t2)P,  (9.82) 

0  tl  t2 

R,3 = f dti f dt2 f dt3 [r(t1)Q(t2)r(t3)  (9.83) 

—,C(t 2 )7) ,C(t 1 ),C(t3) —,C(t 3 )P,C(t i ),C(t 2 )]P. 

The last step which completes the expansion of the inhomogeneity is the 
combination of the expansions for the operators 1(0 and R. which finally leads 
to 

/(t)Qp(0) = IMARY peg  E J (OP peg .  (9.84) 

Explicitly, the second and the fourth-order contributions to the super-operator 
J(t) are given by 
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0 

J2(t) = MARI 
= f 

 dt1P,C(t)A,C(t1)P, 
-DC 

(9.85) 

and by 

with 

( t) = li (t)AR,3  +12  M AR, 2  +13 (t)AR, 1 , (9.86) 

0  tl  t2 

11 (t)AR3 
 = f 

 dti f dt2 f dt3 [Pf(t)Ar(t1)Qr(t2).03)P 

I2 (t )A 1,2  = 

13 ( t )A1?, 1  = 

—PG(t)A,C(t2 ) PE(t1 ),C(t3)P — `1) ,C( t )A.C(t3)P01)02)P] 

 

t  0  t2 

f dti  f dt 2 f dt3Pf(t) ,C (t i )A2r(t 2 )r(t3 )P, 
—cc  —cc 

 

t  o 

f dti  f dt 2  f dt 3 [P r(t)r(ti )2r(t2 )Ar(t 3 )P 

 

0  0  - DC 

—P(t)r(t 2 )PL(t i )AL(t 3 )P].  (9.87) 

Using the form (9.53) for the interaction Hamiltonian and employing the short-
hand notation introduced in Section 9.2.2 we obtain for the second-order contri-
bution, 

(t) PS 0  PB = E f dt, (vol [6, A [i, Ps]] +  , A {i, ps}]) ®PB, 

(9.88) 

which is similar to the expression for 1C 2 (t) (compare eqn (9.61)). Section 10.2.4 
gives an example of the application of the above method to the calculation of 
equilibrium correlation functions. 

9.2.5 Error analysis 

The perturbation expansion of the generator IC(t) and of the inhomogeneity J(t) 
to various orders in the coupling strength a can be used to obtain a computable 
estimation for the error introduced by a certain approximation. To this end, we 
consider the relative error 

(2n) 
er = 

Igo _ E a2k,c2k(t)  
k=1 

Iligt)11 (9.89) 
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of the approximation of order 2n, where 111(11 denotes any appropriate norm for 
the super-operator /C. To leading order in a this can be written as 

e (2,) = a2n IIK2n+2  
IIK2 

Thus, the error of the approximation to second order can be related to the 
fourth-order approximation by 

(2)  2 I IK4(011  

er  (o w (9.91) 

If we assume that the coefficients /C2 and /C4 have the same order of magnitude ,  
then this relation can be used to estimate the formal expansion parameter a by 
means of the known relative error, i.e. 

e (2) 
 

(9.92) 

Employing the same argument again, we find for the error of the fourth-order 
approximation 

e (4)  ce 4  (t)  

 

r IlK:2 (t)  Ir 
 (9.93) 

However, if the approximation to sixth order is not known, we cannot compute 
e 4)  directly. To construct a computable error estimate we use the assumption 
that the orders of magnitude of 1C 2 , 1C4  and 106  are the same, and we obtain 

e (4)  a4  (e (2)) 2 
 

(9.94) 

Thus, the relative error of the approximation to fourth order can be estimated by 
computing the square of the relative error of the approximation to second order. 
This procedure yields for a certain order of approximation a crude error estimate 
which is easy to compute since it only relies on the actual approximation and not 
on the evaluation of higher-order terms. A number of examples will be studied 
in the next chapter. 

The same arguments can of course also be applied to the matrix elements 
of the super-operator k(t) and of the inhomogeneity J , yielding computable 
error estimates for these quantities as well. 

9.3 Stochastic unravelling in the doubled Hilbert space 
The most general master equation for the reduced density matrix  p(t) which 
results from the time-convolutionless projection operator technique takes the 
following form in the homogeneous case, 

a 
—

at

ps(o= A(t)ps(t)+ ps(t)Bt(t) + E ci  (ops  (t)Dti  (t),  (9.95) 

(9.90) 

with some time-dependent linear operators A(t), B(t), Ci(t) and D,(t). This 
equation is linear in  p(t) and local in time, but it need not be in Lindblad form. 
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Nevertheless, it can be represented by a certain stochastic process for the wave 
functions of the reduced system (Breuer, Kappler and Petruccione, 1999). 

In order to construct an unravelling of eqn (9.95) we follow the strategy 
which was already applied to the calculation of multi-time correlation functions 
in Section 6.1.4. Namely, we describe the state of the open system by a pair of 
stochastic wave functions 

4)(0 0(t) = (9.96) 

such that 0(t) becomes a stochastic process in the doubled Hilbert space 7-I = 
I-Is e 7-is. Denoting the corresponding probability density functional by P[0, t ],  
we can define the reduced density matrix as 

ps(t) = f DODO* P[0,t]  (9.97) 

Consider now the following stochastic differential equation for the process 
0(t) in the doubled Hilbert space, 

d0(t) = —iG (0 , t)dt +   (00(t)  _ 0 (t ) ) dNict), E v1,1: 1 ( 00(0 11 t (9.98) 

where the Poisson increments dNi (t) satisfy 

11Ji 2  
E[dNi (t)] = 11

(t)0(t)11  

 

0(t)112  dt
'  (9.99) 

dNi(t)dN (t) =  dNi (t),  (9.100) 

and the non-linear operator G(0, t) is defined as 

J i(t)0 (OW  
G (0 ,t) =  (t) +  110(0 112 ) °V) ,  

' 

with the time-dependent operators 

(9.101) 

F(t) = (t) 
0 B(t)  

) (A(t)  
Ji( t) =  D(t) (9.102) 

Equation (9.98) describes a PDP whose deterministic pieces are solutions of 
the differential equation 

(t) = G (0 , t),  (9.103) 

and whose jumps take the form 
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110(011  110(t)ii  Ci(t)0(t) 0(t)  (t)0(t) = 
11J0(t)1I  11Ji0(t)11  Di(t)0(t) (9.104) 

Employing the rules of the calculus for PDPs one easily demonstrates that the 
covariance matrix 

f5(t) = f DODO* 13 [0 , t]l0) (01  (9.105) 

of the process 0(t) satisfies the equation of motion 

a —at i5(t) = F(t)i5(t) + i5(t)Ft (t) + E (t)j)(t)Jit  (t). (9.106) 

Note that, in general, this equation is also not in Lindblad form. The important 
point is, however, that the component (9.97) of i5(t) obeys eqn (9.95), as is easily 
verified using the block structure of the operators F(t) and Ji (t). This provides 
the sought unravelling of eqn (9.95) in terms of a process in the doubled Hilbert 
space. A specific example will be studied in Section 10.1.3. 
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NON-MARKOVIAN DYNAMICS IN PHYSICAL SYSTEMS 

In this chapter we apply the time-convolutionless (TCL) projection operator 
technique developed in the preceding chapter to some typical examples. The first 
example is that of the spontaneous decay of a two-level system into a reservoir 
with arbitrary spectral density. For this simple problem the TCL expansion can 
be carried out to all orders in the system—reservoir coupling. The model therefore 
serves to examine the performance of the TCL method. 

As specific examples we treat the damped Jaynes—Cummings model and the 
spontaneous decay into a photonic band gap. The damped Jaynes—Cummings 
model on resonance is also used to exemplify the breakdown of the TCL expan-
sion in the strong coupling regime. In the off-resonant case the model leads to a 
TCL generator which is not in Lindblad form and involves a time-dependent de-
cay rate that can take on negative values. The corresponding unravelling through 
a stochastic process in the doubled Hilbert space designed in Section 9.3 will be 
illustrated by means of numerical simulations. 

The last two sections are devoted to quantized Brownian motion, where non-
Markovian effects play an important rôle for certain parameters. The first exam-
ple is the damped harmonic oscillator, the second one is the spin-boson model. 

The purpose of this chapter is to illustrate that the TCL projection operator 
technique has several advantages in practical applications. Although the tech-
nique is clearly perturbative, it does not rely on an expansion of a given physical 
quantity, but rather on an expansion of the equation of motion for the reduced 
density matrix which may then be solved either analytically or numerically. From 
this solution the desired physical quantities are determined. In many cases the 
range of validity of this procedure is much larger than that achieved by a direct 
perturbation expansion of the desired quantity to the same order. 

The TCL technique is applicable to a large class of physical systems: It does 
not rely on a specific form of the interaction, of the initial state of the combined 
total system, or of the spectral density of the environment, nor does it employ 
specific symmetry or scaling properties. Moreover, the perturbation expansion 
of the TCL generator provides a systematic way to go beyond the Markovian 
approximation. For many systems that arise in the theory of open quantum sys-
tems the analysis of the Markovian approximation is relatively easy to perform 
and often gives a first qualitative picture of the long-time dynamics. The expan-
sion technique then offers the possibility of studying non-Markovian phenomena 
in a systematic way, or to judge whether or not a non-Markovian treatment is 
necessary. 
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10.1 Spontaneous decay of a two-level system 

The first example of the application of the TCL projection operator technique 
is an exactly solvable model of a two-level system which decays spontaneously 
into the field vacuum. This system has been studied already in Section 3.4.2 
employing the Born—Markov approximation which led to an equation of motion 
for the reduced density matrix in Lindblad form. Here we treat the model in the 
rotating wave approximation to all orders in the coupling between system and 
reservoir. The exact solutions for various forms of the spectral density will be 
compared with the results of the time-convolutionless master equation derived 
in Section 9.2.1 and with the corresponding perturbation expansion of the TCL 
generator 1C(t) developed in Sections 9.2.2 and 9.2.3. 

The Hamiltonian of the total system is given by 

H Hs + HB ± HI = HO +  (10.1) 

where 

Ho  =  Ewkblbk,  (10.2) 

=- a+0 B +  a ®Bt with B =-- Egkbk• 
 (10.3) 

The transition frequency of the two-level system is denoted by wo , and a+ are 
the raising and lowering operators. The index k labels the different field modes 
of the reservoir with frequencies wk, creation and annihilation operators btk , bk 
and coupling constants gk. 

10.1.1 Exact master equation and TCL generator 

Let us introduce the states (Garraway, 1997) 

= 1 0) s 0 10)B,  (10.4) 
=- 11)s ® 
 (10.5) 

7/4  i o) s  ®1k)B,  (10.6) 

where 10)s = a_ 11)s and 11)s =- o-± 10)s indicate the ground and excited state of 
the system, respectively, the state 10)B denotes the vacuum state of the reservoir, 
and k)B = b0)B denotes the state with one photon in mode k. In the interac-
tion picture the state 0(0 of the total system obeys the Schrödinger equation 

where 

—
d 

0(0 =-- —i_111(t)0(t), 
dt (10.7) 

HIM  = 0-+(t)B(t) + a _ (t)Bt (t)  (10.8) 
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is the interaction picture Hamiltonian with 

0-± (t) = a+ exp (±iwot),  (10.9) 

and 

B(t) , E gk bk  exp(—iC.Jkt).  (10.10) 
k 

It is easy to check that the total Hamiltonian (10.1) commutes with the 
'particle number' operator 

N , or+o-_ + E btk bk,  (10.11) 
k 

i.e. we have 

[H, NJ = 0.  (10.12) 

Thus, N is a conserved quantity. It follows that any initial state of the form 

0(0) — coo° + cl  (o)01 + E ck(0)11)k 
 (10.13) 

k 

evolves after time t into the state 

o(t) = coot, + el (t)lpi + E ci (t)/, j .  (10.14) 
k 

The amplitude co is constant since H1(t)7,b0 =- 0, while the amplitudes  c1  (t)  and 
ck (t) are time dependent. The time development of these amplitudes is governed 
by a system of differential equations which is easily derived from the Schrödinger 
equation (10.7), 

èi(t) = — i E gk  exp[i(wo — wk)t]ck (t),  (10.15) 
k 

è k (t) =- — igi*, exp[—i(c.J0  — cuk)t]c i  (t).  (10.16) 

Assuming that ck  (0) = 0, i.e. there are no photons in the initial state, we solve 
the second equation and insert the solution into the first to get a closed equation 
for ci (t), 

t 

6 (t) = — f dti f (t — t 1) 6 (t i ) • 
0 

(10.17) 

This procedure was already used in the classic paper by Weisskopf and Wigner 
(1930) on the determination of the natural line width. The kernel f (t — t 1 ) is 
given by the correlation function 
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f (t – t 1 ) = trB {B(t)13 1. (t 1 )pB lexp[iw o (t — t1)],  (10.18) 

where p B = (10) (OD B is the vacuum state of the reservoir. As usual, this kernel 
may be expressed in terms of the spectral density  J(w) of the reservoir as follows, 

f (t – t i ) = f du. a (w) exp[i(wo – w)(t – t1)]. (10.19) 

The exact equation (10.17) can now be solved by means of a Laplace transfor-
mation. In subsequent sections we will present solutions for different forms of 
the spectral density. 

With the help of the probability amplitudes co, ci  (t) and ck(t) we can now 
express the reduced density matrix ps (t) of the two-state system as 

. (10.20) 

Differentiating this expression with respect to time and recalling that o  = 0 we 
get 

d 
 P s (t)  = 1 

A l ei  (t)I 2  c'6êi (t) 
-di  dte0 é; (t) - 11C1 (t )1 2 ) • 

Introducing further the quantities 

S(t) , -2a {-ci((tt )) } , 

-y(t) =  cil (( tt ))  } , 

we can rewrite eqn (10.21) as 
d  i 

—dt Ps(t) = – –2 S(t)[(7-0--,Ps(t)] 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

1  1 
+-y(t) {o-_ ps (Oa+  – –2 o-±  a_ ps (t) – –2 Ps (t)a+ a– } 

This is an exact master equation for the reduced system dynamics. Obviously, 
S(t) plays the rôle of a time-dependent Lamb shift and -y(t) that of a time-
dependent decay rate. 

The remarkable point of the master equation (10.24) is that it is already of 
the form of a time-convolutionless master equation, 

d 
Ps(t) = ks(t)Ps(t),  (10.25) 

where the generator  AC(t) is connected to the TCL generator 1C(t) by means of 
the relation 

ks (t)ps (t) = trB VC (t)ps (t) 0 p B} .  (10.26) 

We observe that the structure of  )C(t) is similar to that of a Lindblad generator. 
However, due to the time dependence of the coefficients  8(t)  and -y(t) eqn (10.24) 

Ps (t) = trB { I OM) (OM I } = ( l
ecoic(i,t)(  it2) 1  c; 1 ((tt)) 12  ) 
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does not provide, in general, a quantum dynamical semigroup. We will also 
see below that the time-dependent rate -y(t) may even become negative which 
violates the complete positivity of the generator. 

In Sections 9.2.2 and 9.2.3 a perturbation expansion for the TCL generator 
in powers of the coupling strength a was developed. Let us demonstrate that 
this expansion produces in all orders a master equation of the form (10.24) and 
that it generates a perturbation expansion of the coefficients -y(t) and  8(t)  in the 
master equation which takes the form 

-y (t) 
 E a2n,y27, ,  (10.27) 

n=1 
oo 

8(t)  =- E a2ns2n  (t) .  (10.28) 
n=1 

To get this expansion we introduce an expansion parameter a by replacing the 
correlation function f (t) by a2 f (t), since the spectral density is to be considered 
as a quantity of second order in the coupling. 

We first note that o-±   =- (11) (01)s is an eigenoperator of the generator  K(t). 
i.e. we have 

1 
=  — —2 [-y(t) + iS(t)jo-+. (10.29) 

On the other hand, with the help of (10.26) the general formula (9.68) for the 
expansion of the TCL generator into ordered cumulants leads to 

ks( t)g+  

 

t  t1 t2rt -2 
00 

E a2n f dt i  f dt 2  f dt 21  
n=1  0  0  0 

xtrB  {(f(t),C(t i )  f(t2n_ i  

1  (10.30) 

)) 0 c0-+ 0 pB} 

Note that only even orders of a appear in the expansion because relation (9.11) is 
satisfied here. Employing (t) p = — i[H (t) , p] one easily verifies that o-±  0 p B  is 
an eigenoperator of the super-operator r (t) ,C (t 1 ) corresponding to the eigenvalue 
- f (t - t 1 ) , i.e. 

L(0000-± O  pB = —f(t — ti)o-+ 0  pB.  (10.31) 

Since further Pa+  0 pB =- u+  O  pB the expansion (10.30) can be restated as 
follows, 

 

t  il i2n -2 
00 

KS (Oa+ = E a2n f  dti  f dt2  f dt2„ 1  
n=1  o  o 

(10.32) 

X ( -1 ) 71 (f  tl (t2  t3)  f(t27-2  t27-1 )) De g+ - 
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Comparing the last expression with eqn (10.29) we immediately get the TCL 
expansion for the coefficients of the exact quantum master equation 

t1  t2n —2 

2'2n (t)  iS2n (t) f dt i  f dt 2  . . f dt27-1  (10.33) 
0  0  0 

X 2 ( -1-) n±l (f (t  (t2  t3) • • f (t2n-2  t2n- 1))0c • 

The rules for the construction of the quantity (f (t — t 1 ) .. . f (t22 — t2 7 -1))0c 
can be stated as follows: Write down the corresponding expression for the or-
dered cumulant of order 2n according to the rules given below eqn (9.68). Omit 
all factors of P and replace the pairs G(t i )r(ti ) of successive L-factors by the 
correlation function f (t i  —  t).  

Following these rules eqn (9.45) immediately yields the second-order contri-
bution for the coefficients of the master equation, 

-Y2(t) iS2(t) =  2 f  f (t - ti) 
0 

(10.34) 

while (9.51) leads to the fourth-order contribution, 

 

t  t2 

-Y4 (t) iS4(t) = 2 f  dt i  f dt 2  f dt3[f (t - t2) f (ti - t3) f  t3)f (t1 t2 )] .  

 

0  0  0 
(10.35) 

It is convenient to define the real functions CO and  'I'(t) through 

2f (t) = (t)  (t).  (10.36) 

In terms of these functions the second-order contributions to the decay rate -y(t) 
and to the energy shift S(t) determining the Born approximation read 

-y2  t  f dt i (1)(t — t i ),  (10.37) 

492(t) = f dti xl/(t — t 1 ),  (10.38) 

and hence the Markovian decay rate -ym and the Markovian Lamb shift Sm are 
found by extending the integration to infinity, 
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FIG. 10.1. Schematic representation of the damped Jaynes-Cummings model. 

00 

-Ym = f ds ( s),  (10.39) 
o 
00 

Sm , f ds W(s).  (10.40) 
o 

The fourth-order TCL contributions to the decay rate and to the energy shift 
may be expressed as 

 

t  tl  t2 
1 

= f dt1 f dt2 f dt3 [ 4:1) (t — t2) (1) (t1 — t3) ± 41 (t — t3) (1) (t1 — t2) 

 

0  0  o 

-111(t - t 2 )111(t 1  - t3) - ‘11 (t - t3)‘11 (t1 - t2)] ,  (10.41) 

and 

 

t  ti  t2 
S4(t) =-1  f dti f dt2 f dt3 [T(t - t2)(t1 - t3) + 1:11 (t - t2)W(t1 - t3 ) 

2 

 

o  o  o 

+T(t - t 3 )(1.(t 1  - t2) + 4)(t - t3)T(t1 - t2)] •  (10.42) 

Thus we see that the form of the exact master equation (10.24) is preserved 
in all orders of the coupling and that the TCL expansion amounts to an ex-
pansion of the coefficients S(t) and -y(t). In the following subsection we study 
the non-Markovian behaviour of some specific models involving different spectral 
densities (Breuer, Kappler and Petruccione, 1999). 

10.1.2 Jaynes-Cummings model on resonance 
The damped Jaynes-Cummings model describes the coupling of a two-level atom 
to a single cavity mode which in turn is coupled to a reservoir consisting of har-
monic oscillators in the vacuum state. A schematic representation of the Jaynes-
Cummings model is depicted in Fig. 10.1. If we restrict ourselves to the case of a 
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FIG. 10.2. The damped Jaynes—Cummings model on resonance. Exact solution 
(exact), time-convolutionless master equation to second (TCL 2) and fourth 
order (TCL 4), generalized master equation to second order (GME 2), and 
the Markovian quantum master equation (Markov): (a) Decay rate of the 
excited state population, (h) the population of the excited state, and (c) 
deviation of the approximate solutions from the exact result, for TR =  5-TB  
(moderate coupling). The symbols show the results of a stochastic simulation 
of the time-convolutionless quantum master equation using 10 5  realizations. 
(d) Population of the excited state for TR =- 0•27-B (strong coupling). 

single excitation in the atom—cavity system, the cavity mode can be eliminated 
in favour of an effective spectral density of the form 

\  1  -yo  
44))  — 27r (woo  — w) 2  + A2 ' 

(10.43) 

where coo  is the transition frequency of the two-level system. The parameter A 
defines the spectral width of the coupling, which is connected to the reservoir 
correlation time TB by the relation TB = A-1  and the time scale TR  on which the 
state of the system changes is given by TR  
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In order to compute the exact probability amplitude  c1  (t)  we evaluate the 
reservoir-correlation function f (t) using the spectral density (10.43), 

1 At) = —
2

-y0 A exp(—Alti). (10.44) 

For this f (t) the differential equation (10.17) for the probability amplitude cl (t) 
can easily be solved to give the exact solution 

 

dt  , _A . , (dt 
(10.45) c1  (t)  = c1  (0)e  () + 

 

—At / 2  [cosh 2  d smn —2--)] , 

where d =-  /A2  — 2-y0 A. This yields the time-dependent population of the excited 
state 

( _ 
+ 

 

2  d 
dt  . A . ,  

— 
dt  2  

P1 1 (t) = pi 1 (0)e — At  cosh  
sum 

[  
2-  - (10.46) 

Using eqns (10.22) and (10.23) we therefore obtain a vanishing Lamb shift, 8(t) 
0, and the time-dependent decay rate 

270 A sinh(dt/2) 
d cosh(dt 12) + A sinh(dt/2) . 

In Fig. 10.2(a) we show this time-dependent decay rate -y(t)  ('exact') together 
with the Markovian decay rate -ym = -yo ('Markov') for TR = 5TB. For short times, 
i.e. for times of the order of TB, the exact decay rate grows linearly with t, which 
leads to the correct quantum mechanical short-time behaviour of the transition 
probability. In the long-time limit the decay rate saturates at a value larger 
than the Markovian decay rate, which represents corrections to the golden rule. 
The population of the excited state is depicted in Fig. 10.2(b): For short times, 
the exact population decreases quadratically and is larger than the Markovian 
population, which is simply given by  P11  (0) exp (--y0 t), whereas in the long-time 
limit the exact population is slightly less than the Markovian population. 

Next, we determine the solution of the generalized quantum master equation 
(9.26) in the Born approximation. To this end, we insert the spectral density of 
the coupling strength (10.43) into eqn (10.36) to obtain  W (t) E- 0 and 

(1)(0 = -y0 A exp(—At).  (10.48) 

This leads to the following form of the generalized master equation, 

t 
d  1  1 

Ps(t) = lioA f ds e —À(i— s)  [a_ps(s)o-±   — —

2 

o-± a_ps(s) — 
o 

(10.47) 

(10.49) 
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We differentiate with respect to t and obtain 

1 
iis(t) — /Vs(t) + -yox [a_ ps (t)o-±   — —

1 
u+ o- _ ps (t) — —2 

ps (t)o-±H . (10.50) 2 
Due to the exponential memory kernel, this equation of motion is an ordinary 
differential equation which is local in time, and contains only ps(t), 1s(t) and 
lis  (t).  The solution leads to the following time evolution of the population of the 
upper level, 

d't  , (d't 
(0)e  

() 
—At/ 2  [cosh 2  + —id  S11111 T)]  (10.51) 

where (1' = V A 2  — 4-yo A. From this expression, we can determine the time-
dependent decay rate 

--/i1  1 (t)  2-y0 A sinh(dt/2) 
--Y(t) =  =   (10.52) 

P11 (t)  d' cosh(d't/2) + sinh(d't/2) 
the structure of which is similar to the exact decay rate (10.47). Note, how-
ever, the difference between the parameters d and d' which can also be seen in 
Fig 10.2(a) where we have also plotted the decay rate (t) (`GME 2'): For short 
times, the decay rate "-y(t) is in good agreement with 7(0, but in the long-time 
limit, --y(t) is too large. 

Finally, the time-convolutionless decay rate can be determined from eqn 
(10.41). The second and fourth-order contributions are given by 

72(0 = yo (1 — e') ,  (10.53) 

and 

'-y4(t) =  [sinh(At) — At] e - At  .  (10.54) 

This corresponds to a Taylor expansion of the exact decay rate -y(t) in powers 
of the expansion parameter a2  = '-yo/A =-- TB/TR. Thus we see that the TCL 
expansion provides an expansion in the ratio of the reservoir correlation time TB 
to the system's relaxation time TR. Figure 10.2(a) clearly shows that the second-
order contribution -y2 (t) to the TCL expansion as well as the contribution up 
to fourth order 7 (4) (0 = -y2(t) + '-y4(t) approximate the exact decay rate very 
well for short times, and that the fourth-order contribution -y (4)  is also a good 
approximation in the long-time limit. 

The time evolution of the population of the excited state can be obtained by 
integrating the rate -y (4)  (t) with respect to t. This yields 

(10.55) 

In order to compare the quality of the different approximation schemes, we show 
the difference between the approximated populations and the exact population 

p (141)  (t) = pli (0) exp (— f ds -y (4)  (s)) 
o 
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in Fig. 10.2(c). In addition to the analytical solutions of the generalized master 
equation and the time-convolutionless master equation, we have also performed 
a stochastic simulation of the time-convolutionless quantum master equations 
with 10 5  realizations. Since the time-dependent rates -y2(t) and -y (4) (t) are pos-
itive for all t, the corresponding generators are in Lindblad form, and we can 
use the stochastic unravelling developed in Section 6.1.1. Figure 10.2(c) shows 
that the stochastic simulation is in very good agreement with the corresponding 
analytical solutions. Moreover, we see that the difference between the solution of 
the time-convolutionless master equation to fourth order and the exact master 
equation is small (see also Fig. 10.2(b)), whereas the errors of the generalized 
master equation and of the time-convolutionless master equation to second order 
are larger and of the same order of magnitude. In fact, the Markov approxima-
tion even leads to a slight improvement of the accuracy, compared to the Born 
approximation, which is surprising if we consider the heuristic derivation of the 
quantum master equation. 

The approximation schemes used here are perturbative and hence rely on the 
assumption that the coupling is not too strong. But what happens if the system 
approaches the strong coupling regime? We will investigate this question by 
means of the damped Jaynes—Cummings model on resonance, where the explicit 
expressions of the quantities of interest are known. 

First, let us take a look at the exact expression for the population of the 
excited state (10.46): In the strong coupling regime, that is for -yo  > A/2 or 
TR < 2TB, the parameter d is purely imaginary. Defining d = —id we can write 
the exact population as 

ci2t ±  Aci  sin  _2_cit  2  , 
p11 (t) = pii (0)e —At  COS 

which is an oscillating function that has discrete zeros at 

2  ii t , 

 

 mr — arctan —
A) ' d 

(10.56) 

(10.57) 

where n =-- 1, 2, .... Hence, the rate -y(t) diverges at these points (see eqn (10.23)). 
Obviously, -y (t) can only be an analytical function for t E [0,  t o [, where to is the 
smallest positive zero of p ii (t). 

On the other hand, as we have just seen, the time-convolutionless quantum 
master equation corresponds basically to a Taylor expansion of -y (t) in powers of 
-Yo, and the radius of convergence of this series is given by the region of analyticity 
of -y(t). For -yo  < A/2, this is the whole positive real axis, but for -yo  > A/2 the 
perturbation expansion only converges for t < to. This behaviour can be clearly 
seen in Fig. 10.2(d), where we depict p ii  (t) and ik(t) for TR = TB/5, i.e. for 
strong coupling: The perturbation expansion converges to  p11 (t) for t < to  
6.3/ -yo,  but fails to converge for t > to. 
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FIG. 10.3. The damped Jaynes-Cummings model on resonance. Exact popu-
lation for the three different initial conditions p» (0) = 1.0, 0.5, 0.0 in the 
strong-coupling regime (7-R = 0.21-B). 

The solution of the generalized master equation to second order shows a quite 
distinct behaviour, but also fails in the strong-coupling regime: For -yo > A/4 the 
population P11 (t) starts to oscillate and even takes negative values, which is 
unphysical (see Fig. 10.2(d)). 

The 'failure' of the time-convolutionless master equation at t = to  can also 
be understood from a more intuitive point of view. The time-convolutionless 
equation of motion states that the evolution of the reduced density matrix only 
depends on the actual value of ps (t) and on the TCL generator. However, at 
t = to  the time evolution also depends on the initial value of the density matrix. 
This fact is illustrated in Fig. 10.3, where we have plotted the population  p1 1 (t)  
for three different initial conditions, namely p i].  (0) = 1.0, 0.5, 0.0. At t = to, 
the corresponding density matrices coincide, regardless of the initial condition. 
However, the future time evolution for t > to is different for these trajectories. 
It is therefore intuitively clear that a time-convolutionless form of the equation 
of motion which is local in time ceases to exist for t > to . The formal reason for 
this fact is that at t = to  the operator 1- E(t) (see Section 9.2.1) is not invertible 
and hence the generator 1C(t) does not exist at this point. 

10.1.3 Jaynes-Cummings model with detuning 
In this section we treat the damped Jaynes-Cummings model with detuning, 
i.e. the same setup as in the preceding example but the centre frequency of the 
cavity is detuned by an amount A against the atomic transition frequency w o . 
In this case the spectral density takes the form 
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f  \  1  -yo A 2  

 

4Â))  27 (c.o0  - A - co) 2  + A2  ' 

and thus the functions (DM and  W(t) are given by 

4.(t) =- -yoAe -At  cos(t), 
Ili(t) = -yo Ae -At  sin(At). 

(10.58) 

(10.59) 
(10.60) 

With these functions, the time-dependent Lamb shift S (4)  (t) = S2 (t) ± S4(t) and 
decay rate  (4)  (t)  = -y2(t)+N(t) to fourth order in the coupling can be calculated 
using eqns (10.42) and (10.41). The integrals can be evaluated exactly and lead 
to the expressions 

-yo AA s( 4)(t) , A2 +  A2 [1 - e -At  (COS(At) + 1 sin(At))]  (10.61) 

-yd A 2  A3  C AL  
2(A2  ± A2 ) 3  

- 2[1 - (A-) 4 ]Atsin(At)  +4[1  + (1) 2  I At COS(At) 

- 1-  [3 - ( 1) 2  I C At  sin(2At) 1 

and 

-YoÀ 2  = 
A 2  + A2 

[1 — e —  At  (cos(At) — sin(At))1 

+  -y 
+ 

dA5e—A 
 2)  t 
  { [ 

2(A2 31 - 3    (°,-, ) 2  ] (e At  - e - At  cos(2At)) A 

(10.62) 

_2[1  - () 4  I At cos(At) + 4 [1 + ('-) 2  ]  At sin(At) 

+1-: [3 - (1'-) 2  ] e -At  sin(2At)}. 

In Fig. 10.4(a) we have depicted -y( 4)(t) together with the exact decay rate, 
which can be calculated by solving the differential equation for the probability 
amplitude  e1  (t) for A = 8A and A =- 0.3-yo. Note that the spontaneous decay rate 
is severely suppressed compared to the spontaneous decay on resonance. This 
can also be seen by computing the Markovian decay rate -ym  which is given by 

-yo A 2  
-Ym  =  A2  + A2 

 0.015-Yo• (10.63) 

However, this strong suppression is most effective in the long-time limit. For short 
times, -y(t) oscillates with a large amplitude and can even take negative values. 
which leads to an increase of the population. This is due to photons which have 
been emitted by the atom and are reabsorbed at a later time. Hence, the exact 
quantum master equation as well as its time-convolutionless approximation are 

{ [1 - 3 (*) 2 ] (e At  — e -A1  COSPAO) 
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FIG. 10.4. The damped Jaynes—Cummings model with detuning. Exact solu-
tion (exact), time-convolutionless master equation to fourth order (TCL 4), 
and the Markovian quantum master equation (Markovian): (a) Decay rate 
of the excited state population, and (b) the population of the excited state, 
including a stochastic simulation of the time-convolutionless quantum master 
equation with 105  realizations (symbols), for A = 0.3-yo  and A = 8A. 

not in Lindblad form, but conserve the positivity of the reduced density matrix. 
This is of course not a contradiction to the Lindblad theorem, since a basic 
assumption of this theorem is that the reduced system dynamics constitutes a 
dynamical semigroup. This assumption is obviously violated here. 

Although the time-convolutionless master equation is not in Lindblad form 
and involves negative transition rates, it can be represented through an ap-
propriate stochastic process as was shown in Section 9.3. The dynamics of the 
stochastic wave function 0(t), which is an element of the doubled Hilbert space 

= "1-ts ED1-1s, is governed by the stochastic differential equation (9.98), where 
the operator F(t) is given by 

F(t) = —Ty (t)  0  0  ,  (10.64) 

and we have a single jump operator 

J(t) _ (y (4 )(t)o-_ 0  (10.65) 
0  o- 

The jumps induce instantaneous transitions of the form 

0(t)  ii1j190( (t)t i) 111 J0(t)  ( 7(4)1 (0t))sl 0)s  (10.66) 

If the rate -y( 4)  (t) is positive these transitions lead to a positive contribution to 
the ground state population p00 (t), while a negative rate results in a decrease of 
Poo (t) • 
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In Fig. 10.4(b), we show the results of a stochastic simulation for 105  realiza-
tions, together with the analytical solution of the time-convolutionless quantum 
master equation and the exact solution. Obviously, the agreement of all three 
curves is good and the stochastic simulation algorithm works excellently even 
for negative decay rates. In addition, we also show the solution of the Markovian 
quantum master equation which clearly underestimates the decay for short times 
and does not show oscillations. 

10.1.4 Spontaneous decay into a photonic band gap 

As our final example, we treat a simple model for the spontaneous decay of a 
two-level system in a photonic band gap which was introduced by Garraway 
(1997). To this end, we consider a spectral density of the form 

J (w) _ " 
0

0 
 2 (  
W1  fi  W2 f2  
27r (a) — c.o0) 2  ± (r 1 /2)2  (c.,) — w0 )2 + (r2 /2)2)' 

where 118 describes the overall coupling strength, 1' 1  the bandwidth of the 'flat' 
background continuum, F2 the width of the gap, and W1  and 1172 the relative 
strength of the background and the gap, respectively. In Fig. 10.5 we show the 
excited state's decay rate -y(t) for the parameters F1/110 =- 10, F 2 /110  = 1, 
W1 = 1.1, and W2 = 0.1. For short times, -y(t) increases linearly on the time scale 
171 and then attains a maximum value. This phase of the dynamics stems from 
transitions into the 'flat' background continuum. For longer times, i.e. t » F 2-1 , 
the system resolves the structure of the spectral density and transitions are 
strongly suppressed due to the presence of the gap. The decay rate therefore 
becomes smaller and smaller until it reaches its final value. Thus, the population 
of the excited state decreases rapidly for times of order IV , and slowly in the 
long-time limit (see Fig. 10.5). 

The time-dependent Lamb shift S (4) (t) and the decay rate  (4)  (t)  of the time-
convolutionless quantum master equation to fourth order can be computed by 
inserting the spectral density of the coupling strength J(w) into eqn (10.36). 
This yields xlf(t) E 0 and 

(1) (t) = 211 8 (Wi e -rit/2  - W2 e -r2t/2 ) ,  (10.68) 

which can be inserted into eqns (10.42) and (10.41). Since W(t) E:-  0 the Lamb 
shift  S 4  (t)  vanishes; the time-dependent decay rate -y (4 ) (t) can be computed 
explicitly, and is in good agreement with the exact decay rate for our choice of 
parameters (see Fig. 10.5). 

10.2 The damped harmonic oscillator 

The damped harmonic oscillator has already been studied at various places in 
Chapter 3, where we discussed the master equation (3.307) in the quantum opti- 
cal limit and the high-temperature Brownian motion master equation (3.410). It 

(10.67) 
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FIG. 10.5. Spontaneous decay in a photonic band gap: Exact solution (exact), 
and time-convolutionless master equation to fourth order (TCL 4). Left: De-
cay rate of the excited state population. Right: The population of the excited 
state, including a stochastic simulation of the time-convolutionless quantum 
master equation with 10 5  realizations (symbols), for W1  = 1.1, W2 = 0.1, 
ri/O0 = 10, and F 2 /f20  = 1. 

provides one of the few open systems which can be solved analytically — for ex-
ample by solving the exact Heisenberg equations of motion (Section 3.6.3) or by 
means of the Feynman—Vernon path integral technique (Section 3.6.4). There-
fore, the damped harmonic oscillator is particularly suited to investigate the 
parameter regime where the perturbation expansion of the time-convolutionless 
master equation yields reliable results beyond the Born—Markov limit. We will 
show that the perturbative treatment is in good agreement with the exact so-
lution for sufficiently high temperatures at any coupling strength and for low 
temperatures at weak or moderate couplings. 

10.2.1 The model and frequency renormalization 
We consider the Caldeira—Leggett model for a harmonic oscillator, linearly cou-
pled to a bath of harmonic oscillators (see Chapter 3.6). The Hamiltonian of the 
composite system thus takes the form 

H = H + HB H1,  (10.69) 

where 

1 2  1  2 2 HS = —2 P + 

1/B = 
E  ( 2 1 

Ti 

7-2 

HI= —XEK nx 7, =  ® B. 

(10.70) 

(10.71) 

(10.72) 
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The Hamiltonians Hs  and _HB  generate the free time evolution of the system 
and the bath, respectively, and  H1  denotes their interaction. Note that we have 
chosen units such that h = 1 and that we have rescaled position and momentum 
variables according to XR/Fn and p 1).0/71, so that the mass of the 
oscillator is normalized to one in the subsequent expressions. 

The frequency co b  which enters the definition of the system Hamiltonian 
(10.70) is not the physically observable frequency of the oscillator but the bare 
frequency, since the coupling to the environment induces a frequency shift which 
depends on the cutoff frequency () (see Section 3.6.2.1). The bare frequency is 
connected to the renormalized frequency w0  by the relation 

with 

2  2  2 = + 

=  Ink'
2
w  2 2 fcx) dco jw(w)  = 21/Q, 

n n 
0 

(10.73) 

(10.74) 

where  J(w) denotes the Ohmic spectral density with a Lorentz-Drude cutoff 
function (see eqn (3.392)). 

The frequency w  on the coupling strength and is of second order 
a2  in the coupling. Hence, the bare frequency cob is a function containing terms 
of order a2 . On the other hand, the generator 1C(t) = 1C(t;cob) and the inho-
mogeneity (t) = J(t; wb ) (see eqn (9.84)) depend, among other parameters, 
on the bare frequency co b . In order to obtain a consistent expansion in terms of 
the coupling strength, we thus have to take into account explicitly the potential 
renormalization. To second order this yields 

/C2(t) = /C2(t; woo)  and  J2 (t)  (t; WO), 

while the fourth-order contributions read 
\  8k2 ( t; wo)  J 4  (t)  K4(t; wo) 2wco  awo 

w 2  0,72(t; wo)  J4(t) = j4(t ; w°)  + 2c:0  awo 

(10.75) 

(10.76) 

(10.77) 

where the expressions )C 7 (t) and 1(t) denote the n-th order contributions to 
the generator and the inhomogeneity as derived in Sections 9.2.2 and 9.2.4. 

Thus, for the computation of the second-order contribution we simply use 
the renormalized frequency w0 instead of the bare frequency cob. To fourth order, 
we have to consider two terms: The first term is again obtained by replacing the 
bare frequency with the renormalized frequency in the usual expressions for K4 
and  J.  The second term is given by differentiating K2 and J2 with respect to 
the renormalized frequency. 
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10.2.2 Factorizing initial conditions 
In this section we investigate the relaxation of an initially factorizing state into 
the equilibrium state. To this end, we determine the generator 1C(t) to fourth or-
der using eqns (9.61) and (9.62). After some algebra we obtain in the Schrödinger 
representation the following quantum master equation with time-dependent co-
efficients: 

d  i 
Ps(t) = — i [I Is, Ps(t)] — A(t) [X 2 , Ps(t)] 

—i\(t) [X,  {P, ps (0 }] — Dpp(t) [X, [X, ps(t)]i 
+2D px (t)  [X,  [P, Ps (t)]] - (10.78) 

This equation has precisely the same structure as the exact quantum master 
equation (Haake and Reibold, 1985; Hu, Paz and Zhang, 1992; Karrlein and 
Grabert, 1997) and it can be shown that it is not in Lindblad form (see, e.g. 
Sandulescu and Scutaru, 1987). 

The coefficient A(t) leads to a time-dependent energy shift, A(t) is the clas-
sical damping term and Dpp(t) and D p x (t) are diffusion terms. The physically 
observable frequency of the oscillator is given by 

w2 (t) =- 4 + A (t) = c4 + 4 + A (t).  (10.79) 

As we will see below, in the long-time limit 4 and A (t) tend to compensate 
each other, such that the observable frequency  w(t) is close to the renormalized 
frequency wo. 

To second order in the coupling strength, the coefficients entering the master 
equation read 

t 
A (2 ) (t) = 

 _Ids  ds D(s) cos(w0s), 
o 

(10.80) 

A (2 ) (t) = 

D (t) = 

1 
t 

f ds D (s) sin(coos), 
o 

t 

f ds D 1  (s) sin(wos) , 
o 

(10.81) 

(10.82) 

2wo 

1 
4w0 

t 
1 

D(t) = —2 f ds Di (s) cos(w o  s) , 
O  

(10.83) 

which is in agreement with the results obtained by Hu, Paz and Zhang. We recall 
that the dissipation and the noise kernel D(s) and D 1  (s) were introduced in eqns 
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(3.393) and (3.394), respectively. The Markovian limit is obtained in the limit 
t —> oo, yielding for Ohmic dissipation 

Am  _  2-y12 3  
- 92 

AM  - 1792  
- 

D  17  Q2  Y,()°  PX =  4  M  QkBT  - 9 1 1)711  
2 1 -2 ,_, 

-r "l0 n=_00 (vi ± w2 )(1V 1 0  n ± 9)' 

DmeYw°92  Ç2 1-  22 , w2  cot h (  w°  =-  o  2kBT) ' PP  

In the high-temperature limit kBT » 9 » wo this yields the coefficients of the 
well-known Caldeira-Leggett master equation (3.410), namely 

ACL  _ 

Act., = 
17, 

D lyk  _ 'YkBT  
9 ' 

DPP = 2-ykBT. 

(10.88) 
(10.89) 

(10.90) 

(10.91) 

Note that the coefficient Da is small in comparison to the other coefficients 
and may thus be set equal to zero. The explicit expressions for the coefficients 
to fourth order can be found in (Breuer, Kappler and Petruccione, 2001). The 
energy shift A(t) and the damping coefficient A(t) only depend on the dissipation 
kernel D (t) . Hence, these quantities are independent of the temperature of the 
reservoir. In Fig. 10.6 we show the time dependence of the physically observable 
frequency  w(t) and of the coefficient A(t) for moderate coupling (-y = w o , () = 
20w0). Both functions decay on a time scale which is of the order of magnitude of 
the inverse cutoff frequency 9 -1  and approach a constant value for long times. 
In the limit () oc the fourth-order contribution becomes negligible and the 
constants are given by the Markovian limits: wp  wo  and A(t) _), AcL .  

The time dependence of the temperature-dependent diffusion coefficients 
D pp(t) and Dpx(t) to fourth order is depicted in Fig. 10.7 for three different 
temperature regimes. For high temperatures, i.e. k B T » Q, the diffusion coeffi-
cients vary on a time scale which is of the order of the inverse cutoff frequency 
(top). For intermediate temperatures, i.e. Q » kBT » wo , the coefficients vary 
on a time scale of the order of the thermal correlation time 1/kB T (middle), and 
for low temperatures the time dependence of the diffusion coefficients is gov-
erned by the inverse system frequency w o-1  (bottom). From this behaviour, we 
expect the perturbation approximation to be in good agreement with the exact 
solution for high temperatures if -y < SI, for intermediate temperatures in the 
regime -y < kB T and for low temperatures in the regime -y  «w0. This point will 

(10.84) 

(10.85) 

(10.86) 

(10.87) 
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FIG. 10.6. Time dependence of the physically observable frequency  w(t) and 
of the damping coefficient A(t) of the harmonic oscillator to fourth order in 
the coupling strength. The parameters are: -y = wo, Q =  20w0 .  

be discussed in more detail in Section 10.2.3, where we compute the stationary 
density matrix of the reduced system. 

Let us now consider the relative error of the coefficients of the quantum 
master equation, which we define for A(t) as 

 

A (2 n) (t)  — A(t)  
A(t) 

  

e (2 n)  = lim r  t—f oc  , 
(10.92) 

    

and in a similar way for the other coefficients. This type of error was discussed 
in Section 9.2.5. By using the expansion of the coefficients to fourth order we 
obtain the following estimates for these errors: 
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FIG. 10.7. Time dependence of the diffusion terms D p p (t) and Dpx(t) to fourth 
order in the coupling strength. We distinguish three parameter regimes. 
High temperatures, intermediate coupling (top): -y = wo , =  20w0,  
kBT =  1000w0. Intermediate temperatures, intermediate coupling (middle): 
-y = Ct)0 = 200 coo, kBT = 10 wo. Low temperatures, weak coupling (bot-
tom): -y =  0.1w0 , 12 =  20w0 ,  kB T = 0.01 wo• 

 

AO) (t)  -  A( 2)(t)  

A ( 2 ) (t ) 

   

-(2) er =  urn 
t—>00 

-(4) _ 
er — (10.93) 

    

and similar expressions can be found for the other coefficients. These estimates 
..(2) are compared with the actual errors in Fig. 10.8. The figure shows that er 

provides a very good estimate of the actual error eP )  of the perturbation ex-
pansion. This is not surprising since this estimate is based on the fourth-order 
contribution. On the other hand, the estimate el)  does not involve higher-order 
terms but only relies on the second and fourth-order contribution. Nevertheless 
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FIG. 10.8. Exact relative errors eP )  and e 4)  and their estimates 6 2)  and 
to second and fourth order for the coefficients A(t), w(t) 2  —  w ,  D p p (t) and 
D p (t) 

it provides a good means for getting the order of magnitude of the actual error 
which is enough for most applications. Thus, except for the second order, the 
error of the perturbation expansion can be reliably estimated without computing 
higher-order terms of the expansion. 

10.2.3 The stationary state 
In this section we investigate the stationary state of the time-convolutionless 
master equation in order to find the parameter regime in which the perturba-
tion expansion yields reliable numerical results. Since the stationary state of the 
harmonic oscillator is Gaussian, it is completely determined by the first and sec-
ond moments of the observables X and  P.  The dynamics of these moments is 
governed by the adjoint master equation 

=  j ([11s OD t  A(t) ( [X 2, (-9] )t 
+iA(t) ({P,  [X,  t  — D pp(t)  ([X, [X, O ]]) t  
+2D px (t)  , [P,  t  ,  (10.94) 



d (p2)t 

dt 
d = 
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where 0 is some arbitrary system operator and ( (9) t  denotes the time-dependent 
expectation value trs{Ops(t)} of the observable 0 with respect to the reduced 
density matrix ps(t). 

For the observables X and P eqn (10.94) yields the classical equations of 
motion of a damped harmonic oscillator, namely 

d 
(X)t = (P) dt 

d 
4(0 (X)t — 2A(t)(P)t, 

and for the second moments we obtain 

({X, P}),  

- (t) ( { X, P}) t  — 4A(t) (P 2 ) + 2D p p (t) 

—24(t)(X 2 ) t  + 2 (P2 )1, 
—2A(t)({X,P}) 1  4Dp.v (t). 

The stationary solution of these equations of motion reads (S:andulescu 
taru, 1987) 

(x 2 ) = Hill 
t — oo 

(P2 ) 
t—> DO 

1  [ D pp (t)  + 4D p x (01 24(0 I_  A(t)  
D pp(t) 

2A(t) 

(10.95) 

(10.96) 

(10.97) 

(10.98) 

(10.99) 

and Scu- 

(10.100) 

(10.101) 

(10.102) 

In the weak coupling limit, i.e. in the limit 7  0, the stationary state can be 
computed by inserting the Markovian coefficients defined in eqns (10.84)—(10.87). 
which lead to the expressions 

1  (X 2 = —2wo  coth ( 21:T ) ,  (10.103) 

(P2 ) =—w2°  coth ( 2ZT ) .  (10.104) 

The variances AX 2  and AP2  are (up to a scaling factor coo ) identical and thus. 
the state of the harmonic oscillator is not squeezed. In the high-temperature 
regime the variances are proportional to the temperature, i.e. the oscillator be-
haves like a classical oscillator. On the other hand, in the low-temperature regime 
the variances are bound by the Heisenberg uncertainty relation and the oscillator 
behaves quantum mechanically. 
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For -y > 0 we can approximate the stationary solution by using the expres-
sions for the coefficients of the master equation in fourth order. This yields 
corrections to the second moments (X2 ) and (P2 ) which are linear in 2/. In Fig. 
10.9 we compare the approximated with the exact variances for -y = 0.25 coo  and 
-y = 0.5 wo  in the low-temperature regime. Both solutions show qualitatively the 
same behaviour: The variance in the position decreases, while the variance in the 
momentum increases for increasing temperatures — the state of the oscillator is 
squeezed in this parameter regime. Figure 10.9 also indicates that the approxi-
mation of the master equation to fourth order yields reliable numerical results 
for -y < c.03 /2. 

A more detailed quantitative analysis of the error of the approximation is 
depicted in Fig. 10.10. For a fixed value of the cutoff frequency 0 this figure shows 
the regions in the parameter space where the relative error in the variance of the 
momentum is less than 5% and 1%, respectively. Obviously, the perturbation 
expansion is in good agreement with the exact results for -y < kB772 in the 
high-temperature regime, and for -y < wo /2 in the limit T .— 0. Numerical 
investigations show that for 2,  < 0/2 this behaviour may be summarized by the 
condition 

ado 
  < en(Q,er) wa + (kBT)  

(10.105)
2 — 

where the constant en, depends on the cutoff frequency 0, the desired accuracy 
e r , and the order n of the approximation, but is independent of the temperature. 
For 0 = 20 coo  and er  = 5% we have, for example, e2  = 0.042 and c4 = 0.84, 
while for er  = 1% one gets e2  = 0.0068 and c4 = 0.25. In Fig. 10.10 we have 
also marked the boundary of the parameter regime for which eqn (10.105) holds, 
which is in very good agreement with that region where the relative error is, in 
fact, less than the prescribed value of e r . 

The fact that the perturbation expansion also yields numerically reliable re-
sults in the low-temperature regime seems to contradict the fact that the thermal 
correlation time TB r•i 1/kBT becomes infinite in the limit T .— 0. On the other 
hand, as discussed in Section 10.2.2, the time dependence of the temperature-
dependent diffusion coefficients is dominated by the time scale wo-1 . Thus, the 
memory time in the low-temperature regime is the inverse system frequency and 
not the thermal correlation time. In fact, as we saw in Section 3.4 a perturbative 
treatment is extremely accurate in the quantum optical regime even in the limit 
T -- 0. This explains why the Markovian master equation is particularly useful 
in that regime and why it provides an approximation which is uniform in T and 
holds even in the vacuum optical case (T = 0). 

10.2.4 Non-factorizing initial conditions 
In this section we want to determine the equilibrium position autocorrelation 
function (X(t)X) which is defined by 

(X (t)X) E tr { e ifft Xe —iHt Xpeq } ,  (10.106) 
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FIG. 10.9. Low-temperature behaviour of the stationary variances (X 2 ) and 
(P2 ) for -y = 0.25 wo (top) and for -y ---  0.5w0  (bottom). `TCL 4' denotes 
the solution of the quantum master equation to fourth order and 'exact' the 
solution given in (Grabert, Schramm and Ingold, 1988). The cutoff is chosen 
to be Q =  20w0 .  

where the trace is taken over the system and reservoir. This definition can be 
transformed into the interaction picture, 

(X(t)X) = tr {X(t)V(t)},  (10.107) 

where X(t) = exp(iHst)X exp(—iHst) is the interaction picture position opera- 
tor. The operator V(t) introduced above is a solution of the equation of motion 

d 
—dt V (t) = — 0 I 1- (t) , V (t)]  (10.108) 
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FIG. 10.10. The regions in parameter space, where the relative error of the 
stationary value of (P2 ) is less than 5% (left side) and less than 1% (right 
side). TCL 2 (TCL 4) denotes the solution of the time-convolutionless master 
equation to second (fourth) order. The crosses mark the boundaries of the 
regions where eqn (10.105) holds. The bottom shows an enlarged section of 
the low-temperature and weak-coupling regime. The cutoff is chosen to be 

20 wo . 

corresponding to the initial condition 

V(0) = XPeq  E---  APeq• 
 (10.109) 

In general, this initial value neither provides a true density matrix nor does 
it represent a factorizing state. However, it does belong to the class of initial 
conditions (9.69) discussed in Section 9.2.4. 

Since the operator X only acts in the Hilbert space of the open system it 
commutes with the projection operator P and we can write the position auto-
correlation function as follows, 

(X(t)X) = tr {X(t)PV(t)} .  (10.110) 

The equation of motion for the correlation function is now obtained by differ-
entiating both sides of this equation with respect to t and making use of eqns 
(9.33) and (9.84), 
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—d (X (t)X) = i tr { [H s  , X (t)]PV (t)} 

+tr -(X(t)k(t)PV(t)} + tr {X(t)J(t)Pp eq f . 

In a similar way we can derive an equation of motion for the momentum-position 
correlation function, namely 

—d (P(t)X) = i tr {[H s , P(t)1PV (Of  (10.112) 
dt 

+tr {P(t)K(t)PV(t)} + tr {P (t) J (t)P Peg } . 
Inserting the expression for k(t) for the harmonic oscillator derived in Section 

10.2.2 we obtain a closed set of differential equations for (X(t)X) and (P (t)X): 
d 
-1t (X (t)X)  = 

—d (P(t)X) = 
dt 

where the inhomogeneities are defined as 

/xx (t) = tr {X(t),7(t)Pp eci l ,  (10.115) 
1-px  (t) = tr {P(t)J(t)Ppec i l •  (10.116) 

The equation of motion for the correlation function (P(t)X) is, apart from the 
inhomogeneity, identical to the equation of motion for the observables X and P 
(see eqn (10.96)). This is the basic assertion of the quantum regression theorem. 
Thus, in the weak coupling limit, where the effect of the inhomogeneity can be 
neglected, the quantum regression theorem holds to the same level of accuracy. 
as the master equation. For stronger couplings the equation of motion has to 
be supplemented by the inhomogeneous term. It is important to note that this 
result is not in contradiction to the reported failure of the quantum regression 
theorem (Grabert, 1982; Talkner, 1995; Ford and O'Connell, 1996), since the 
description of the reduced dynamics by means of a convolutionless equation of 
motion does not constitute a quantum Markov process possessing the semigroup 
property. 

By using the definition of the super-operator 1(t) (see eqn (9.35)) it can be 
shown that the inhomogeneous term /xx (t) vanishes to all orders in the coupling 
strength. This can also be seen directly from the exact Heisenberg equation of 
motion 5CH(t) = PH(t) which leads to /xx (t) E 0 in eqn (10.113). The term 
/px  (t) is evaluated by making use of the perturbation expansion of the super-
operator J(t) given in Section 9.2.4. To second order in the coupling strength 
we find 

o  o 
1 

I  (X 2) f ds D(t - s) cos(wo s) -  f ds  D1  (t  - s) sin(c.00 s). (10.117) 
-00  - 00  

dt 
(10.111) 

(P (t)X) + I x x (t),  (10.113) 

-4(t)(X(t)X) - 2A(t)(P(t)X) + Ipx (t),  (10.114) 

The fourth-order contribution PA is given by Breuer, Kappler and Petruccione 
(2001). 
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FIG. 10.11. Time dependence of the inhomogeneous term Ipx (t) (top) and the 
real part of the position autocorrelation function (Xii(t)X) (bottom) for low 
temperatures and weak couplings, i.e. kBT = 0.01 coo  and -y = 0.1 wo  (left) 
and for high temperatures and intermediate couplings, i.e. kBT = 1000 C•00 
and 7 = (4)0  (right). The cutoff is chosen to be 0 = 20w 0 .  The inset shows 
the long-time behaviour of Ipx (t) for low temperatures after the initial jolt 
has decayed (note the different units). 

The time dependence of ipx (t) is depicted in Fig. 10.11. In the low-temper-
ature regime, there are two different contributions to I px (t): For small times, 
i.e. for times of the order of the inverse cutoff frequency, Ipx (t) takes large 
positive values. For intermediate times, i.e. for times of the order of the inverse 
system frequency, Ipx (t) is negative. In the limit t Do the inhomogeneous term 
/px(t) vanishes and the master equation becomes homogeneous. In contrast to 
this behaviour, /px (t) simply decays exponentially on a time scale 0 -1  in the 
high-temperature regime. 

This behaviour has important consequences for the time evolution of the po-
sition autocorrelation function. To see this, we consider the equation of motion 
for (P(t)X), eqn (10.114). The first term, —w p2 (t)(X(t)X), gives rise to a large 
negative contribution in the short-time behaviour due to the initial jolts in the 
physically observable frequency  w(t) (see Fig. 10.6), which would lead to a fast 
decay of (P(t)X) on a time scale 0'. However, this contribution is compen-
sated by the inhomogeneous term Ipx (t) which takes large positive values for 
all temperatures. Thus the somewhat artificial initial jolts, which are induced by 
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the short-time behaviour of the generator  K(t), are compensated by the inho-
mogeneity J(t). 

Figure 10.11 also shows the real part of the autocorrelation function (X(t)X) 
in the underdamped and in the overdamped regime. The lines indicate the ex-
act solution as given by Grabert, Schramm and Ingold (1988), and the symbols 
denote the solution of the perturbation expansion of the equations of motion 
(10.114). The agreement of both expressions is very good for the considered pa-
rameters. A systematic investigation of the range of validity of the perturbation 
expansion to second and fourth order is depicted in Fig. 10.12. This figures show 
the regions in parameter space where the relative error 

maxt>0  fre.(t) — C(t)J} 

for a certain order of approximation n is less than 5% and 1%, respectively. 
The function Gx (t) denotes the exact autocorrelation function and Cri  (t) its 
nth order approximation. In this figure we have also included the boundaries of 
the regions where eqn (10.105) holds for c2 = 0.0055, c4 = 0.3 (e r  = 5%) and 
c2  = 0.0013, c4 = 0.15 (er  = 1%). As in the case of the relative error of the sta-
tionary variance (P 2 ), this gives a good estimate of the error of the perturbation 
expansion. Note, however, that the quality of this estimate also depends on the 
ratio of the coupling strength  ty  to the cutoff frequency 0, since the approxima-
tion of the physically observable frequency  w(t) and of the classical damping 
coefficient A(t) depend on this ratio. 

10.2.5 Disregarding the inhomogeneity 

The explicit computation of the inhomogeneity J(t) for non-factorizing initial 
conditions can become rather tedious since it consists of more terms than the 
generator 1C(t). Thus, there naturally arises the question if this effort is really 
necessary or if it is possible to disregard the inhomogeneity. In this section we 
will briefly discuss two proposals of this kind which yield the correct results in 
the weak-coupling limit and show their failure for certain parameters. 

The first possibility we want to investigate is to simply ignore the correlations 
between the system and the environment and to assume a factorizing initial state. 
Thus, the equation of motion for the correlation function (P(t)X) would take 
the form 

d 
dt

(13 (t)X) = —c.4(t)(X(t)X) — 2A(t)(P(t)X). (10.119) 

However, as we discussed in Section 10.2.4 the short-time dynamics of the phys-
ically observable frequency cup  is dominated by a large initial jolt which leads to 
an enhanced decay of the autocorrelation function. This behaviour is depicted 
in Fig. 10.13 (Trop 1'). 

The second proposal we want to discuss avoids this difficulty. In this approach 
we also ignore the initial correlations, but in contrast to the first approach the 

(10.118) 
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FIG. 10.12. The regions in parameter space where the relative error of the 
position autocorrelation function (X(t)X) is less than 5% (left side) and 
less than 1% (right side). TCL 2 (TCL 4) denotes the solution of the 
time-convolutionless master equation to second (fourth) order. The crosses 
mark the boundaries of the regions where eqn (10.105) holds. The cutoff is 
chosen to be 1 = 200w 0 . 

time evolution of the master equation is generated by the stationary value of 
K(t). Thus the equation of motion for (13 (0X) would take the form 

d —dt (P(t)X) = —4,(X(t)X) — 2 . (P(t)X),  (10.120) 

where 

cDp  = lim w(t),  A  = lim A(t).  (10.121) t—›.00 

As demonstrated in Fig. 10.13 (see 'Prop 2') this approach also leads to significant 
deviations from a calculation which takes into account the inhomogeneity. These 
deviations are due to the negative contribution to ipp(t) (see the inset of Fig. 
10.11). 

Thus, it is in general inevitable to explicitly include the inhomogeneity in the 
case of non-factorizing initial states. An attempt to approximate the initial state 
by a factorizing state can lead to additional errors, which are of the order of the 
corrections one makes by expanding the generator to higher orders. 
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Loot 

FIG. 10.13. Approximation of the correlation function (P(t)X) determined by 
neglecting the inhomogeneity (see text for details). The parameters read: 
kBT/c.o0  = 0.0 1 , 7/w0 = 0.1, and S2 =  20w0 .  

10.3 The spin-boson system 

The investigation of the spin-boson system, i.e. a two-level system interacting 
with a bath of harmonic oscillators, is of particular interest in the theory of 
open quantum systems. First of all many physically interesting systems can be 
approximated by a two-level system in the low-temperature limit by neglecting 
higher excitations. This point has been discussed in detail by Leggett et al. 
(1987) in the context of the problem of tunnelling between two potential wells. 
Another reason for the wide interest in the spin-boson system is that it provides 
an excellent model for the investigation of certain approximation methods. 

10.3.1 Microscopic model 
The spin-boson system describes a two-level system which is linearly coupled 
to a bath of harmonic oscillators. The essential difference to the model treated 
in Section 10.1 is that the system—reservoir coupling is not treated within the 
rotating wave approximation. The Hamiltonian of the composite system thus 
takes the form 

(10.122) 

(10.123) 

(10.124) 

(10.125) 

H = Hs + HB + 111, 
1 Hs = —woo -  z, 2 

HB  , E  (  1 2  ± 1 Tnriwr2i x  2n  , 
2m,-, 2 

1 
Hi-  = —

2
(ix  0 B, 

ri 
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where Hs and Hg generate the free time evolution of the system and the bath, 
respectively, and III denotes their interaction. As in the case of the harmonic 
oscillator (see Section 10.2) the reduced system dynamics is characterized by the 
dissipation kernel D(t) = i[B(t), _131 and by the noise kernel Di  (t) = ({BM, B}) 
(see eqns (3.385) and (3.386), respectively). The spectral density J(w) of the 
model is again taken to be of the Lorentz-Drude form, 

1, w  02  

10.3.2 Relaxation of an initially factorizing state 
In this section we compute the perturbation expansion of the generator of the 
quantum master equation for the spin-boson system and determine its stationary 
solution. The quantum master equation for the reduced density matrix is most 
conveniently written in terms of the Bloch vector (6(t)) (see eqn (3.223)) as 
follows, 

—d  (6(t)) = A(t)(6(t))  +2(t),  dt (10.127) 

where A(t) is a time-dependent 3 x 3 matrix and the inhomogeneity g(t) is 
a 3-vector. These quantities can be computed by using the expressions for the 
generator kW given in Section 9.2.2. In the Schrödinger picture the perturbation 
expansion of A(t) and E (t) takes the form 

( 0  -wo 0  0 ) 
A(t) = w o  + a x (t) a(t)  0  ,  ( t) =  0  (10.128) 

0  0  azz (t)  bz (t) 

To second order in the coupling strength we obtain 
t 

1 
a (2) (t) = —2 f ds Di(s)sin(wos),  (10.129) yx 

0 
t 

a(t) = a (z2z) (t) = --1 Ids  Di(s)cos(wos),  (10.130) 2 
o 

t 
b 2 (t) = - -1 f ds D(s) sin(wo s),  (10.131) 4 

o 

J(w) = (10.126) 71 Wo  112  + w 2  ' 

With this definition of the damping constant 7 the dimension of D(t) and D 1  (t) 
is equal to the square of an energy as it should be for an interaction Hamiltonian 
of the form (10.125). 

which is similar to the coefficients of the quantum master equation of the har- 
monic oscillator (see Section 10.2.2). Note however that the term A(t) which 
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FIG. 10.14. Time dependence of the dephasing coefficients  a(t) and a(t) and 
of the relaxation coefficients a„(t) and  b(t) to fourth order in the coupling 
strength in the intermediate-coupling regime, i.e. 7 = 0.3 wo , l = 20 coo , 
kBT =  10w0. 

leads to a large cutoff dependent frequency shift is not present in this model. 
Hence, there is no need for an explicit frequency renormalization procedure in 
this case. The fourth-order contributions can be found in (Breuer, Kappler and 
Petruccione, 2001). 

The coefficients ayx (t) and a yy (t) are responsible for the dephasing of the 
two-level system and the coefficients a zz (t) and b z  (0 describe the relaxation to 
the equilibrium state. The time dependence of these coefficients to fourth order 
in the coupling is depicted in Fig. 10.14 for an intermediate-coupling strength. 
Note that the stationary values of ayx (t) and b (t) show a significant deviation 
from the Markovian limit whereas the approximation of a(t) and a zz (t) to 
second order is quite accurate. 

In the Markovian regime and in the high-temperature limit kB T >>  12 » 
the matrix A and the inhomogeneity g can be approximated by 

0  —wo 
Am = I wo  + rykoBT  -ykBT  (10  ) , ( 

0  
wo 
0  

7kBT 
wo 

gM  (10.132) 

It is important to note that in this limit the relaxation rate as well as the de- 
phasing rate are proportional to the temperature, in contrast to the harmonic 
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FIG. 10.15. Temperature dependence of the stationary value of (az)s for 
different coupling strengths. The population of the excited state is 
Pu i = (1 + (a,),)/2. 

oscillator where the temperature of the environment only has an effect on the 
diffusive behaviour of the system but not on dissipation. 

The stationary state of the two-level system is readily obtained by making 
use of eqns (10.127) and (10.128), 

(ax), = (ay ), ,-- 0, 2b(t)  
(az)s = — lim t—>co azz  (t) . 

(10.133) 

The temperature dependence of (az ), is depicted in Fig. 10.15. For 7 = 0 we 
obtain the thermodynamic limit in which the reduced density matrix is deter-
mined by the Boltzmann distribution. For 7 > 0 we find deviations from the 
Boltzmann distribution. In particular the population of the excited state does 
not vanish in the limit T 0 in contrast to the predictions of a calculation to 
second order. These results are qualitatively similar to the results obtained by 
De Raedt and De Raedt (1984). 

The order of magnitude of the relative error of the stationary state can be 
determined by estimating the relative error of the coefficients azz  and bz  using 
the procedure outlined in Section 9.2.5. Thus the relative error to second and 
fourth order can be estimated by 
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FIG. 10.16. The regions in parameter space where the estimated relative errors 
éP )  and '6 4)  of the stationary value (o-z ), are less than 5% (top) and less 
than 1% (bottom). The cutoff is chosen to be SI =  20w0 . 

6 ,( 2 )  lim t—+D3  

 

a2 (t)  — a (2) (t)  
a (2) (t) 

(t) — cti29(t) 
a(z2z) (t) 

  

b (z4)  (t) — 14 2)  (t) 
(2) bz  (t) 

b(z4)  (t) — 14 2)  (t)  
(2) bz  (t) 

(10.134) 

   

2 

2 )

.  (10.135) 

   

   

       

As in the case of the harmonic oscillator, we expect that the estimate for the 
relative error to second order provides a quantitatively correct result, whereas 
the error estimate to fourth order only yields the correct order of magnitude. 

In Fig. 10.16 we show the regions in parameter space where the error esti-
mates are lower than 5% and 1%, respectively. For low and intermediate tem-
peratures the behaviour of the error estimate is essentially the same as for the 
harmonic oscillator. However, in the high-temperature limit kBT >> fl the max-
imum coupling strength is proportional to 1/11 . This is due to the fact that the 

10 

cq 
0 

0.01 

1 0  

1 

0. 1 

0.01 



-ykBT 
rfast = 

WO 
rsiow -ykBT 

3 
WO (10.141) 
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relaxation coefficient a„ (t) and the dephasing coefficient  a(t) are proportional 
to the temperature in this limit. Thus, when we consider the high-temperature 
limit we have to fix the product IT in order to obtain meaningful results (Chang 
and Skinner, 1993). This behaviour is very different from that of the harmonic 
oscillator, where the temperature has an influence only on diffusion and not on 
damping. 

10.3.3 Equilibrium correlation functions 
In this section we compute the equilibrium correlation function (a x  (t) a-  x ) To this 
end, we consider the equations of motion for the correlation functions (ax (t)o-x ) 
and (ay  (t)o-x ), which can be derived from the adjoint master equation. Following 
the strategy described in Section 10.2.4 we obtain 

d 
Tt (Grx(t)a  x)  wo( 0-  y  x) + x x (t), (10.136) 

dt ça ylt  =  ayx(t)i((T x(0 0-  x) + ay y  (t) (a y  (t)u x) + y x (t), (10.137) 

where the inhomogeneities are defined as 

/xx (t) = tr {a x  (t) J (OP peg } ,  (10.138) 
Iy  x (t) = tr fay  (t).1(t)PPecil •  (10.139) 

Using the appropriate expansion for J(t)'P peq  (see Section 9.2.4) we obtain 
-Txx (t)  E 0 to all orders in the coupling strength. This is, of course, an im-
mediate consequence of the exact Heisenberg equation of motion (3rx  = -wogy • 
The second-order contribution to the inhomogeneity x (t) is found to be 

i 
I (2)  = (a. z  ) f ds D (t - s) cos(wos)- 2  f ds D(t - s) sinp o s). (10.140) Y X 2   

 

-00  -co 

The fourth-order contribution to Iy .,y may be found in (Breuer, Kappler and 
Petruccione, 2001). 

Figure 10.17 shows the time dependence of the correlation function  (a(t)o- ) 
in the low and high-temperature regimes. The Markovian approximation yields 
quantitatively good results for the real part of the correlation functions, whereas 
the fourth-order contribution introduces significant corrections in the imaginary 
part. Note that in the low-temperature regime the parameters are chosen in 
such a way that the system is underdamped, whereas in the high-temperature 
regime we have chosen a coupling strength for which the system is overdamped. 
In the latter case, the Markovian approximation reveals that the dynamics of the 
correlation function is hi-exponential where the fast and slow decay rates can be 
approximated by 
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FIG. 10.17. Real and imaginary parts of the correlation function ((Tx  (t)o-x ) in 
the low-temperature regime, i.e. kBT/wo = 0.1, 'y = 0.5w0  (left) and in the 
high-temperature regime, i.e. kBT/wo = 50, ey = 0.2(.00 (right). The cutoff is 

=  20w0 .  

10.3.4 Transition from coherent to incoherent motion 
Especially in the context of macroscopic quantum coherence the cross-over from 
coherent to incoherent motion is very important: quantum coherence can only 
be observed for a coupling strength which is well below the critical damping -y, 
where this cross-over takes place. 

As pointed out by Egger, Grabert and Weiss (1997) the critical damping 
strength -y, depends on the criterion used to define coherent motion. Since we 
are only interested in the order of magnitude of the critical damping strength we 
take a simple criterion which is independent of the initial preparation, i.e. which 
is valid for the expectation value  (a(t)) as well as for the correlation function 
(ax (t)o-x (0)). This criterion is based on the eigenvalues of the matrix 

—wo A t_>D0 (wo  + ayx (t) ayy (t) (10.142) 

which determines the long-time dynamics of (o-x (t)) and (o-x  (t)ax  (0)) (see eqns 
(10.127) and (10.136)). If both eigenvalues are real, then the quantities under 
consideration decay exponentially in the long-time limit whereas they oscillate 
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FIG. 10.18. The cross-over from coherent to incoherent motion for the pertur-
bative approximation to second and fourth order. The cutoff is chosen to be 
0 =  20w0 . 

if both eigenvalues are complex. Thus we define the critical damping ry, through 
the condition 

 

lim [a2  (t) - 4w0(wo + ayx(t))1 = 0.  (10.143) 

Figure 10.18 shows the critical damping strength for the approximations to sec- 
ond and fourth order as a function of temperature. In the limit T -> 0 the 
estimated relative error of 44x) (t) is less than 1% whereas the estimated error of 

4j (t) is 18%. The relative error of -y, is expected to be of the same order of 
magnitude. 
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Part V 
Relativistic quantum processes 
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MEASUREMENTS IN RELATIVISTIC QUANTUM 
MECHANICS 

In the relativistic domain the quantum theory of measurement exhibits several 
new and interesting features which are not encountered in the non-relativistic 
theory (Landau and Peierls, 1931; Bohr and Rosenfeld, 1933; Bloch, 1967). The 
present chapter is devoted to a systematic study of measurement and state re-
duction in relativistic quantum mechanics. An elementary introduction to the 
problem may be found in (Breuer and Petruccione, 1999). 

The basic idea underlying the presentation of this chapter is to consider the 
state of a quantum system as a functional on the set of spacelike hypersurfaces 
in Minkowski space. This idea has been developed in the early days of relativistic 
quantum field theory by Dirac, Schwinger and Tomonaga with the aim to give a 
manifest covariant formulation for the time-evolution equation of the state vec-
tor, known as the Schwinger—Tomonaga equation. The same concept turns out 
to be very useful in a systematic treatment of measurement and state reduction 
in relativistic quantum mechanics, as has been pointed out in a series of papers 
by Aharonov and Albert (1980, 1981, 1984a, 1984b). In fact, a covariant state 
reduction postulate is obtained if one regards the state reduction as taking place 
along those spacelike hypersurfaces which cross the classical chance event pro-
vided by the readout of a local measurement. As is demonstrated in the present 
chapter, this concept leads to a consistent formulation for the state evolution of 
a quantum system which is conditioned on a single or on multiple local mea-
surements arbitrarily distributed in space-time, and for the corresponding joint 
probability distributions containing arbitrary local and non-local quantum corre-
lations. We also develop in this context the relativistic formulation of continuous 
measurements in terms of a covariant PDP for the state vector. 

An important point which must be taken into account in the relativistic 
quantum theory of measurement is the possibility of non-local measurements. 
It has been shown by Aharonov, Albert and Vaidman (1986) that it is possible 
to carry out the measurement of certain non-local quantities without measur-
ing local properties of the system. Such measurements are performed as indirect 
measurements invoking entangled quantum probes. We shall discuss here in de-
tail the measurement of non-local observables and the verification of non-local, 
entangled quantum states. 

As will be seen the possibility of the measurement of non-local quantities is 
strongly restricted by the causality principle. These restrictions can be formu-
lated with the help of a theorem due to Popescu and Vaidman (1994) which 
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states, essentially, that non-local measurements must necessarily erase local in-
formation in order to be compatible with the causality principle. The present 
chapter contains a proof of this theorem and a detailed discussion of its physical 
implications. In particular, one can deduce that only a certain class of non-local 
operators allows a quantum non-demolition measurement which is in agreement 
with the von Neumann—Liiders postulate. 

The quantum theory of measurement thus leads to important consequences 
for the notions of observables and states if it is combined with the require-
ments of special relativity. Several examples for the application of the general 
theory will be presented. Furthermore, the preparation of states, the notion of 
exchange measurements and the instantaneous transfer of a coherent quantum 
state, known as quantum teleportation, will be discussed. 

11.1 The Schwinger—Tomonaga equation 
In the following we write x 4  = (x ° ,± ÷ ) for the space-time coordinates of a point 
x in Minkowski space R4 , where p, runs from 0 to 3. The first component x °  = t 
is the time coordinate and I =  (x', x 2 ,  x 3 ) denotes the space coordinates. We 
choose units such that h = c = 1, where c is the speed of light. The Lorentz 
invariant inner product of two 4-vectors x and y is defined by 

xy = x/iy t, = gi„x4 yv = x ° y °  — x' • 94,  (11.1) 

where gii, denotes the metric tensor, and repeated indices are summed. 
In the interaction picture the time evolution of the state vector I CO) is 

governed by the Schrödinger equation 

where 

a 
at 1 1̀1(t))  = — in-,(00(t)), (11.2) 

Hi  (t) = f d3 x 7-1(t, ±4)  (11.3) 

is the interaction picture Hamiltonian and W(x) = 71(t, ±*) denotes the Hamil-
tonian density of the theory. For simplicity we investigate here theories without 
derivative couplings and the Hamiltonian density is assumed to transform as a 
scalar under Lorentz transformations. 

11.1.1 States as functionals of spacelike hypersurfaces 
Given a fixed coordinate system, I T(t)) characterizes the state of a quantum me-
chanical system at a fixed time x° = t and thus allows the evaluation of the ex-
pectation values for all observables which are localized on the three-dimensional 
hypersurface given by x °  = t = constant. The relativistically invariant general-
ization of this concept is that of a state vector which is associated with a general, 
three-dimensional spacelike hypersurface cr. Such a hypersurface is defined to be 
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a three-dimensional manifold in Minkowski space which extends to infinity in all 
spacelike directions and which has at each point x E a a unit, timelike normal 
vector n» (x) satisfying 

np,(x)n. a (x) = 1, n°  (x) > 1.  (11.4) 

The state vector then becomes a functional 

l ip) = IT(a))  (11.5) 

on the space of such hypersurfaces. The same holds for the density matrix of the 
system which again yields a functional 

P = P(a) 
 (11.6) 

on the set of spacelike hypersurfaces. 
The corresponding generalization of eqn (11.2) is the Schwinger-Tomonaga 

equation for the state vector (Tomonaga, 1946, 1947; Schwinger, 1948; Schweber, 
1961), 

SIT ( a)) = —a-0441(u)), 60- (x) 

or, else, for the density matrix, 

(11.7) 

= —7,  [7-1 (x), P(a)] •  (11.8) 

The Schwinger-Tomonaga equation is a functional differential equation. It may 
be considered as a differential equation in a continuous family of time variables. 
Each point x E a may be represented in a special coordinate system as xi' = 
(x °  (i), Y), such that each space point Y has its own time variable x°  =  z 0  (i).  
Equations (11.7) and (11.8) involve a variation 60-  of the hypersurface a in which 
these time variables are varied independently, with the restriction that a + Sa is 
again a spacelike hypersurface. 

Formally, the functional derivative 6/(50- (x) in eqns (11.7) and (11.8) is de-
fined as follows (see Fig. 11.1). Consider some point x e a and an infinitesimal 
variation a -4 a + Sa of the hypersurface around x. The volume of the four-
dimensional space-time region enclosed by a and a + So-  will be denoted by 
12(x). Then we define for any functional  F(a), 

(11.9) SF (o-) _ uni F  (o-  + So- ) — F(o- ) 
60- (X) - S2(x)-HD  12(x) 

To give an explicit example for this kind of derivative we consider some vector 
field r ii (x) and define the functional 
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a + 6 a 
. . .. I ,,,„,,,,,„„_.7.. _.  .. _. .._______■--- /  . 

Q(x) 

FIG. 11.1. Illustration of definition (11.9) of the functional derivative (5/(50- (x). 
The figure shows some small variation au of the spacelike hypersurface a 
around the point x such that a and a + au enclose a four-dimensional 
space-time volume  12(x). 

F(u) E f do- (x)n 4 (x)F 12 (x). 
a 

Here, the integration is performed over the hypersurface a with the help of the 
Lorentz-invariant surface element da(x) on a which is induced by the Lorentz 
metric. Explicitly one has 

do- (x) = 
n° (x)'  (11.11) 

where d3 x = dx 1 dx 2 dx 3  and n°(x) is the time component of the unit normal 
vector n4 (x) at the point x on u. Thus,  F(u) is just the flow of the vector field 
174  (X) through the hypersurface a. Using definition (11.9) we find the functional 
derivative, 

OF(u) _ 1 .  1  
f do- (4n4 (x l )F tt (x 1 ) — f do - (4n4 (x`)Fi,(x 1 ) (50- (x)  S-1(x11)n—HD Q(x) 

[o. +8o-  cr 

= lim  
1

f d 1  x' al-T (x') 
q) S2 l(x) -+O  

Q(x) 

= 84114  (X),  (11.12) 

where we have used Gauss's theorem in the second step. The four-dimensional 
space-time integral is extended over the region enclosed by the hypersurfaces 
a and a +  Ou.  This obvious result states that the change in the flow through 
a which results from an infinitesimal variation of a around x is given by the 
divergence of the vector field at x. For a vector field satisfying attr„(x) , 0 this 
means that the corresponding flow  F(u) is independent of a. 

X 

d3 x 
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FIG. 11.2. Sketch of the second-order variation involved in the integrability 
condition (11.13). Lying on the same hypersurface a, the points x and y are 
separated by a spacelike distance. For the Schwinger—Tomonaga equation to 
be integrable the order of the variations around x and y must be immaterial 
which is ensured by microcausality. 

The Schwinger—Tomonaga equation (11.7) or (11.8) is obviously covariant 
since both the Hamiltonian density 71(x) and the functional derivative (51 6o-  (x) 
transform as scalars under Lorentz transformations. Being an equation in a con-
tinuous family of variables, the Schwinger—Tomonaga equation must fulfil a cer-
tain integrability condition in order for a solution to exist (Schweber, 1961). In 
direct analogy to the case of a partial differential equation in a finite number 
of dimensions, a necessary integrability condition for the Schwinger—Tomonaga 
equation takes the form 

 

452p(a)  (52p(u) 

 

/   =  
(50- (x)So - (y)  (5 o-  (y)(50-  (x) 

where the points x and y are located on the same hypersurface a and are thus 
separated by a spacelike interval (see Fig. 11.2). The integrability condition is 
a direct consequence of the requirement of microcausality for the Hamiltonian 
density, which states that 7-1(x) and 7-1(y) commute for spacelike separations 
(Weinberg, 1995), 

[7-1(x),1-1(y)] = 0, for (x — y) 2  < 0.  (11.14) 

Namely, using the Jacobi identity we immediately get from the microcausality 
condition 

62 p ( 0)  ep (u ) 

a-  (x)o-  (y)  o-  (y)6a-  (x)   = [[1-1 (x),W(y)] , P(a)] = O. (5(5  (5  
The integrability condition ensures that the Schwinger—Tomonaga equation has 
a unique solution  p(a) once an appropriate initial density matrix p(o-o ) has been 
specified on an initial hypersurface ao . Formally, this solution can be written as 

p(a) = U (o- , o-o )p(o-o )Ut (o- , o-0 ),  (11.16) 

where we have introduced the unitary evolution operator 

U(a, ao ) = T, exp [—i f d ix 7-1(x) ]  .  (11.17) 
, 

As usual, T, denotes the chronological time-ordering operator. 

(11.15) 

up 
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11.1.2 Foliations of space-time 
A foliation of Minkowski space is defined to be a smooth one-parameter family 

T = {a(r)}  (11.18) 

of spacelike hypersurfaces a(r) with the property that each space-time point x 
is located on precisely one hypersurface of the family. If we denote the latter by 
ax , this means that we have crx  = CY (T) for exactly one parameter value  r.  

A given foliation  a(r) gives rise to a corresponding family of state vectors 

I 4' (7 )) — 

 (11.19) 

The Schwinger—Tomonaga equation can then be formulated as an integral equa-
tion, 

0- (7) 

1CT)) = I 41 ( 0) ) — i f d4 x (x) 1 111 (0-x )). 
co 

(11.20) 

The four-dimensional integration is extended over the region enclosed by an 
initial hypersurface o-0 = o- (r = 0) and the hypersurface a(r) of the family 
which lies entirely in the future of ao. 

The hypersurfaces CT (T) of a foliation can be conveniently defined with the 
help of an implicit equation of the form 

f (x,r) = 0,  (11.21) 

where f  (x,  r) is a smooth scalar function. With an appropriate normalization of 
f we may assume that the unit normal vector n 0 (x) at the point x E a(r) is 
given by 

n(x) = a f (x, r) 
(11.22) a xii 

It follows from eqns (11.20), (11.21) and (11.22) that 1111(T)) obeys the equation 
of motion 

d  a f ---dT  IT(T)) = —i f do-  (x)  71 (x)1 4  ' (7 ))  —il I (T)IT (T)) ,  (11.23) 
ar 

0.(7) 
where the integration is performed over the hypersurface a-  (r) of the foliation. 
This is a manifest covariant form of the Schrödinger equation (11.2). To prove 
it we first note that for two hypersurfaces of the foliation corresponding to two 
infinitesimally separated parameter values T and T + dT eqn (11.20) yields 

cr(r+dT) 

 

di(T)) = IT(T + dr)) — 1 41 (7)) = —i f d4 x/i(x)R(T)).  (11.24) 
0-(T) 

On using d4 x = da(x)Inoaxo /arldr = da(x)ia f 1 ark& one is immediately led 
to eqn (11.23). 
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As an example, consider a foliation by means of a family of parallel hyper-
surfaces  a(r) given through the equation 

f (x, 7 - ) E nx — T = 0,  (11.25) 

with a constant unit normal vector n1 .  Such a foliation can be associated with 
an observer 0 moving along the straight world line  y(T) = ny with constant 
velocity V such that 

is the 4-velocity of 0 with 

dy 
n  = -TT = (7 ' 777)  

1 
'Y =   V 1  — 11 2  

(11.26) 

(11.27) 

The parameter T denotes the proper time of the observer, that is, the time of a 
clock attached to O.  At each fixed T the time axis in an observer's rest frame is 
given by the unit vector n, whereas instantaneous 3-space at that time is given 
by the flat, spacelike hypersurface u(r) which is orthogonal to n and contains 
the point VT) , i.e. which is defined by the equation 

n(x — y(7- )) E nx — T = 0.  (11.28) 

The hypersurface a(r) is therefore the set of those space-time points x to which 
observer 0 assigns one and the same time coordinate T. We have la par' = 1 1 
and, hence, eqn (11.23) takes the form (Jauch and Rohrlich, 1980) 

---ddr i l  F er» = —i f do- (x) W(441 (7)) E —iH(T)IXF(T)).  (11.29) 
a(r) 

In particular, in the special coordinate system in which the unit normal vector 
n coincides with the time axis, n4L = (1, 0, 0, 0), this equation becomes identical 
to the Schrödinger equation (11.2). Analogous equations hold, of course, for the 
density matrix p(a). 

11.2 The measurement of local observables 

This section deals with the measurement of local quantities. We begin our discus- 
sion by constructing the operation for an indirect measurement at a single point 
(or at a single localized space-time region) and formulate an appropriate rela- 
tivistic state reduction postulate. The requirements of relativistic covariance lead 
to the prescription that the state reduction must be performed on all spacelike 
hypersurfaces which pass the classical event given by the measurement outcome. 

This prescription for the state vector reduction yields the result that the prob- 
ability amplitude becomes a multivalued function on the space-time continuum. 
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Thus, in the relativistic domain the state vector (or the density matrix) must be 
regarded, in general, as a functional on the set of spacelike hypersurfaces. This 
concept has already been used in the previous section for the formulation of the 
Schwinger—Tomonaga equation. 

Having discussed single measurements, we turn to the description of multiple 
measurements carried out at a set of points which may be arbitrarily distributed 
in space and time. The evolution of the state vector conditioned on the readouts 
of the various measurements will be formulated in terms of a relativistically 
covariant stochastic process. It is shown further that the measurement outcomes 
can be described by a consistent family of Lorentz-invariant joint probability 
distributions. The latter are shown to contain all local and non-local quantum 
correlations. As an example we briefly discuss EPR-type correlations which are 
embodied in non-local, entangled quantum states. We further discuss here the 
formulation of relativistic PDPs describing continuous measurements. 

11.2.1 The operation for a local measurement 
We consider some observable 24(o-,i ) which is associated with a spacelike hyper-
surface Urn,  and which is given in terms of an integral over some local, Hermitian 
field ço(x), 

A(u m ) = f do- (x)G(x)(p(x).  (11.30) 
Um 

Here, G(x) denotes some smooth function with compact support around some 
point x m  located on  urn,.  In the following we shall describe the local measurement 
of  A(a m ) as an indirect measurement. More specifically, we assume in analogy 
to the procedure in Section 2.4.6 that the quantum field ço(x) is coupled linearly 
to the generalized momentum P of some probe system. The interaction between 
the field and the quantum probe is further assumed to be localized in some small 
space-time region containing the support of G(x) (see Fig. 11.3). After the inter-
action the generalized coordinate Q, canonically conjugated to P, is measured 
on the probe system. The corresponding readout q of the Q measurement and 
the initial probe state 10) then lead to an, in general approximate, measurement 
Of A (um ). 

We consider two hypersurfaces a and o- ' which are separated from the inter-
action region as indicated in Fig. 11.3. Our basic assumption will be that locally 
any observable can be measured with the help of such an indirect measurement 
scheme and that, at least in principle, the interaction time can be made arbitrar-
ily small such that the free evolution of both the field and the quantum probe 
can be neglected over this time. We then get the following expression for the 
unitary evolution operator which takes the state of the total system (object plus 
quantum probe) from the hypersurface a' to the hypersurface a, 

V(o - , o- `) = exp [—iA(cr n,)P] .  (11.31) 
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FIG. 11.3. Schematic picture for the measurement of an observable  A(am ) with 
compact support on the hypersurface a-, . The forward light cone of xi  and 
the backward light cone of xf are tangential to the interaction region as 
indicated. The unitary operator V(o - , a') maps the state vector on a' to the 
state vector on u. 

As indicated in Fig. 11.3 the hypersurface a' is taken to intersect the backward 
light cone V_ (xi ) based at xi which is defined by 

V_ (xi ) .{xelie 1(x — s i ) 2  > o, z 0  <x},  (11.32) 

while a intersects the forward light cone  V+  (xi) based at X f • , 

V+(xf) = Ix E R4  I (x — X f ) 2  > 0, X°  >  x}.  (11.33) 

The points xi  and xf are chosen such that these light cones are tangential to 
the interaction region. It is clear that a' and a do not intersect the interaction 
region. The Q measurement is carried out on a surface such as  u which crosses 
the forward light cone based at X.  

Likewise, the initial state of the field and probe must be given on a hypersur-
face such as a' which crosses the backward light cone of xi . This state is given 
by a product state IT(a'))010),  where 1111(o-')) denotes the state of the quantum 
field. The final state after the interaction between quantum field and probe and 
the subsequent ideal Q measurement with the result Q = q then takes the form 

lq) OW (a, ai ) (1 41 (ai )) 010) E 10(q)I tlf (C71 )) - 
 (11.34) 

Here we have applied the state projection postulate to the ideal Q measurement 
which projects the state vector onto the eigenstate 10 of Q corresponding to the 
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))  1  Q(a)0(ur1)) .VP(a) 

FIG. 11.4. Idealized picture for the measurement at a single space-time point 
x m •  The hypersurface u m, is chosen to cross Sm ,  whereas u' crosses the back-
ward light cone of x, and u its forward light cone. The operation Q(a) 
describes the reduction of the state vector conditioned on the outcome a of 
the indirect measurement. 

eigenvalue q. The above expression implies that the indirect measurement device 
is described by the operation 

Q(q) = (qi exP [ —iA(am)P]10) = (q A(um)) 
 

(11.35) 

which acts on the states of the quantum field. Here we have introduced the wave 
function O(q) = (qP) of the initial probe state in the Q representation. 

As an example we take the initial wave function of the probe in the Q repre-
sentation to be a Gaussian function (Dibsi, 1991) with variance 71 2 , 

2 
0(q) = (2771 2 ) -1/4  exp [------1 . 

-  47) 2  

The operation is then found to be 

S2(q) = (277/ 2 ) 1/4  exp [ (q — A(u n,)) 2 1 
477 2  

(11.36) 

(11.37) 

This demonstrates that a probe which has been prepared initially in a Gaussian 
state with variance 71 2  enables the approximate measurement of the observable 
A(o-m ) to an error of the order q. We also observe that the readout q leads to 
an inferred value for the observable A(o-m ) which is given by q = a. This is due 
to the fact that the above Gaussian has zero mean value and, therefore, q = a is 
a bias-free estimate for the observable. In the following we shall always assume 
that the mean value of the probe states is zero (which can always be achieved by 
subtraction of the bias, of course) and identify the readout q with the inferred 
value a. 
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11.2.2 Relativistic state reduction 
The whole situation developed so far can now be idealized by shrinking the 
total interaction region to a single point xm  as illustrated in Fig. 11.4. The 
device then acts as an indirect measurement of the local observable A(x, i ). 
Since all hypersurfaces crossing the forward (backward) light cone based at x m  
are unitarily equivalent we are thus led to the following state reduction postulate 
for local measurements. Consider some foliation .F = fo- (7- )1 of space-time. Then 
the state reduction 

1  
1 41 (ant))  Vp(a) Q(a)1+(um)) 

occurs along that hypersurface um  of the foliation which crosses the point 5m . 
The operation for the local measurement at x m  now takes the form 

S-2(a) = q5 (a — A(x, n )) .  (11.39) 

The state reduction (11.38) is conditioned on the readout q = a which is dis-
tributed according to the probability density 

P(a) = P(a)R(am))11 2  =  

We recall that Qt(a)52(a) is a Hermitian and positive operator, 

Slt(a)S2(a) = I0(a — A(xrn))I 2  > 0, 

which satisfies 

f daS2t (a)S2(a) = f dq10(a — A(x,,))1 2  = I, 

(11.40) 

(11.41) 

(11.42) 

such that the density 'P(a) is normalized, 

f daP(a) = f da(Co-7,0t (a)0 (a)1+(an-t)) = (111 (um)1 41 (am)) = 1. (11.43) 

Analogous relations are of course valid for mixed states p(o-m ). 
For different foliations, the corresponding surfaces that intersect the point 5,„, 

can, of course, be different. The above state reduction postulate thus amounts 
to the prescription that the state vector reduction occurs along all spacelike 
hypersurfaces which cross the point xm  in which the local measurement is being 
performed. This is the state reduction postulate first formulated by Aharonov 
and Albert (1984b). A dynamical model for this relativistic reduction postulate 
has been developed by Breuer and Petruccione (1998). For an extended region 
given by the support of G(x) we can say that the state reduction takes place 
along all spacelike hypersurfaces which coincide on the support of G(x) (see 
Figs. 11.5 and 11.6). 

(11.38) 
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O 3  

X m  

0-2 

0- 1 

FIG. 11.5. Illustration of the state vector reduction postulate. Different folia-
tions lead to different hypersurfaces crossing the point x m . The state reduc-
tion thus occurs along all spacelike hypersurfaces passing  S m .  

The above state reduction postulate is obviously covariant since it is for-
mulated without reference to any specific coordinate system. Additionally, the 
probability distribution P (a) for the readout a as well as for the operation Q(a) 
applied to the state vector does not depend on the specific surface a as long 
as it crosses the point x m . Being a local observable, A(x,) commutes with the 
Hamiltonian density 1-1(x) for spacelike separations, and, hence, 71(x) commutes 
with the operation: 

[71(x), 5)(a)]  =0, for (x — xfli ) 2  <0.  (11.44) 
This is the condition of microcausality for the operation. Considering then some 
hypersurface which crosses 5, and varying this surface around any point x on 
it, keeping x,,,, fixed, we get with the help of eqns (11.40) and (11.44), 

6a(x) 
This proves that P(a) is, in fact, independent of a as long as a crosses x m •  The 
same conclusion holds for an extended region given by the support of G(x), with 
the restriction, of course, that the variations leave invariant the common support 
of  C(s). 

In view of the above state vector reduction postulate, a given foliation .F = 
{o- (r)} now gives rise to a corresponding stochastic process I 4/(o- 0-M for the state 
vector. Starting from a state 1*(o-0)) on an initial hypersurface ao = o- (r = 0) the 
state vector evolves continuously according to the Schwinger—Tomonaga equation 
until the (uniquely determined) hypersurface am  which crosses x in, is reached. 
Then, conditioned on the readout a, the state reduction (11.38) occurs along ain, 
and the state vector evolves continuously again. If (Ter) crosses the future light 
cone of x in, the state vector on o- (r) resulting from the readout a can be written 
as 

 

-  

) I III (Gro ) )•  (11.46) 
0- (7) 

1 
1 41  (a(T))) = -VP (a) T  Q(a) exp —i f cr I  x 7-1(x) 

co 

  

 

-  

6 
P(a) = i(111(a)i [1-1(x), Se (a)S)(a)] 111/(0 - )) = 0. (11.45) 
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FIG. 11.6. For the measurement of a local observable with compact support on 
some hypersurface the state reduction takes place along all spacelike hyper-
surfaces which coincide on the support of the measured quantity. 

Here, the chronological time ordering operator T, acts on the exponential in-
volving the local Hamiltonian density 7-1(x) as well as on the operation Q(a) 
which contains the local observable A(x,i ). 

The stochastic state vector evolution formulated above is obviously Marko-
vian. Note also that different foliations lead to different state vector evolutions. 
However, for identical readouts the state vector (11.46) depends only on the 
initial surface ao  and on the final surface o- ('r). The process is therefore integrable 
in the same sense as the purely unitary evolution according to the Schwinger-
Tomonaga equation: We take two different foliations Ti. = {al  ('ri  )} and .F2 = 

{0-2(72)} with common initial and final hypersurfaces ao  and a, respectively. 
These foliations yield corresponding state vectors III/1(0 -1(7-i))) and I +2 (0-2 (T2 ))). 
Integrability then means that both foliations will lead to one and the same state 
vector on the common final surface  a,  namely we have 

=  (11.47) 

provided that we start from the same initial state vector on ao  and that we have 
identical readouts a. The integrability of the process is an immediate consequence 
of the property of microcausality. It implies that the state vector is, in fact, a 
functional on the set of spacelike hypersurfaces. 

It is important to realize that the state vector history as given in eqn (11.46) 
is conditioned on the outcome a of the measurement at xm . It thus depends on 
the classical event that the observable Q takes on the value a. Let us suppose that 
the measurement of Q is performed immediately after the interaction between 
the field and the quantum probe and that the result is communicated via a 
classical light signal. The readout a is then available everywhere in the forward 
light cone based at x m . The latter is defined as the set of points x satisfying 
(x — X 70 2  > 0 and x° > 4, and will be denoted by V+  (x i,) (see eqn (11.33)). 
Consider an observer 0 moving along a world line y = y(T) where T denotes 
the proper time. If that world line intrudes into V+  (x n,) at the proper time 'r1,  
say, the observer knows the readout a of the measurement on the probe and can 
thus set up the state vector history (11.46) depending on a. It is clear that the 

°.s..... ft. ■ 
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state reduction (11.38) takes place in the observer's past, that is for Tm  < ri . 
which means that it occurs (possibly a long time) before the observer gets the 
information on the readout. 

11.2.3 Multivalued space-time amplitudes 
As we have seen the state vector reduction expressed by eqn (11.38) yields a 
covariant stochastic state vector history (11.46) associated with each foliation 
of space-time. This fact has been demonstrated to be a simple consequence of 
the causality principle. However, it must be emphasized that the state reduc-
tion postulate leads to the important conclusion that the probability amplitudes 
which are determined by the functional ItIf(a)) need not represent single-valued 
functions on Minkowski space (Aharonov and Albert, 1984b). 

We illustrate this point with the help of an example. To this end, we first 
construct a simple device for the effective position measurement carried out on 
a single-electron state. Consider the observable 

A = f d3 xG(±4)0 1 (x)0(x), x = (t,„ ±s),  (11.48) 

where Ot,„(x) and Oa  (x) denote the field operators of the electron field, a being 
a spinor index. They create and annihilate, respectively, an electron at x and 
satisfy Fermionic anticommutation relations, 

= fOta(t,Y), 143(t,I 1 )} = 0 )  (11.49) 

Na(t,±4),Oti3(t, * ')} = 6(±4  — ± ")60.  (11.50) 

Furthermore, G(Y) is a smooth function with compact support. We suppose that 
G(Y) is equal to 1 in a small region g of space around x rn, and falls rapidly to 
zero outside G. 

Taking 1111(o-m )) to be a one-electron state, we consider the amplitude 

x(x) = (0 10 (x)1 41 (0-m)) 
 

(11.51) 

for the electron to be at the space-time point x, where 10) denotes the ground 
state vacuum of the electron field. Our aim is to determine how the operation 
f/(q) pertaining to the measurement of A acts on this amplitude x(x). We find 

(0 10(x)Q(q)R(am)) = (q1( 0 10(x)e -zAP IT(um))10) 
_ mo ieiAP0 (x)e -JAPI T  /urn 

 MO),  ( 11 . 52 ) 

where we have used A10) = 0 in the second step. The anticommutation relations 
yield 

[A,/p(x)] = —G(Y)/p(x),  (11.53) 

from which it follows that 
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e  iA  (x ) e —iAP = e — iG(x ) .  (11.54) 

Therefore we get 

( 0 10(x) 1) (q)iCum)) = (qi(Oie -2G(g)P7P(x)iCam))10) 
= (q G(Y))X(x).  (11.55) 

This shows that the operation acts as follows on the one-electron amplitude, 

x(x)  0(q — G(Y))x(x),  (11.56) 

and that the probability density for the readout q becomes 

 

P (q) = f d3  x10(q G (Y))1 2 1X(x)1 2  (11.57) 

In order to enable a sufficiently accurate measurement the probe wave function 
0(q) must be a function which is sharply peaked around q = 0, with a width 
much smaller than 1. Equation (11.57) clearly shows that our device allows the 
approximate measurement of the random variable q = 

Suppose now that the amplitude x(x) consists of two localized wave packets 
x 1 (x) and  '(2) (x),  such that the support of x( 1 ) (x) is contained in the region g, 
where G()  is equal to 1. The support of  (2)  (x)  and that of G(Y) are assumed 
to be disjoint. We then have 

P(q) = 146(q — 1 )1 2  f d3  x 1X (1)  (x)1 2  + 10(012  f d3  x 1X (2)  (x)1 2 . 

This means that we get the readout q  1 with probability f d3x I1(x)I2, 
showing that the particle is in g, and the readout q  0 with probability 
f d3 x lx (2 )(x)1 2 , showing that the particle is not in g. As can be inferred from 
eqn (11.56), in the first case the operation projects the amplitude x(x) onto 
x (1 ) (x), in the second case onto ( 2 ) (x),  

X(x)  X (1)  (x) 111X (1) 11, for q  1 , 
x(x)  x(2) (x)/11x (2)  II/ for q  0. 

Let us now consider the following situation (Aharonov and Albert, 1984b) 
which will lead to the conclusion that the amplitude x (x) is not a single-valued 
function on the space-time continuum (see Fig. 11.7). Suppose that we have 
prepared on an initial hypersurface cro  some one-electron state lilf(a0 )) such that 
the amplitude (010(x)14/(o-0 )) represents a superposition of two wave packets 
x(1)( x ) and x (2)( x ) ,  

(0 10(x)1 41 (a0)) = x 1 (x)  X(2  x e cro. ) (x),  (11.61) 

(11.58) 

(11.59) 
(11.60) 

The wave packets are supposed to be localized in small regions of space around 
Y • - ) and Y(2), respectively, and follow their world tubes with zero mean velocity. 
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FIG. 11.7. The figure illustrates that space-time amplitudes are, in general. 
multivalued functions: The state vectors associated with two different hyper-
surfaces a l  and a2 may yield different amplitudes at a common point Q if at 
the point P a position measurement is carried out. 

For simplicity we may neglect the extension as well as the spreading of the wave 
packets. These effects can easily be taken into account, but do not change the 
argument. 

At some space-time point P a position measurement is performed with the 
help of a device of the type considered above. We assume that the measurement 
leads to the result that the electron is at P (the case q = 1 above). Given such 
a situation we may consider two flat spacelike hypersurfaces a i  and a2 which 
intersect at the space-time point Q. Both hypersurfaces appear as equal-time 
hypersurfaces in appropriately chosen coordinate frames K 1  and  K2,  that is 
there are observers 0 1  and 02  at rest in K 1  and  K2,  respectively, such that u 1  is 
an equal-time hypersurface for 0 1 , and u2  is an equal-time hypersurface for 09. 
The important difference between both observers is that for 02  the measurement 
has already taken place, whereas for 0 1  it has not. Consequently, both observers 
assign different amplitudes to one and the same objective space-time point Q. 
Namely, the state reduction following the measurement of the electron at P yields 

(01 0(0141 (g2 ) ) = 0 (11.62) 

on a2 . On the other hand, on al  the state reduction has not yet occurred so that 
we have 

(0 10(01 41 (0-1)) = x 2 (Q)  O.  (11.63) 

Thus we find that the amplitudes differ at the point Q where both hypersurfaces 
intersect, 

(010(Q) 1 41(0-0 ) 0 010(01*(0-2)), (11.64 
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This relation clearly demonstrates our claim, namely that the one-particle am-
plitude (0[0(x)141(a)) is a multivalued function on space-time: The value of this 
amplitude at x depends, in general, on the hypersurface a which crosses x. In 
other words, the amplitude depends on the foliation and, thus, on the complete 
state vector history. 

Although there is obviously a Lorentz transformation which maps the plane 
al  to a2 , the corresponding one-particle amplitudes are clearly not related by 
a unitary transformation. This is due to the fact that the measurement on the 
system makes it an open system such that in situations like the one considered 
above there is no unitary representation of the Lorentz group for the reduced 
system. The same conclusion holds also if we consider the corresponding non-
selective measurement: In that case we have a mixed state on a-2 , whereas we 
have a pure state on ai. 

11.2.4 The consistent hierarchy of joint probabilities 
Generalizing the foregoing analysis we now consider a sequence of local measure-
ments performed at the points 

(1)  (2)  (IC) X  , X  , . . .  , x  , (11.65) 

which may be arbitrarily distributed in space and time. At each x ( k ) , where k = 
1, 2, ... ,  K,  a local observable A( k ) = A(x(k)) is measured indirectly through the 
coupling to a quantum probe in the initial state 10(k )). The coupling between the 
field and the k-th quantum probe involves the generalized momentum P(k) and 
a direct measurement of the canonically conjugated observable Q (k)  is performed 
after the interaction. We assume here that the K quantum probes act completely 
independently on the field, that is, we may write 

10) =  ® 10(2)) ® ... ® i OK)) 
 

(11.66) 

for the total state of the K probe particles. We also assume as before that the 
mean values (0(k) 1Q ( k)10(k)) vanish, such that the inferred values a(k) for the 
observables A(k) are simply given by a( k )  = q( k) . Writing (/)(k)(q(k)) for the Q(k) 
representation of the initial state of the k-th probe particle we thus obtain the 
operations 

Q(k) ( a(k)) _ 0(k) ( a(k)  (11.67) 

which describe the change of the system state conditioned on the outcome a(k) 
at X (k 

 ) 
As mentioned before, the points x(k )  may be distributed arbitrarily in space 

and time. Thus, we may have spacelike as well as timelike separations between 
them. Since the A( 1') are assumed to be local observables, the causality principle 



Pic (a(1)  , • • • , a(K) ) — T, IT Q(k) ( a(k) ) exp[_i 
(K 

k=1 

- 

(7 ( 7 ) 

f ct I  X 7-1(x) 

(70 
- 

  

2 
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ensures that for spacelike separations the operations commute with themselves 
and with the Hamiltonian density, that is we have 

[Q (k)( a (k)) ,  wt)(a (0)] = 0, for (x (k)  — x (1) ) 2  <0,  (11.68) 

[71(x), ft (k) (a (k) )] =0, for (x — x (k) ) 2  < 0.  (11.69) 

The results of the previous subsection are now readily generalized to the above 
collection of local measurements (Breuer and Petruccione, 1999). Taking some 
foliation with initial surface ac, we find for the state vector on  a(r) (compare 
with eqn (11.46)), 

K 

IT ( 0  - (T)))  =V T (11 • T,  S-2 (k)  (a(k)  ) exp 
k=1 

o(T) 
—i f d 4xl-i(x)  1 111 (uo))• (11.70) 

(70 

 

Again, the time-ordering operator acts on the exponential as well as on the 
operations  ç1(k).  The normalization factor .11/ is given by 

Ar  _ [pK(a(i),... ,a(K))]  -1/2 ,  (11.71) 

where 'PK (a (1 ), ... , a (K) ) denotes the joint probability of the readouts, 

(11.72) 

The surface (Ter) may be chosen arbitrarily with the only restriction that all the 
x( k ) must be located in the past of it, which means that  a(r) must cross the 
forward light cones of all the  

Equation (11.70) associates with each foliation a unique stochastic process 
Each realization of the process represents a state vector history which 

is conditioned on the readouts that follow the joint probability (11.72). It should 
be clear that this process is Markovian and integrable. In particular, the joint 
probability PK (a( 1 ), .. . , a(K )) represents a Lorentz-invariant expression and does 
not depend on the foliation. The reason is that the time-ordering operator T, is 
defined in an invariant fashion by virtue of the causality conditions (11.68) and 
(11.69). We also note that due to the completeness relations 

f da(k)Q(k)t (a(k))Q(k)(a(k)) = I  (11.73) 

the joint probability is normalized, 

f da(1)  . . . f da(K) KT, (a(i) , . . . ,a)  _ 1.  (11.74) 
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Q(..F1) = Q(3)Q( 2)Q( 1 ) QGF2) = Q( 1 )Q(3)s2 (2) 

x(n• 
 • x( 2) 

----------- 

Q ( F3 ) _ Q(3)Q(1)Q(2) 

FIG. 11.8. An example for eqn (11.70) involving three measurement points with 
two spacelike and one timelike distance. The figure shows three different 
foliations which all lead to one and the same total operation. 

Let us illustrate in Fig. 11.8 how eqn (11.70) works for the specific case 
of three measurement points (a similar situation has been considered by Bloch 
(1967)). The distances between x( 1 ) and x( 2)  and between x( 1 ) and x( 3 ) are 
spacelike, whereas x (2)  and x( 3)  are separated by a timelike interval. The figure 
shows three different foliations 1.1 , .F2 , and  J. According to eqn (11.70) these 
foliations lead to the three total operations 

= Q( 3 )Q( 2)Q( 1 )  (11.75) 
s--2(y2 ) _  (11.76) 
QGF3 ) ,  (11.77) 

which describe the state vector on the final hypersurface of the corresponding 
foliation (for simplicity, the Hamiltonian density may be set equal to zero). f2(1) 
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P3 (a (1 ), a(2), a(3)) 

-p2 ( a (1) ,  a m) 

  

  

   

FIG. 11.9. The hierarchy of joint probabilities (11.78) seen by an observer mov-
ing along some world line y(r): Each time the observer intrudes into a new 
light cone of the measurement points x (k ), a new member of the family is 
generated. 

commutes with 12( 2 ) and with SP), but  11 ( 2 ) does not commute with S2( 3 ), of 
course. As is easily seen all three total operations are identical. This shows the 
integrability of the process as well as the relativistic invariance of the joint prob-
ability distribution. 

It must be emphasized that the state vector history (11.70) is conditioned 
on the total readout (a( 1 ), ... , a(K)). We consider again an observer 0 moving 
along some world line y = y(r). As before we suppose that the results of the 
measurements at the points x(k) are communicated via light signals such that 
the outcomes of the single measurements are available in the respective future 
light cones V+(x (k )). Moving along y(T) the observer 0 successively intrudes into 
these light cones. Suppose that at the proper time 7-  observer 0 has intruded 
into the light cones of the points x( k i), where 1 = 1, 2, ...  , L,  and L < K. 
Observer 0 then defines for any foliation the state vector history which is given 
by eqn (11.70) with the only modification that the product Fi k  now extends only 
over the points x(ki) in the forward light cones of which 0 is located, that is only 
over those measurements for which 0 knows the outcome. 

It should be clear that in order to set up the state vector history observer 0 
need not know the outcomes of the measurements in advance, nor does 0 have to 
know in advance which observable is measured at x( k ) or if any measurement at 
this point has been performed at all. The information on what is measured and 
where the measurements took place can be communicated, of course, together 
with the corresponding readouts. 

Let us, for ease of notation, label the measurement points in such a way that 
observer 0 intrudes first into the light cone of x( 1 ), then the light cone of 

 ... , and finally the light cone of x(K). Moving along, observer 0 thus generates 
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a family of joint probabilities (see Fig. 11.9), 

pi  (a ( 1 )) ,  p2 (a( 1 ) ,a ( 2 )) ,  ...  pK (a( 1 ) ,  ... ,a(K)) ,  (11.78) 

which are defined by 

, a (k ) ) ____ 

CO  

T+__ (n  H S2M (am)  exp —i 

2 

d4 x 71(x)  I 4' (co )) 

(11.79) 
,.i 

The points x( 1 ), ... , x(k) are located in the space-time region enclosed by the hy-
persurfaces o-0  and o- (r). As we have already noted all joint probabilities (11.78) 
are normalized and do not depend on the specific chosen foliation. The latter 
property implies that any two observers with the same information on the read-
outs agree completely on the corresponding joint probabilities. The following 
consistency condition can also be verified easily, 

, a) f (k)  =  da(k+i) Pk+1 (a (1) , ...  (11.80) 

This shows that each new readout a (k+ 1)  which is communicated to observer 0 
when she or he intrudes into the light cone 174.(x (k+ 1 )) is compatible with the 
joint probabilities of lower order in the hierarchy. Thus we conclude that (11.78) 
forms a consistent hierarchy of joint probability distributions. 

11.2.5 EPR correlations 
It is important to note that the above formulae have been derived without re-
strictions on the initial state vector 1 klf (o-0 )). They are thus capable of describing 
arbitrary quantum correlations between timelike and spacelike separated points. 
Quantum correlations at spacelike separated points arise if Illi(o-0 )) represents 
a non-local, entangled state. As an example we consider Bohm's formulation 
(Bohm, 1951) of the famous EPR gedanken experiment developed by Einstein, 
Podolsky and Rosen (1935): A two-particle system in a state of total spin 0, 

ocao» = .--, li_i  (1+)(1)1—)(2) — 1—)(1)1+)(2)) 
disintegrates into two particles with spin 1 flying with opposite velocities along 
the x-direction. In the initial state (11.81) the states I±)( k)  are eigenstates of 
the z-components olk)  of the spin operator at two points x ( k), k = 1,2, with 
eigenvalues ±1. At the points x (k ), being spacelike separated, the spin projections 
a • 6-(1)  and 3  • 5(2)  are measured. Here 6 and g denote unit vectors lying in the 
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(y, z)-plane and forming angles a and with the z-axis. Neglecting any particle 
interaction we now have for the joint probability of the measurements 

=  a(0 )!-2 (2) fa (2) )1 41 (c0))11 2 .  (11.82) 

Assuming that the measurements represent ideal measurements of the spin pro-
jections we have two possible readouts a(k ) =  ±1, whereas the operations are 
given by the projections on the corresponding eigenvectors. We then find for the 
single measurements at x (1 ) and x (2 ) the mean values 

( 41 (0-0)Ic .d (1) 141 (0-0)) = OP(uo)Ig • d (2) 1 41 (0-0))  = 0, 

and the variances 

Var (Ci .6 (1) )= (4/(Gro)l (6. d (1) ) 2  1, 

Var (d. 6 (2 ) )  ( 4quo)1 (ig • 6(2) ) 2  quo))  1. 

The correlation coefficient (see eqn (1.40)) is easily found to be 

E a(n a(2),p2 (a(i) ,  Cor(a,,3) =  a(2))  
a (t) ,a (2) 

(W(Gro)  6r' (1) )  d(2) ) 1 41 ( 0-0)) 

= — cos(a — /3). 

(11.83) 

(11.84) 

(11.85) 

(11.86) 

The correlation coefficient describes the quantum correlations embodied in the 
joint probability distribution P2(a (1) ,a (2) ). For a = ,3 we have Cor(a, fi) = —1 
from which it follows that the readouts are perfectly anticorrelated, namely that 
a(1)   

For general measurements on the particles we have the relations 

 

Pi (a') =10 1) (a (1) )1 41 (uo))H 2  3 
 (11.87) 

 

(a (1) ) = f da(2) P2(a (1)  a(2) ).  (11.88) 

Equation (11.87) reveals that the probabilities for the single, local measurement 
at x (1)  are completely independent of the measurement at x (2) : They do not de-
pend on the readout a( 2), nor do they depend on the observable being measured 
there, that is on the angle  /3,  for example. The probabilities for the single mea-
surement at x( 1 ) do not even depend on where a possible second measurement 
is performed, as long as the latter is spacelike separated from x( 1 ), of course. As 
pointed out already, eqn (11.88) means that the unconditioned probabilities for 
the single measurement at x( 1 ) are not changed when the local observer gets any 
information on the measurement at a second point x( 2 ), which clearly reveals the 
consistency of the joint probabilities for the present example. 
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11.2.6 Continuous measurements 
With the help of the idea of the state vector as a function on the set of spacelike 
hypersurfaces, the stochastic wave function representation of continuous, selec-
tive measurements can be given a relativistically covariant form. As an example 
we construct here a piecewise deterministic process for the state vector of the 
source of an optical cavity which is covariant under Lorentz transformations and 
which describes the stochastic dynamics induced by a continuous monitoring of 
the radiated photons through a moving detector. The generalization to the gen-
eral case of a quantum dynamical semigroup generated by an arbitrary number 
of Lindblad operators is straightforward; further details of the theory may be 
found in (Breuer and Petruccione, 2001). 

We consider the output signal of a two-level atom in an optical cavity which 
is detected by a photocounter. The photodetector moves with velocity 71 = vé 
relative to the cavity in the direction é of the output signal, thereby following a 
world line  y(r)  in Minkowski space. Again, the parameter T denotes the proper 
time of the detector, that is, the time of a clock attached to the detector. In the 
following we allow for an accelerated motion for which the 4-velocity 

dy  _, 
n(T) EE  Tr = (eY  ' 7v)  

(11.89) 

is not a constant, where nl-i(T)n ji (T) ---- 1, and 7 :-E-- (1 — v2 ) -1 / 2 . For each 'T the 
equation 

n(r)(x — y(T)) , 0  (11.90) 

defines a fiat, spacelike hypersurface o- (T). This hypersurface is the set of those 
space-time points x to which an observer 0 moving with the detector assigns 
one and the same time coordinate 'r.  The family of hypersurfaces .T = {a(T)} 
determined by the path y(T) represents a foliation of a certain space-time region. 
More precisely, this is the space-time region in which different hypersurfaces of 
the family do not intersect. The corresponding condition is /(x) < g — ', where 
/(x) is the distance of a point x from the world line  y(T) and g is the accel-
eration of the detector measured in its own rest frame (Misner, Thorne and 
Wheeler, 1973). The family { a(T)} then provides a foliation of the set of space-
time points x which fulfil this condition. As we shall see, beyond a distance 
g-1  from  the detector's world line a complete, continuous measurement and, 
therefore, a stochastic representation of the source dynamics ceases to exist, in 
general. 

Our aim is now to construct a relativistically covariant, stochastic representa-
tion of the source dynamics in terms of a state vector I TM) = I T(o- (T))) which 
results from the continuous monitoring of the radiated photons through the mov-
ing photodetector. Each time a photon is detected the wave function of the source 
undergoes an instantaneous change. We assume, as in the non-relativistic theory 
(see Section 6.3), that this change is obtained through the application of some 



E [dN (a)] , (Lt (r)L(r))da, [dN(a)1 2  = dN (a),  (11.93) 
where E denotes the expectation value of the process. The second relation in 
(11.93) tells us that dN (a) takes on the values 0 or 1. As long as no photon 
is detected we have dN (a) --,-- 0 and, thus, the second term of eqn (11.91) gives 
the evolution of the state vector conditioned on the outcome that no photon is 
detected. If a photon is detected we have dN (a) :,--- 1, such that the third term 
of eqn (11.91) yields the corresponding jump of the state vector given by 

L(o- ) IT (a)  (11.94) 
\AV (a)L(a)) 

Thus, the Poisson process N (a) simply counts the number of photon detection 
events. 
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Lindblad operator L to the state vector. Due to the lack of an absolute time the 
term instantaneous change of the wave function is not a relativistically covariant 
one. However, by the very principles of quantum mechanics, source, radiation 
field, and detector have to be regarded as a whole. The important conclusion is 
that a Lorentz transformation affects the quantum object and the probe as well 
as the detector and the hypersurfaces a(T) of the foliation of observer O. Thus 
we do get a covariant prescription for the state vector reduction if we postu-
late that the state vector reduction occurs instantaneously in the detector's rest 
frame, that is, along a certain spacelike hypersurface cr('r) of the foliation of the 
observer 0 associated to it. 

As a consequence the jump operator now becomes a function L(T) = L(o- (7- )) 
of the hypersurfaces of the foliation. In direct analogy to the non-relativistic 
formulation we obtain on the basis of our state reduction postulate the following 
Markovian stochastic state vector equation describing a piecewise deterministic 
process: 

MI (r)) , —iH (7 - )141(7- ))dr 

— 1  (Lit (r)L(T) — (Lt (r)L(T))) 14 ler))da 

+ (  L(T)I4 1  (T))  1 41 (T))) dN (a), V (Lit (r)Ler)) 

where we have introduced the abbreviation 

(Lt(T)L(r)) E 01/ ( T)Iii t  (T)L(T)1 11/ (T))• 

The first term on the right-hand side of eqn (11.91) represents the unitary dynam-
ics (see eqn (11.23)), while the second and the third term yield the irreversible 
part of the evolution induced by the continuous monitoring of the quantum ob-
ject. The structure of these terms is similar to the one encountered in Section 
6.1.1. The differential da plays the rôle of an invariant time increment which will 
be determined below. The quantity dN (a) is the increment of a Poisson process 
which obeys 
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According to eqn (11.94) the stochastic jumps of the state vector occur along 
the hypersurfaces u :=--- a-  (r) of the foliation given by the detector path. If a 
photon has been detected at a certain proper time T the state vector reduction 
has to be performed at the corresponding retarded proper time 

R 
fret :=--- T — —

c
,  (11.95) 

taking into account the time required for the light signal to propagate from 
the source to the detector, where R denotes the instantaneous distance from 
the source to the detector. This follows directly from the fact that the detected 

a \ Tret i 

signal yields information on the state of the source at the retarded time. Thus, 
the precise prescription for the state vector reduction takes the following form: 
The reduction of the state vector occurs along the spacelike hypersurface ( ) 
at the retarded proper time T„t which corresponds to the proper time 'T of the 
actual measuring event. Thus, eqn (11.91) gives rise to a stochastic equation of 
motion for the source wave function IT( Tr e t ) ) :=-- IT (a (Tref ) )) • 

In order to determine the invariant time parameter a used in eqn (11.91) we 
first observe that, according to eqn (11.93) , the photocurrent as measured in the 
rest frame of the detector is given by 

da J ---- (V erg(r)) . (11.96) 

J is the average number of photon counts per unit of the proper time interval 
dT. Due to the Lorentz invariant nature of the scalar product we may simply 
set (Lt(r)L(r)) = -ye, where -yo  is an invariant emission rate characteristic of the 
source. Thus we have 

da 
j  — 7°  Tr .  (11.97) 

If the detector is at rest with respect to the source (y = 0), the detected pho-
tocurrent must be Jo = -ye . Thus, a must be equal to the proper time of the 
source, i.e. a is the time of a clock fixed at a position in the vicinity of the 
source. To see that this conclusion is correct we consider the case of a moving 
detector (y 0 0). It is easy to show with the help of the transformation laws for 
the electromagnetic field strength tensor that the photocurrrent J as measured 
in the rest frame of the detector is given by 

— ,11.   y  
1 + v ' 

where we do not assume that y is constant. Now, with the above choice for the 
quantity a we find 

J = l'o (11.98) 

(11.99) 

which proves our claim. 
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As mentioned earlier the source must lie within a distance 1 < g-1  from 
the world line of the detector. This condition implies that da I drret, > 0 and 
that, therefore, eqn (11.91) represents a sensible stochastic state vector equation 
with a positive increment da. If this condition is violated, obviously no complete 
continuous monitoring by the detector is possible. As an example one might 
think of a detector in hyperbolic motion, in which case the observer can outrun 
the photons radiated by the source. 

The covariance of our stochastic state vector equation (11.91) under Lorentz 
transformations is obvious. Since da is an invariant, the quantity dN(a) is an 
invariant stochastic process. Furthermore, since the quantum expectation value 
(Lt(a)L(a)) transforms as a Lorentz scalar both the dissipative and the stochas-
tic term of (11.91) transform covariantly. It is important to emphasize that the 
transformation laws also involve a transformation of the jump operator, namely 

L'(0)  --,--- UL(o- )Ut ,  (11.100) 

where U denotes the unitary representation of the Lorentz transformation. Phys-
ically, this means that the quantum object as well as the environment and the 
measuring apparatus have to be Lorentz transformed in order to obtain covari-
ance of the stochastic process. In view of the physical meaning of the process 
as a continuous measurement, this is a plausible prescription which is in full 
agreement with both quantum mechanics and special relativity. 

11.3 Non-local measurements and causality 

In the analysis of the preceding section we have assumed that the total initial 
state of the quantum probe is given by a simple product state of the form (11.66). 
A more general class of measurements can be constructed with the help of quan-
tum probes which are in entangled initial states. We are going to demonstrate in 
the present section that entangled probe states enable one to perform the mea-
surement of non-local observables and states as first shown by Aharonov and 
Albert (1980, 1981, 1984a, 1984b). 

The possibility of non-local measurements has several important consequences 
for the notions of states and observables in relativistic quantum theory. As before 
we will assume that only local interactions between object and probe system are 
involved. The dynamics of the total system will therefore be compatible with 
the causality principle, of course. However, if causality is combined with certain 
conditions on the properties of the measuring device and on the behaviour of 
the state vector of the object system alone, one is led to important restrictions 
on the measurability of observable and states (Aharonov, Albert and Vaidman. 
1986; Sorkin, 1993). 

The conditions imposed by the causality principle will be derived in this 
section. For example, we shall demonstrate below that the projections on non-
local, entangled states are not measurable in the conventional sense of quantum 
mechanics. It will also be shown that only specific classes of entangled, non-local 
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states and only certain types of non-local observables with entangled eigenstates 
allow a quantum non-demolition (QND) measurement. 

Although the possibility of QND measurements of non-local observables and 
states is strongly restricted by causality, the preparation of non-local states is 
not. Indeed, as will be shown any non-local entangled state could in principle 
be prepared without conflict with causality. There is also a quite different type 
of measurement, known as an exchange measurement, which never leads to any 
contradiction to causality and which will also be discussed. Finally, as an inter-
esting application we investigate the transmission of an unknown quantum state 
with the help of a classical communication channel and a quantum channel pro-
vided by an EPR entangled quantum state. This so-called quantum teleportation 
nicely illustrates some of the features of relativistic quantum measurements. 

11.3.1 Entangled quantum probes 
We consider the case that the probe system has been prepared initially in some 
entangled state 10). In the Q ( k) representation we write for the wave function of 
the total probe system 

(* (1) ,... ,q (K)) = ( (Jo) ,  ... , q (K)10) .  (11.101) 
Our previous result (11.72) on the joint probability distribution can then be 
immediately generalized to yield 

PK(a(1) , ... ,a (K) ) 
o- ( 7) 

, T, f2(a (1) , ... ,a(K) ) exp —i f d lx 71(x)  0(o-0 )) 
cro 

where, again, the x (1 ), ... , X (K)  are located in the space-time region enclosed by 
the hypersurfaces uo and a('r). The total operation may be written 

,a (K) )  = 0(a (i) _ A(i) ,..  , , a(K) _ Am).  (11.103) 
It should be noted that, in general, this is only a formal expression since any 
two operators A(k) and A (1 ) need not commute if the corresponding points x ( k )  
and x( 1 ) are separated by a timelike distance. However, under the time-ordering 
operator T, in eqn (11.102) the operation is unambiguously defined. 

The usage of an entangled quantum probe leads to decisive consequences for 
the conditioned evolution of the state of the object system. The most important 
feature is that for entangled probe states the evolution does not, in general, trans-
form pure states into pure states and that the process becomes non-Markovian. 
This can be seen with the help of the simplest case, namely that of a measure-
ment at two spacelike separated points x( 1 ) and x( 2 ). Since the corresponding 
operators AM and A( 2 ) commute, the operation 

= q5(a(1)  —  —  4(2) )  (11.104) 
is unambiguously defined without the time-ordering operator, of course. 

(11.102) 
2 

, 
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preparation of 
probe state 

IT) 

FIG. 11.10. General scheme for an indirect measurement device which uses an 
entangled probe state 10). 

We suppose that the probe state 10) is an entangled state. To be specific we 
may regard 10) as the state of a two-particle system which is prepared in an 
entangled state in some localized region. These probe particles are then brought 
to the space-time points x (1)  and x (2) , respectively, where they interact with the 
object system. Afterwards, the observables Q( 1 ) and Q( 2 ) are measured on the 
probe particles to yield the readouts a( 1 ) and a( 2 ), as indicated in Fig. 11.10. 

Consider now two different foliations Y and Y' by parallel surfaces as in-
dicated in Fig. 11.11. As before we may regard the hypersurfaces belonging to 
these foliations as equal-time hypersurfaces of two observers 0 and 0' moving 
with different 4-velocities n and n'. Clearly, n is the unit normal vector of Y and 
n' is that of .P. 

In the case that the probe represents an entangled state one finds that 0 
and 0' associate completely different state histories to their foliations. Let us 
first look at the situation from the viewpoint of O. Observer 0 starts from some 
initial state 141(a0 )) on ao . As indicated in the figure, there is some surface al  
of the foliation .7-  which crosses both points x (1)  and x (2 ), which means that 
both measurements are simultaneous for observer O. This implies that the state 
reduction in Y occurs along a l  and that the readout a(1 ), a (2)  gives the final 
state 

141(0-2)) = Ar 1l(a(i),a(2))141(0-0)) 
 

(11.105) 

on the surface a2 of the foliation of 0, A( being some normalization factor. 
Thus, observer 0 describes the state history as an evolution of pure states, the 
reduction taking place at a single instant of time in the rest frame of O. 



X(1)  X(2) 

F(observer 0) 
0-0 

1 

.P(observer 0') 
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FIG. 11.11. Two different foliations Y and  corresponding to two observers 
0 and 0' who describe the non-local measurement depicted in Fig. 11.10 in 
their respective coordinate frames. 

The state history associated with the foliation .T' is completely different. In 
this foliation there is no hypersurface which crosses both points xW and x( 2 ), 
that is for observer 0' the two measurements are not simultaneous: There exists 
an intermediate region of time in which the first measurement at x (2)  and the 
corresponding state reduction already took place whereas the one at x(1)  has not. 
For an entangled quantum probe this leads to the result that in this intermediate 
region object and probe are, in general, in an entangled total state which is given 
by 

=  f  da'  a') 0  l a ( 2 ))  (a(1) ,a(2) e -iA( 2 )p( 2
) 10)1111(4)). (11.106) 

By contrast, if the probe is in a direct product state kb) = 10(1) ) 0 10(2)), the 
intermediate state also becomes a direct product 

1 4qui))= -V10 (1) ) 0 10/ (2) )  Ø  (a(2) 1e —" 2(2) 10(2) )1 41 (0- ) ),  (11.107) 

as it was in those cases considered in the preceding section. It is also clear that 
after the second measurement at x(1)  the total object-plus-probe system is always 
in a product state again which takes the form 

1 4) (c4)) = Ar1a (1) )  1a (2) ) 0 
 (11.108) 

The entanglement of the object—probe system shows that the state referring 
to the observables of the object system represents, in general, a mixture in the 
intermediate region of the foliation .P, 

p(o-D  
731(a1(2)  ) 

f da(1)  q5(a(1)  , a (2)  A(2) )p(o-D0t(a (1) , a (2)  — A (2) ), (11.109) 
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where 

Pi (a (2) ) --=-- f da (1)  NI ()10t 0 (a(i)  , a(2)  — A (2)  )11 I 1 (cr,') ))  (11.110) 

is the unconditioned probability density for the readout a( 2 ) of the measurement 
at x( 2). Thus we see that observer 0' associates the following history for the 
object state with her/his foliation P, 

p(o- ) (pure state)  p(o) (mixture)  p(o) (pure state).  (11.111) 

In the first step the pure state  p(o) is transformed into a mixture p(o- '1 ) by 
the first measurement at x(2 ). In the second step this mixture then transforms 
into a pure state p(0-) again: The destruction of the pure state by the first 
measurement is completely undone by the second measurement. 

The above description clearly reveals the non-Markovian character of the 
state history. The final state  p(a) of the object system after the second mea-
surement is obtained by applying the operation  1l(a( 1 ), a( 2 )) to the initial state 
p(o), that is by applying it to an object state which was given at a finite time 
interval AT prior to the second measurement. We remark that this time interval 
corresponding to the intermediate region of time between the two measurements 
can be made arbitrarily large. For example, if x (1)  = (0, f(1) ) and x(2 ) = (0, Y(2)) 
are the coordinates of the measurement events in the rest frame of 0 and if 0' 
moves in the direction of Z( 1 ) — ±.( 2 ) the time interval between the first and the 
second measurement is found to be 

AT = -yvAx,  (11.112) 

where 7 = (1—y2 ) -1 / 2 , y is the speed of 0' relative to 0, and Ax = 40) _ 2)•  
The non-Markovian feature of the process is due to the fact that the infor-

mation which is required to restore the pure object state in the second step is 
contained in the probe state during the time interval AT . This information is lost 
by tracing over the variables of the quantum probe. As we have seen, the pro-
cess describing the behaviour of the total object-plus-probe system is, of course. 
Markovian. 

11.3.2 Non- local measurement by EPR probes 
In this subsection we shall demonstrate that the use of entangled probe states al-
lows the quantum non-demolition measurement of certain non-local observables. 
As in the preceding subsection our quantum probe constitutes a two-particle 
system with canonical coordinates Q (1)  and Q(2 ) and corresponding conjugated 
momenta P( 1 ) and P( 2 ). The initial probe state is taken to be an EPR-type 
entangled state which may be defined with the help of the relations 

( p ( 1 ) + p(2)) 10) ___ 0 ,  (11.113) 

(Q(1) - Q( 2 )) 10) = 0 .  (11.114) 
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Note that the total canonical momentum 
p ___ p(1) + p(2)  (11.115) 

commutes with the relative coordinate 
Q ___ Q (1) _ Q (2) ,  (11.116) 

such that P and Q can take simultaneously sharp values. Introducing also the 
average of the coordinates 

1 Q = (Q( 1 ) + Q(2)) , 
2 

as well as the relative momentum 
I:,  1 (p(1)  _ p(2) ) 

2 

(11.117) 

(11.118) 

we have two new pairs of canonically conjugated coordinates and momenta, 

[-P,(2] = [15 ,C2]= ---i,  (11.119) 

[P,C2]=[P,Q]= 0.  (11.120) 

Using the mixed (P, Q) representation we can thus define the probe state by 
means of 

(11.121) 

Let us determine the operation describing the readouts a( 1 ) = q( 1)  and 
a (2)  = q(2 ) for the local measurement of Q(') and Q( 2)  after the object—probe 
interaction. Employing the above relations we find 

_  a(2) lexp[—iA(1) P(1)  — iA(2)P(2)]10) 

:=--- (a (1) , a (2) 1ex1){ — i(A (1)  — A(2) ) 13  — —2i  (A (1)  + A(2) )Pi10) 

= (a (1) ,a(2) 1exP[ — i(-4(1)  —  4 (2))15L0),  (11.122) 

where we have used the fact that P commutes with P and that PP) = 0. 
Consider now the non-local operator 

A = A(1)  —  4(2) ,  (11.123) 

and its spectral decomposition 

A = E a HA(a),  (11.124) 
a 

which is assumed to be discrete for simplicity. Here and in the following we write 
HA (a) for the projection onto the eigenspace of the operator A belonging to the 
eigenvalue a. 
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If we introduce the spectral decomposition of A into the expression (11.122) 
for the operation we get 

= E(a(1), a(2) le —' 15 1p = 0,4.  = 0) IIA(a) 
a 

 

= E(a(1), a (2) 1P = 0, 4 = a) 11A (a)•  (11.125) 
a 

In the second step we have used the fact that exp(—iaï") is a translation operator 
which shifts 4 by the amount a, since P is canonically conjugated to Q. Now, 
the remaining matrix element vanishes unless a ( ' )  — a( 2 ) -=-- a, 

 

0 ,  4  = a) = 6(a(i) — a2  — a) ,  (11.126) 

which gives 

 

Q(a (1) ,a (2) ) = E (5(a (1)  — a(2)  — a) IIA(a).  (11.127) 
a 

This equation clearly shows that the operation depends only on the difference 
of the readouts and that the possible values for this difference coincide with the 
eigenvalues of A. The correctly normalized operation pertaining to the outcome 
a = a( 1 ) — a (2 ) can therefore be written as follows, 

12(a) -=-- HA (a), a E spec(A),  (11.128) 

showing that the operation is just equal to the corresponding projection of the 
spectral family of the operator A. 

Thus, we see that the EPR entangled probe state allows an ideal quantum 
non-demolition measurement of the non-local observable A. The operation de-
scribes the back action on the quantum object which is in full agreement with the 
von Neumann—Liiders projection postulate: The readouts yield the eigenvalues 
of A and if the initial state of the object system was is an eigenstate of A then 
this state is not changed by the measurement. 

To appreciate what has been achieved it is important to realize the following 
properties of the above measurement scheme. First, it must be emphasized that 
the measurement device does not yield any information on the local observables 
A( 1 ) and A( 2 ). This is connected to the fact that neither Q( 1 ) nor Q( 2 ) are sharply 
defined in the initial probe state, since these observables do not commute with P. 
Only the relative coordinate "0 which does commute with P is sharply defined. 
The entangled probe state 0.) is thus not appropriate for a measurement of the 
local observables A( 1 ) and A( 2) . Consider, for example, the local measurement at 
x (2)  and the foliation .7' of the previous subsection (Fig. 11.11). If we introduce 
the spectral decomposition of the local observable  

4( 2 )  _ E a(v2 ) ,t2 )  
, 

(11.129) 
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we find for the density matrix describing the quantum object after the first 
measurement at 

pcati) ----- 
Ellpp(ovv. 

v 

(1 1.1 30) 

This is precisely the density matrix as it would be obtained in a non-selective 
measurement of the local observable A( 2 ). It follows that the measurement of 
Q( 2 ) does not give any information on A( 2 ): The quantum object behaves as 
if we measure A( 2 ) and immediately erase that information. In particular, the 
possible outcomes a( 2 ) are not given by the eigenvalues of A( 2 ), but are uniformly 
distributed and independent of the initial object state. 

Thus we see that the device allows the measurement of A ---- 4( 1 ) — 4( 2 ) 
without measuring the local quantities A (1 ), 4 (2 )•  Of course one can also measure 
any linear combination of the form 

A .=-- aA (1 ) +  34(2) .  (11.131) 

This is achieved by an appropriate replacement of the local observable, A( 1 ) -4 
ctA( 1 ), A(2 ) -4 —fiA( 2 ). Recall that our basic assumption is that, at least in 
principle, we can measure any local observable. Similarly, one can also measure 
any product 

A -= A(1)  •  4 (2 )  (11.132) 

provided both local observables have a definite sign, for example A( 1 ) > 0, 
A( 2 ) > 0. Namely, in that case we may replace A( 1 ) -4 ln A( 1 ), A (2 ) -4 ln A (2 ). 
However, as we shall demonstrate later, it is not possible to measure all observ-
ables belonging to the algebra of operators of the object system. 

The second important point to be noted is that the device allows the mea-
surement of non-local observables which cannot be measured locally. Consider 
the observable A = A( 1 ) + A( 2 ). Suppose first that A is non-degenerate. In that 
case we can measure A also locally by simply measuring A( 1 ) and A( 2 ) separately 
(with the help of a probe which is in a direct product state). Such a measurement 
will then also be a QND measurement of A: The corresponding readouts 
a(2 ) are the eigenvalues of A (1 ) and A( 2 ), respectively, and a = a( 1 ) + a( 2 ) is an 
eigenvalue of A. Moreover, all eigenstates of A are also eigenstates of A( 1 ) and of 
A(2 ), which follows from the fact that the local observables commute and that A 
is non-degenerate. Therefore, the separate measurement of A(1 ) and A( 2 ) leaves 
unchanged all eigenstates of A. 

The situation changes completely if A is degenerate. The separate measure-
ment will then, in general, not be a QND measurement of A. To see this we 
consider some degenerate eigenvalue a of A and two corresponding orthogo-
nal eigenstateslxi) and lx2). The non-local measurement procedure constructed 
above clearly has the property that it leaves invariant the total subspace spanned 
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by x i ) and 1x2 ). However, we can always choose these states such that they are 
simultaneous eigenstates of AM and A( 2 ). We suppose that the corresponding 
eigenvalues are different and consider the initial state 

Ix) =  1  OW +1X2)) 
 

(11.133) 

What happens then during separate local measurements of A( 1 ) and A(2 ) is that 
this initial state goes over with probability to either x i ) or 1x2 ). The separate 
measurement of the local quantities is therefore not a QND measurement of their 
sum. 

As an example, which will be used several times later on, we consider a system 
of two particles with spin One particle interacts locally with the device at  
the other at x (2 ). The total Hilbert space is, of course, given by the tensor product 
7-1 = As our local observables we take the spin components of the particles 
along the z-direction, 

1 A (1 ) = —o- (1 )  4 (2 ) (11.134) 

and consider the measurement of the sum of the spins along that direction 

1 / 
A = — (o-(1 ) u(2)) E L.  2 ' ( 11.135 ) 

A basis of eigenstates of Jz  may be written in an obvious notation as 

1 

 

1j = 0,  in = 0) =   (i+)(1)1_)(2) _i_)(1)1+)(2)),  (11.136) 

 

1,7n = 0) =  ( H) (1) H (2) +1 41)142)) ,  (11.137) 

j = i , rn = + 1)  i+)(1)1+)(2),  (11.138) 
Ii  = i l m = -1) = 14 1 )142), (11.139) 

where in denotes the eigenvalue of  J. These eigenstates have been chosen to be 
simultaneous eigenstates of the square of the total spin 

1_  1 (6(1)  _.(2)  
2  u  ' (11. 140) 

that is fli,m) =  + imi,m). The states 1i = 0, m = 0) and 1i = 1, m = 0) 
span the two-fold degenerate eigenspace belonging to the eigenvalue 0 of  J.  
The non-local measurement using an EPR-type probe state allows the QND 
measurement of  L.  In a separate measurement of the local spins of the particles. 
however, the singlet state 1j = 0,  in  = 0), for example, will be transformed into 
either 1 +)(1)I_ ) (2) or  41) +)(2). 
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Let us now demonstrate that besides linear combinations and certain prod-
ucts we can also measure arbitrary modular sums of local observables. The fact 
that this type of non-local observable is measurable at least in principle, will 
play an important rôle in the further development of the theory. 

Obviously, it suffices to construct an explicit measuring device for the quan- 
tity 

B =  A mod z  E (A (1 ) — A(2) ) mod z,  (11.141) 

where z > 0 is some real number. To measure B we employ the following initial 
probe state, 

10) = E  o, = nz),  (11.142) 

where the sum runs over an appropriate subset of the set of integers and  AI 
is some irrelevant normalization factor. The probe state is a superposition of 
EPR entangled states. In contrast to the probe used before, not only are the 
local coordinates Q(') and Q( 2 ) undetermined in this state, but also the relative 
coordinate (2 is only determined up to a multiple of z, that is (0 mod z)10) = O. 

Proceeding in precisely the same manner as above we now get the following 
expression for the operation, 

1l(a (1) ,a (2) ) = E E(a(1) , a (2)  LI) --= 0 ,  a + nzglA(a).  (11.143) 
n a 

Correctly normalized, the operation takes the form 

(a ' , a 2 ) 
 

IT4(a).  (11.144) 

Here the sum extends over all a and n with the constraint of a fixed value for 
the quantity a +nz = a(') —a( 2 ). This shows that the operation depends, in fact, 
only on the quantity a mod z b and we may write the operation as 

Q(b) =  E HA(a) 1-1B(b).  (11.145) 
a mod z=b 

Hence, the operation Q(b) is equal to the projection onto the eigenspace belonging 
to the eigenvalue b of the modular sum B.  The use of the probe state (11.142) 
therefore allows the measurement of the modular sum of local observables. We 
remark that it is not necessary that the sum over n in the initial probe state 
extends over all integers. In the following we shall apply the measurement of 
modular sums only to bounded operators. In that case it suffices if the sum runs 
over a finite number of integers, namely those which project the eigenvalues of 
A into the fundamental interval [0, z). 
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11.3.3 Quantum state verification 
The discussion of the preceding subsection raises the question of whether we can 
measure all non-local observables by an appropriate design of quantum probes 
and by employing various local interactions between probe and object system. 
Surprisingly, the answer to this question is that we cannot measure all non-local 
observables, that is we cannot design an ideal, quantum non-demolition mea-
surement for each observable belonging to the algebra of operators of the object 
system. In fact, as we shall see the measurement of most non-local observables 
is incompatible with the causality principle. In the following sections we shall 
formulate the restrictions on the measurability of observables which are imposed 
by causality and investigate some classes of non-local operators and states which 
are measurable. 

For a clear and systematic treatment of the subject the concept of a so-called 
state verification measurement turns out to be extremely useful. This concept is 
more general than the usual notion for the measurement of states which is used 
in quantum mechanics. In the present subsection we define state verification 
measurements and describe them in terms of operations and effects within the 
framework of generalized measurement theory developed in Section 2.4.2. 

A state verification measurement of a given state Iwo) is defined to be a mea-
suring device which performs a Yes/No-decision experiment with the following 
property. Let IT) be any state of the underlying Hilbert space and 

1 41 ) = Olio) + 01 41 ±)  (11.146) 

its decomposition into the component parallel to Iw o ) and the component per-
pendicular to it, such that ( 41 01 41 ± )--=-- 0 and liar + 101 2  = 1. If prior to the 
measurement the system is in the state III)) then the measuring device responds 
with the result Yes with probability  I1 2 , and it responds with the result No with 
probability 101 2 . 

Analogously we define a QND state verification as a state verification mea-
surement with the following additional property. If the result is Yes then the 
system is in the state 141 0 ) after the measurement. This implies that the initial 
state Iw o ) is left unchanged by the measurement since the result Yes is then ob-
tained with certainty. In the case that the measurement yields No the system is 
in a state 'WI) which is orthogonal to IWO, but which is not necessarily equal to 
the orthogonal component I W1) of the initial state. The latter property implies 
that on repeating the experiment we again find No with certainty. 

It should be clear that quantum state verification measurements do not, in 
general, represent measurements of the projection 

HO = 1 410)( 11j 01 
 

(11.147) 

onto the initial state in the conventional sense of quantum mechanics. In the 
case of a QND state verification the orthogonal component is allowed to change 
during the measurement, and for a general state verification measurement no 
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assumption at all is made regarding the behaviour of the state vector of the 
system. 

We now describe the form of a general state verification using the language 
of operations and effects. According to its definition the device has a set fal 
of Yes-readouts and a set {b} of No-readouts. Correspondingly we have a col-
lection of Yes-operations  lyes (a) and of No-operations  N0 (b). The behaviour 
of the density matrix of the object system as a result of the non-selective state 
verification can then be described by 

p  E Qyes (a)pqes (a) E 1N0 (b)/A2tN0 (b).  (11.148) 
a 

As we saw in Section 2.4.2 this is, apart from the assumption of discreteness of 
the sets of the readouts, the most general setting. In particular it includes the 
possibility of quantum probes in mixed states and those of incomplete, approxi-
mate, or non-selective measurement of the final probe states. 

On introducing the Yes- and the No-effect, 

Fyes„Eqes(a)1lyes(a),  (11.149) 

FN0  E Q-Ï,,o (b)Q,,,„(b),  (11.150) 

we get from the conservation of probability 

FYes FN0 =  I.  (11.151) 

Let us consider the initial state IT) and its decomposition (11.146). We can write 
the probability for the outcome Yes of the state verification of Iwo) as follows 

PYes(T) = ( 41 1 11YesI T ) 

= Ict1 2 (W0dFYes1 41 0)  1/3 1 2 ( T_LIFYes1 41 ±)  (a0 * ( 41 "IFYesH11 0) + c.c) 
ictr.  (11.152) 

The last equality expresses the condition for a state verification measurement 
and must be true for all a, 0, and for all 14/±). Setting first 13 = 0 and then 
a = 0 one easily deduces the relations 

(410117yes 14/0) = 1, (4/"Wyes IxIii) = 0.  (11.153) 

If these relations are inserted into eqn (11.152) one also finds that 

(T_L1FYes00) = 0. 
 (11.154) 

It follows that for any state verification measurement the Yes-effect is equal to 
the projection onto the verified state, 
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Fyes  = Ho E 1W0)(Tol.  (11.155) 

With the help of eqns (11.153) one is led to the following equations, 

flyes (a)0 ± ) = 0,  (11.156) 

and 

1rsTo(b)1 410) = O.  (11.157) 

Equation (11.156) holds for all a and for all states perpendicular to the verified 
state, while eqn (11.157) is valid for all b. 

Summarizing we see that for any state verification measurement all Yes-
operations annihilate the No-states, all No-operations annihilate the Yes-state, 
and the Yes-effect is equal to the projection onto the Yes-state. With the help of 
the conservation of probability it follows also that the No-effect is equal to the 
projection onto the orthogonal complement, 

FNo  Ho  E H1.  (11.158) 

In order for the state verification to be a QND measurement two further condi-
tions must be satisfied. First, when applied to the state IWO all Yes-operations 
must yield a state which is proportional to Iwo). Hence, only a single Yes-
operation is required which must be equal to the projection onto the verified 
state, 

QYes — Ho.  (11.159) 

The second additional condition for a QND state verification is that all No-
operations must map the subspace orthogonal to Iwo) into itself. 

These results will be applied in the next subsection to the state verification 
of non-local states. 

11.3.4 Non -local operations and the causality principle 
In the present and the following subsection we study the measurement of some 
quantum system which consists of two localized parts (1) and (2) described by 
the Hilbert spaces 7-1 (1 ) and 71 (2 ), respectively. The total Hilbert space of the 
quantum object is the tensor product 74 =  7-((') 7l(2 ).  We investigate the state 
verification of an entangled state IWO in this space. Introducing appropriate 
local bases lx, 1) ) and IV) ) in both parts of the system a given state Iwo) can be 
represented in terms of its Schmidt decomposition as follows (see Section 2.2.2), 

D 

iTo)  E  ix(,2 )).  (11.160) 

We assume here and in the following that W o ) is normalized and that its Schmidt 
number, denoted by D, is finite. Thus, the Schmidt decomposition consists of a 
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finite number of terms and we assume that the complex numbers ai, i =  1,... , D, 
are different from zero, 

D 

E 1a/1 2 
= 1, c 
 (1 1. 161) 

i=1 

For D > 2 the state IT O ) is an entangled state. We recall that T o ) is called 
maximally entangled if the absolute values of all non-vanishing coefficients in 
the Schmidt decomposition are equal to each other, that is if la,d = lArb-  for 
all i = 1, , D. 

We further denote by ( 1 ) and 74( 2)  the local subspaces spanned by those 
basis vectors that occur in the Schmidt decomposition of ITO with a non-zero 
coefficient, 

= span x(. 1) )1 
J  ,D 

971 (2)  = span x(. 2) ) 
k  i=1,...,D 

(11.1 62) 

( 11. 163) 

The tensor product 3--i (1 ) fi (2 ) is thus a D 2 -dimensional space. 

11.3.4.1 Formulation of the causality principle We consider the setup sketched 
in Fig. 11.12. The initial state of the system may be any state IT). At two 
spacelike separated points x (1)  and x(2 ) a state verification measurement of the 
state IT0) is performed. In the localized region belonging to part (I) of the 
system we perform a measurement of some observable B( 1 ) referring to the local 
variables in that part. In the following we denote by E [B( 1) 141] the expectation 
value of B( 1 ) for this local measurement performed after the state verification, 
under the condition that the initial state is IT). 

Suppose now that some local interaction may be applied on part (2) of the 
system prior to the state verification measurement. This can be described by 
some unitary operator U( 2 ) acting on the Hilbert space 7/( 2 ) •  For example, if the 
quantum object constitutes a spin system one may regard U(2 ) as describing the 
interaction of the system with a magnetic field by which an experimenter can 
flip the spin of the particle in part (2). Since we assume that anything can be 
measured locally we may also assume that any unitary transformation can be 
realized by an appropriately chosen local interactions in each local part of the 
system. 

We assume that the measurement of B( 1 ) is carried out in a space-time region 
which is separated from the interaction region of U(2 ) by a spacelike interval. The 
causality principle then implies that the result of the local measurement carried 
out in part (1) after the state verification, does not depend in any way on the local 
interaction which is applied to the system in part (2) before the state verification. 
This means that the expectation value of any observable B (1 ) determined after 
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local measurement of B( 1 ) 

-I,- 

non-selective 
verification of ITO 

local interaction U (2) 

liP) 

FIG. 11.12. Illustration of the causality principle expressed by eqn (11.164). 
After a verification measurement of xli o ) a local observable B( 1 ) is measured 
on part (1) of the system. Prior to the verification measurement a local inter-
action described by the unitary operator U( 2) may be applied to part (2) of 
the system. The measurement of B( 1 ) and the interaction U (2) are separated 
by a spacelike distance such that the expectation value of B (1 ) must be in-
dependent of whether the interaction U( 2 ) is or is not applied to the system. 
The state verification itself is described on the non-selective level. 

the state verification must be the same regardless of whether U (2) is applied to 
the system or not, that is we must have 

EPP) (024]  =  (11.164) 

This equation expresses the requirement of the causality principle on the state 
verification measurement. 

It should be clear that the state verification must be described here as a non-
selective measurement. The reason is that any local observer in part (1) does 
not know the result of the verification of the non-local state 14/0) at the time 
when B( 1 ) is measured. However, if eqn (11.164) were not always true a local 
observer in part (2) could transfer information from part (2) to part (1) with a 
superluminal speed. Thus, the expectation value is given by the expression, 

E[B (1 )14i] ---- E(41191es(a)B("Yes(a)41) 
a 

+ E(WAtro(b)B (1) SIN.(b)1 41 ).  (11.165) 
b 

The causality principle formulated by eqns (11.164) and (11.165) leads to 
important consequences for the measurability of non-local quantities. It must be 
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emphasized that eqn (11.164) is trivially satisfied if we assume, as we of course 
do, that only local object—probe interactions are involved in the measurements. 
In fact, as is easily seen eqn (11.164) becomes trivial if we write it in terms of 
the state vector (or density matrix) for the total object—probe system. However, 
important conclusions can be drawn from the above formulation of the causality 
principle if it is combined with the conditions for a non-local state verification 
measurement and with certain properties of the underlying Hilbert space of the 
combined object system. 

11.3.4.2 Theorem on the erasing of local information In the following we prove 
a theorem by Popescu and Vaidman (1994) which can be derived from the causal-
ity principle (11.164) and which leads to several interesting conclusions on the 
possibilities of non-local measurements. This theorem states that 

E[B (1)  I T] = E[B (1)  013] for all IT) E "ii (1)  0 W (2) .  (11.166) 

This means that the expectation values for all local observables in part (1) are 
independent of the initial state IT) prior to the state verification measurement. 
In other words, after the state verification a local observer in part (1) cannot find 
out by the measurement of local observables BO) the initial state of the system 
prior to the state verification. After the state verification there is thus no trace 
of the initial state in the local density matrix referring to the variables of part 
(1) of the system. This property is called the erasing of local information by the 
state verification measurement. 

It must be stressed that the erasing of local information refers to initial 
states IT) which belong to the subspace 74 (1)  0 ?-1 (2) . For an arbitrary 4/) E 
10.) e, W2) eqn (11.166) is, in general, wrong. As an example we take T o ) = 
1X(1))01X(2)). This product state can obviously be verified by performing separate 
local measurements of the projections onto the states lx( 1 )) and lx (2 )) in part 
(1) and part (2) of the system. Consider further the state IT) = 10 1) ) 0 
where 10(1)) is orthogonal to Ix (1) ). Since the chosen state verification is an 
ideal quantum measurement we have the conditional expectations E[B( 1 )I To ] = 
(X(1)1B(1)1X(1)) and E[B(1)I4'] __, (ow 1B(1)10(1)% ) which are, in general, not equal 
to each other. 

To prove (11.166) we first evaluate the expression for the conditional expec-
tation value (11.165). Using the decomposition (11.146) of IT) and taking into 
account the properties (11.156) and (11.157) of the state verification measure-
ment we obtain, 

E[B (1)  I T] 

= ice E(4'019Yes (a)B (1)  S2y„(a)1 410) +101 2  
b 

= = I a l 2 Ea[B(1)  I 41 01 ± 10I 2 E[B (1)  I 41-Li•  (11.167) 

Thus we find 
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E[B (1 )I 41] = E[B (1 ) I To]  I01 2  (E[B(1)1411]  E[B (1)  Ro ] ) .  (11.168) 

If IT) has a non-vanishing orthogonal component, that is if 0 in the decom-
position (11.146), the last equation tells us that E[B( 1 )IT] is equal to E[13 (1 )1To ] 
if and only if E[B( 1 )IT1] is equal to E[B( 1 )IT o b 

 

E[B (1) IT] = E[B (1) 141 0] <   E[B (1) ITij  E[B (1) 1410].  (11.169) 
For the proof of eqn (11.166) the following strategy is used. In a first step one 

demonstrates that any state IT) E 12 (1)  0 71 (2)  can be represented in the form, 

IT) = Ecro.2)00),  (11.170) 
r=1 

where the cr  are c-numbers and the 0.2)  are unitary operators which act on the 
local space 1-1 (2)  of part (2) of the system. This means that any such state vector 
can be represented as a superposition of a finite number of states which can 
be generated from 'T o ) by the application of unitary transformations which act 
only on part (2) of the system. In the second step of the proof one demonstrates 
that any state of the form (11.170) obeys eqn (11.166). In this second step one 
uses the causality principle (11.164) as well as the property (11.169). 

The existence of the representation (11.170) will be demonstrated by an ex- 
(2) plicit construction of the local, unitary operators Ur  . The space 14 4 ) ® 'HP) is 

spanned by the basis vectors 

1)d° ) g N 2 ),  1 ,  1, 2, ... .  (11.171) 
Note that the restriction k < D stems from our requirement that IT) belongs to 
the space 74 (1 ) 7-1 (2) . As we have remarked already the theorem is not true for 
all state vectors belonging to WO 'H (2). Obviously, it suffices to demonstrate 
that any basis vector (11.171) can be represented in the form (11.170). This is 
achieved with the help of two unitary transformations (4 2)  and U (2)  which act 2 
in the space 7/ (2)  and which are defined by 

(4 2) 1x (k2) ) = 1X (i 2) )) 

U1 2) Ix 2) ) = IX (k2) ), 

U1 2) 1Xi(2) ) = for i 

and by 

ti 2) 1X (k2) ) 

[J 2) 1Xi 2) ) =lx (k2) ), for k  1, 

[J 2) 1V ) ) = Ix 2  for i X k,l. 
(2)  .  (2)  (2)  (2) Thus, U1  simply exchanges the states lxk  ) and lxi  ), and U2  exchanges 

these states and introduces an additional minus sign. For k = 1 the operator 
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(2)  i  ( 
Ui  s equal to the identity, whereas U2 2)  multiplies the k-th basis vector by —1. 
Applying these operators to Iwo) we get for k Xl 

142) 00) =dh 1lkiX (k1) )1Xi2) ) d-  crilXi i) )1)(2 ) ) dh  ailX (i1) )1X(i 2) ), (11.178) 

1.1 2) R 0) == — CviciX (k1) )1Xi2) )  ailXi i) )14 ) ) dh  ailX(i1))1X(i2)). (11.179) 

It follows that 

u 2 [ 'I'0 )  - U 2 1 0)  = 2ak 141) ® le), 
which gives a representation of the required form, namely 

IX (k1) ) ® le) = ( —L W) —1--- U 2) ) Iwo). 2ak  2ak 

(11.180) 

(11.181) 

As is easily seen, the case k =1 leads to the same equation. Note that ak 0 for 
k =1,... ,D due to our assumptions on IT) and Iw o ). This concludes the proof 
of eqn (11.170). 

We now have to show that any IT) of the form (11.170) satisfies eqn (11.166). 
This is done by induction over N, the number of terms involved in the represen-
tation. For N = 1 we may set c 1  1 since IT) is normalized. Equation (11.166) 
then follows immediately from the causality principle (11.164). 

Assume that (11.166) holds for all states with a decomposition of the form 
(11.170) involving N terms. Consider some normalized state whose representa-
tion of this form contains N + 1 terms, 

N+1 

IT) = E cro2)14'0). 
r=1 

( 11. 1 82) 

For brevity we write E [T] instead of E[B (1 )I4'] in what follows. According to the 
causality principle (11.164) we have 

E[T] = E [(4)±1 ) 4' ]  (11.183) 

where 

([11)  
—1 —1 

) =  (uN±, )  (2)  U (2) I* )  CN+114 0) +  Ecr  r 
r=1 

(11.184) 

If the sum over r in (11.184) is zero we have already proved the theorem. Let us 
therefore assume that it is non-zero and introduce the normalized state 

= .1V  Cr ((4)± 1) 02)  0) 
 

(11.185) 
T=1 
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with an appropriate normalization factor .111- . The induction assumption then 
gives 

E[T]  E[4/ 0].  (11.186) 

Next we decompose the state lit), 

= To) + 01 41 ±),  (11.187) 

where we may assume that 0 0 since otherwise the theorem follows immedi-
ately. Equation (11.186) together with the property (11.169) yields 

E[TL]  E[4'0].  (11.188) 

In view of eqns (11.184), (11.185), and (11.187) we also have the decomposition, 

-1  a ((42+) 1 ) IT) = ( + eN+1) Iwo) + :A7R-L) a i lT0) + 01 4'1). (11.189) 

Since 0' 0 (see above) we may now use eqn (11.188) to conclude with the help 
of (11.169) that 

E [(Ur+i ) 1  xli]  E[4,0],  (11.190) 

from which the theorem follows by making use of eqn (11.183). 
It should be noted that the theorem has been proven under quite general 

circumstances. As physical assumptions we have merely used the existence of 
the operations and effects describing a state verification measurement as well as 
the causality principle. 

11.3.5 Restrictions on the measurability of operators 

Let us draw some important conclusions from the theorem on the erasing of 
local information with regard to the measurability of non-local operators in the 
combined Hilbert space of the system. 

The first conclusion is that the projections 110 = 14/0)(4/01 onto entangled 
states Iwo) are not measurable. To prove this statement we derive a contradiction 
to the causality principle. Let 

D 

I T  0) := Ecfilx(i 1 ))® be)  (11.191) 

be the Schmidt decomposition of Iwo ). Since we assume that this state is en-
tangled, at least two of the coefficients ai  are different from zero, that is we 
have ak,a1 0 0, for some pair of indices k 0 1. A QND measurement of the 
projection 110 means that one has just two operations, namely Sly„ = 110  and 
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No  H1 -= I — Ho. It follows that not only 00) but also any state IT_L) 
orthogonal to it must be left unchanged by the measurement, that is 

E[B (1) 141o]  ( 4'olB (1) 1 41o),  (11.192) 
E[B(1)Ri] = ( F-LIB(1)1411).  (11.193) 

The erasing of local information expressed by eqn (11.166) then implies that 

111±1B (1) 141 ± ) = I -13 ( 1) 1 41 0) (11.194) 

must hold for all states which are orthogonal to Ro ) and which belong to the 
space i-i (1)  1-1 (2) . Now we take IT") IX (k1) ) Ixi2) ) and choose B( 1 ) = 

This leads to 

(T-L1 13(1) 1 41 ") = (41) IB(1) I41) )  0,  (11.195) 

( 41 01B (1) 1 410) Elaii2(x 1 )1B(i)ix,(i 1 )) = icf,12 0, (11.196) 

which is incompatible with eqn (11.194). This shows that a measurement of the 
projections onto an entangled state would contradict the causality principle. 

We note that a contradiction to causality only emerges if at least two of 
the Schmidt coefficients ai  are non-vanishing, that is only if ) is an entangled 
state. Of course, all projections onto product states Nk(1))01X/(2))  are measurable. 

As an example one may think of the square of the total spin operator f (see 
eqn (11.140)) for a non-local system of two spin4 particles. The operator f 2  
has a three-fold degenerate eigenspace belonging to the eigenvalue 2, and a non-
degenerate eigenstate corresponding to the eigenvalue 0. The non-degenerate 
eigenstate, namely the singlet state I i  = 0, in = 0), is an entangled state. A 
measurement of f 2  is thus equivalent to a measurement of the projection onto 
an entangled state. Thus, the operator f 2  is not measurable. 

These considerations can be generalized as follows. Let A be some measurable 
observable in the space 1-1 =11 (1)  01-1 (2)  with at least one non-degenerate eigen-
value a and a corresponding entangled eigenstate IAN of the form (11.191) with 
Schmidt number D > 2. As before we define 14( 1 ) and 171( 2 ) to be the subspaces 

(1)  ) spanned by the respective basis vectors Ix i  ) and Ix (2i  ), where i = 1, . . . , D. If 
we further suppose that A leaves invariant the subspacel---1 (1)  014 (2)  the causality 
principle leads to the following conclusion: The non-degenerate eigenstate ITO 
as well as all other eigenstates of A in the space 71i (1)  ® ?I-( (2)  must be maximally 
entangled. 

 

To prove this statement we introduce a basis IT,), v = 0,  , D2  — 1, of 
eigenvectors of A belonging to the space 14 (1)  011 (2). The state given by y  = 0 
is just the eigenstate IT() ) corresponding to the non-degenerate eigenvalue a. 

Now, any measurement of A is necessarily a state verification of Ro ). To 
cast the causality condition into an appropriate form we introduce the density 
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p(1)  ( F) which is defined to be the local density matrix describing the variables 
of part (1) after the state verification, under the condition that the initial state 
was Ii11). This density is obtained by taking the partial trace over part (2) of the 
density matrix of the total system after the state verification, 

p(l)  (T) = tr (2)  E 9yes(a)R) intyes  (a) + EQN.(b)o)(4fotNo(b)} • 

(11.197) 

The erasing of local information expressed by eqn (11.166) can then be re-
formulated as 

p(i) (4, )  p(i) (4,0 , ,  

 

)  for all 1 4') C 7:1(1) 0 7-1(2) . 

Since all I AF) belong to the space 14 (1 ) 014 (2)  we have for all 

= 

(11.198) 

(11.199) 

The A measurement leaves unchanged all eigenstates. Thus we conclude 

tr (2)  {1 4/0)( 4/01} = tr (2)  fi lli v)( 41 u II • 
 (11.200) 

Summing this equation over u and taking into account that the I ■liv ) form a basis 
in the space 14 (0  014 (2) we immediately get, 

D2 -1 
D 2  • tr (2)  {141o)(410 = tr (2)  E ixpo (Tv' 

v=. 
tr (2)  {  (1 ) 0/.7t (2) } 

= D • If_1( 1 ) , 

  

 

(11.201) 

from which it follows by using the Schmidt decomposition of 141 0 ), 

D 

tr (2)  {141 0)(4,01} = E  b-1  4(1). (11.202) 

This proves that ad  = 1/V7D for all i = 1,... ,D, that is, that the non-
degenerate eigenstate ITO is maximally entangled. Equation (11.200) now tells 
us that this must be true also for the other eigenstates  II').  Thus we see that. 
in fact, all eigenstates of A in the subspace 14 (1)  01( (2)  have a Schmidt decom-
position of the form 

a 

D 

ov)  E fiv,iix(v1,)i) ® ix(v2,b, where  I = 
1 

(11.203) 

 

i=1 

with appropriate local basis vectors Ix)  and lx v2 ). 
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As our final application of the causality principle we shall give a complete 
characterization of all non-degenerate, measurable observables for our previous 
example, namely for a non-local system of two spin4  particles (Popescu and 
Vaidman, 1994). Thus we let A be a non-degenerate observable in the composite 
Hilbert space of these particles. Obviously, there are two possible cases: Either all 
eigenstates are direct products, or else there is at least one entangled eigenstate. 

If all eigenstates are direct products one can easily verify that it is possible 
to choose appropriate local bases such that the eigenstates of A take on the 
following form, 

IT1) =  (11.204) 
1 412) - I - z)1 + z'),  (11.205) 
ITO = I + zn i - z'),  (11.206) 
1 414)  =1 
 (11.207) 

where we denote by I ±n) the eigenstate of the spin component along the direction 
n, with corresponding eigenvalue ±1. The causality principle then leads to the 
conclusion that the direction z" must be parallel or antiparallel to z, which means 
that the eigenstates of A can always be cast into the form, 

liTY = I + ,z)1 + zi),  (11.208) 
1 4' 2 ) = I - z )1 + z'),  (11.209) 
IT3) = I + ,01 - z'),  (11.210) 
IT4) - I - z) I - z'). 
 (11.211) 

For the proof of this statement we take the local observable B( 1 ) = I - z) (-z1. 
Since IT') is an eigenstate of A, 

E[B (1) 14/1] --= (T1lB (1) 141 1) --= 0.  (11.212) 

For the state VD) --= I + z)I — z') the causality principle yields 

E[B (1 )I(D] --= E[B (1) 14/ 1 ] --= 0.  (11.213) 

On the other hand, since A is assumed to be a measurable operator we must 
have 

4 
E[B (1)  01 ' E oitForoFilB(1)141i) 

= i(-Ez i + z" ) 1 2  . I(-zi + z")1 2  +1(+zI — z")1 2  ' K — zi — z")1 2  
--= 0,  (11.214) 

showing that indeed z" -= ±z, as claimed. 
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Let us now consider the case that at least one eigenstate is an entangled 
state. Our general considerations then reveal that all four eigenstates of A must 
be maximally entangled. By a suitable choice of local basis vectors one can 
therefore always cast these eigenstates into the following form, 

1 
ITO =  (I + z)I  z') —  I  — z)I + z'))  (11.215) 

1 
1 412) = —2  (I + z)I  z i ) + I — z)I + z 1 ))  (11.216) 

1 
IT3) =  (I + z)I + z') —  I  — z)I  z'))  (11.217) 

1 
= —2  + 1 + z') +  I  — z)  z'))  (11.218) 

A non-degenerate operator with eigenstates of this form is called a Bell-state 
operator. 

Thus we have shown that the set of all measurable, non-degenerate opera-
tors decomposes into two classes: Either all eigenstates are direct products of 
the form (11.208) or else all eigenstates are maximally entangled states of the 
form (11.215). What we have demonstrated is that a measurement of any non-
degenerate operator which does not belong to one of these two classes would 
contradict causality. It remains to be shown, however, how those operators whose 
eigenstates are of the above form can be measured. 

It is obvious that any non-degenerate operator with eigenstates of the form 
(11.208) can be measured. In fact, this is achieved by two separate measure-
ments carried out locally in both parts of the system. We now demonstrate that 
also any Bell-state operator, that is any non-degenerate operator A with eigen-
states of the form (11.215) can be measured. This will be done with the help of 
the measurement of two non-local observables A1  and A2 (see Fig. 11.13). We 
construct these observables and verify that they represent operators which we 
already know to be measurable. 

The A measurement must be a QND state verification of all eigenstates 1  . 
We denote by no  the subspace spanned by 1 if 1) and 14/2), and by H 1  the subspace 
spanned by 14/ 3 ) and 14/ 4 ). With the help of the first measurement of A1  we want 
to find out whether the initial state belongs to Ho or to H. To this end, consider 
the operator 

1  
(11.219) 

In the subspace Ho it has the eigenvalue 0, whereas II 1  is spanned by the eigen-
states corresponding to the eigenvalues ±1. Thus we have J? -= 0 in Ho, and 
4 1 in 11 1 . The relation J? J", mod 2 tells us that J? belongs to the class 
of measurable operators. Thus, our first measurement is the measurement of the 
quantity 

A 1  J, mod 2.  (11.220) 
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A2 --= Jx  mod 2 

=J mod 2 

: 

FIG. 11.13. A measurement device which enables the measurement of 
the Bell-state operator with the non-degenerate eigenstates given by 
eqn (11.215). One uses two quantum probes by which the non-local quan-
tities A 1  = Ji, mod 2 and A 1  = Jx  mod 2 are measured. 

Through the second measurement we must be able to distinguish the states 
1 4'1,2) in Ho as well as the states 14/3,4) in IL. To find an appropriate observable 
to achieve this we first note that 

0-1) 1 1  z) = i T z), a (x2)I 1  z i ) = I + z i), 
(1) (2) which shows that the operator ax  (Tx, flips the spin of both particles. Now, I T 1 ) 

and 111' 3 ) are odd, whereas 1412) and 14/4) are even under a spin flip of both par-
ticles. Thus, a measurement of o-V-) crx(2, )  together with the previous measurement 
of A1  enables us to verify all four eigenstates, which constitutes a QND measure-
ment of the Bell-state operator A. To show that o-V -) o-x(2, )  is indeed measurable 
we write it as follows, 

where 

=  2 J  1,  

1  l (1)  (2) ■ 
Jx = v-x + g, )• x 

(11.222) 

(11.223) 

Thus, the measurement of a-1) o-12, )  is equivalent to the measurement of  J.  Again, 
we have 4 = , J-  x  mod 2 and, hence, the second measurement to be performed is 
that of the observable 

(11.221) 
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C   AN 

(  I  

I

. 

, ' A1 

I W) 

FIG. 11.14. General measurement device for a QND state verification mea-
surement. The scheme involves the measurement of non-local quantities 
A 1 , A2, . . .  , AN described by the operations S2 1  (ai), 122(a2), • • • , nN(aN)• 

A2 = ,ix  mod 2.  (11.224) 

Thus we have constructed explicitly a scheme which allows the measurement 
of the Bell-state operator A. It is clear that the device constitutes a QND mea-
surement of A: Take any eigenspace of A 1  and any eigenspace of A2. Then both 
eigenspaces are two-dimensional, orthogonal to each other, and have a common 
one-dimensional subspace which represents an eigenstate of A. It follows that all 
eigenstates of A are left unchanged by the measurement. This can also be seen 
by noting that the non-locally measured quantities commute, [A 1 , A2] = 0, as is 
easily verified. 

11.3.6 QND verification of non -local states 
In the previous section we have discussed the measurability of operators in the 
tensor product space 1-1 (1)  0 1-1 (2 ). Let us turn to the QND verification of entan-
gled states in this space, that is we now consider the verification of single state 
vectors, rather than the measurement of operators. We would like to answer the 
question of which type of entangled states allows a QND verification and how 
such measurements could be carried out. Again we invoke the causality princi-
ple which enables one to exclude the measurability of a large class of entangled 
states. 

We consider the following general measurement scheme (see Fig. 11.14). The 
measurement consists of a sequence of N measurements of the (in general non-
local) observables A 1 , A2, . . . , AN. Each A, is measured with the help of an 
appropriate (possibly entangled) quantum probe as described in Section 11.3.1. 
We suppose that all A n, are of the form of those operators which were shown to 
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be measurable. Denoting the operation corresponding to the nth readout an, by 
S2,(a11 ) the total operation for the device takes the form 

f/(a i ,  , aN) = 52N(aN)9N_1(aN-1) • • • Q1 (cti), 
 (11.225) 

where the time-ordering is understood. As for any measurement we have 

E 

E  , aN ) = I,  (11.226) 
al  ,aN 

which follows immediately from the time-ordering and with the help of the prop-
erty, 

 

1en (an )1,,(an ) =  I.  (11.227) 
an 

For all measuring procedures considered here we require that the operation 
is a function of the measured quantity. This implies that all operations commute 
with their adjoint, 

 

),1-42 (a, )1 = 0.  (11.228) 

This equation, in turn, yields that in addition to (11.226) we also have 

E ft(a i,, aN) = I,  (11.229) 
al ,••• >aN 

as is easily verified. Physically, this means that an initial density matrix which 
is proportional to the identity is not changed by the measurement. 

We now regard the measurement device as a state verification of some entan-
gled state It o ). Introducing the corresponding Yes/No-operations we thus have, 
in addition to eqn (11.151), 

E 12y„(a)f/ ty„(a) + E 9No (b) 12L0  (b) =  I.  (11.230) 
a 

We need one further condition. We will assume here that the operations 
pertaining to the measurement leave invariant the space 1:1 (1) "i1 ( 2 ), that is 
the space which is spanned by the basis vectors with a non-vanishing coefficient 
in the Schmidt decomposition. In physical terms this means that the quantities 
being measured do not excite new basis vectors, beside those already present in 
the Schmidt decomposition. In view of this condition we may restrict the whole 
discussion in the following to the subspace 94 (1)  '14(2) . 

Our goal is to prove the following statement. For any entangled state IWO 
which allows a QND state verification of the type considered above the causality 
principle requires that all coefficients ai of its Schmidt decomposition (11.160) 
must necessarily be equal to each other, that is ail = 1/N/75 . This means that 
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only maximally entangled states can be verified by such QND measurements 
without contradiction to causality. In addition we are going to demonstrate that 
and how these maximally entangled can be measured. 

For the proof of the above statement we use the causality condition in the 
form (11.198). Explicitly, that condition can be written with the help of the 
Yes/No-operations as 

tr(2) {I*0)(4101}  (11.231) 

tr (2)  {E f2yes (a)1 41 )( 41 1 91 es(a) + E f/No(b)141)(41gro(b)} 
a 

Our strategy is similar to the one used in the previous Section 11.3.5: We choose a 
set of orthonormal basis vectors ITO, u  = 0,  1,...  , D2  — 1, which span the space 
'14 (1 ) 0 74 (2) , insert these basis vectors into eqn (11.231), and sum over v. The 
essential difference to the case of a QND operator measurement is that we cannot 
assume here that all basis vectors 14/,) are unchanged through the measurement: 
In general, only ITO does not change in the QND state verification. Thus, instead 
of eqn (11.201) we now have 

D2  tr(2) {1410)(1oil  (11.232) 

= tr (2)  E Yes (a)I ( l )  04-i(2) qes  (a) + E  (b)4( 1 ) cot-  (2)14\10  (b) . 
a 

However, in view of eqn (11.230) and of our requirement that the operations 
leave invariant the space /71 (1 ) 014( 2 ) we can conclude from the last equation, 

D 2  . tr (2)  fig/0( 41 0i} 

from which we obtain 

tr (2)  {4 ( 1 )074 ( 2 ) 1 --= D • 4(1), (11.233) 

1 
tr (2)  {Io)( 4101} = Tko• (11.234) 

This proves our statement, namely that in order to be measurable without con-
tradicting the causality condition, the state ITO must be maximally entangled. 
Stated differently, after the QND state verification the local density matrices 
referring to the local variables in part (1) of the system must necessarily be 
proportional to the identity in the space 14 (1) . This clearly expresses once again 
the erasing of local information: After the state verification there is no trace of 
the initial state in the local mixtures, and the latter describe states of maximal 
entropy. 

What has to be demonstrated finally is that the maximally entangled states 
can, at least in principle, be verified by some QND measurement. This will be 
done by an explicit construction of a measuring device (Aharonov, Albert and 
Vaidman, 1986). To this end, we first note that by an appropriate choice of the 
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phases of the local basis vectors one can always put a maximally entangled state 
into the form 

1 
I xF 0)  

D 
 0)) ® ixi( 2 )). Nr.5  z (11.235) 

A verification of this state can be carried out with the help of two successive, non-
local measurements, similar to the device constructed to measure the Bell-state 
operator. 

The first measurement is that of the observable 

A  A (1 ) + A (2) ,  (11.236) 

where the local observables A( 1 ) and A (2 ) are defined through 

Ami x ,(i ' ) ) =  (11.237) 

4 (2)  lx ,(i2) ) = 
 (11.238) 

with i  1, 2, ... ,  D.  Obviously, 14/0) is an eigenstate of A with eigenvalue 0. 
Moreover, the vectors I xli) belonging to the D-dimensional eigenspace A = 0 
have the general form 

D 

IT) = Eoilx(ii)) 
 

(11.239) 
i=1 

This shows that by the outcome A = 0 we verify that the state has a Schmidt 
decomposition in the given local basis vectors Ix 1) )) IV ) ). 

By the second measurement we want to verify that the coefficients Oi  in 
(11.239) are all equal to each other. To find an appropriate observable we consider 
the local unitary operators U (1) , U (2)  defined through 

u'1 )Ix (4 1) ) =  i = 1,  , D — 1,  (11.240) 

u( 1) 1 Xn = 1 
 

(11.241) 

U(2)  I X (i 2)  = 1X (i2+)i) 
 

i  1, . . . , D  1,  (11.242) 

U (2)  1X (i )  1X (12 5 
 

(11.243) 

These operators induce a cyclic shift of the index i. Introducing the unitary 
operator U = U(1 ) U (2)  we find that for any state (11.239) in the space A 0, 

D 

uixp) = E  IV)) ix(i 2 )),  (11.244) 
• =1 

where (30  OD . Thus we see that UlT) = I 4') if and only if all Oi  are equal to 
each other. It follows that I W 0 ) is the only eigenstate of U corresponding to the 
eigenvalue 1 in the space A = 0. 
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Since U (1 ), U(2 ) are local unitary operators we can introduce local observables 
B (1 ), B( 2 ) by means of 

U(1)  = exp {iB (1) } , U (2)  = exp iB (2) } ,  (11.245) 

such that, since BO) and B( 2 ) commute, 

U = exp {i (B (1)  + B (2) ) .  (11.246) 

From the above property of U we deduce that ITO is the only eigenstate of the 
operator 

B = (B (1)  + B (2) ) mod 27r  (11.247) 

belonging to the eigenvalue 0 in the space A = O. As was demonstrated in Section 
11.3.2 such modular sums are measurable. 

This completes the construction of the measuring device: The state ITO is 
verified by the outcomes A = 0 and B 0 of two non-local measurements. The 
initial state  Io)  is obviously left unchanged by the measurement. Moreover, 
since A and B commute it is easy to show that the device constitutes a QND 
state verification measurement. 

11.3.7 Preparation of non - local states 
We have seen above that causality imposes strong restrictions on the measur-
ability of non-local observables and states. In particular, we have found that a 
normalized, entangled and non-local state with a Schmidt decomposition of the 
form 

D 

I T ) Eadx(i 1 )) ® 
 

(11.248) 

is not measurable by our QND state verification device, unless all  Icd  are equal 
to each other, that is unless the state is maximally entangled. However, it is 
important to observe that all states of the form (11.248) can be prepared by an 
appropriate, non-local measuring device without contradiction to causality. 

A device for the preparation of the states (11.248) can be designed as follows 
(Aharonov, Albert and Vaidman, 1986). First we prepare locally the (normalized) 
states 

Po ) ) = 

= 



D 1 
T5* P(A = = 1( 41 0)1 2  = 1  b- E lad (11.253) 
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which are then combined to form the initial state 
,  D 

10 1) ) 0  10 (2) )  1   E aiiX (. 1) )  IX (3.2) ) (11.251) 

in the tensor product space li( 1 ) 71 (2 ). Both parts (1) and (2) of the combined 
system may be separated by a spacelike distance. 

In the second step we now measure the non-local observable A = A(') + 
where the local quantities AP) and A (2 ) are given through eqn (11.237). The 
outcome A = 0 of that measurement projects the initial state IT) onto the state 
IT) whose Schmidt decomposition is of the desired form in the given local bases 
I (1)  

(2) X i  ) and lx, ), namely we have 

D 

-> 0) E aiix,(i 1 )) ix.  (11.252) 

Of course, there is no conflict with the causality principle since the measurement 
of A involves only local interactions. However, the preparation of IT) is successful 
only with a certain probability which is given by 

The important conclusion to be drawn from the above considerations is that 
for any measurement device one has to distinguish carefully between the states 
that are measurable and those states that can be prepared by the device. It is 
this possibility of preparation which justifies regarding the vectors (11.248) in 
the tensor product space really as states of the combined system. 

11.3.8 Exchange measurements 
At several places we have derived contradictions to the causality principle by 
means of the assumption that a QND state verification measurement leaves in-
variant the state I To ) which is to be verified, as well as its orthogonal comple-
ment. It may be seen from the formulation of the causality condition expressed 
by eqn (11.166) that no contradiction will arise if one performs a demolition 
measurement such that in all cases the object system will end up in one and 
the same state. Denoting the latter by l' )  and assuming for simplicity that we 
have only a single Yes-operation we have the following Yes/No-operations for the 
device, 

12Yes = 1 41f )(To I,  (11.254) 
sIN0  = I Tf)(T_L (b)I.  (11.255) 

The states I T_L(b)) are orthogonal to I To ) and may, of course, depend on b, the 
only necessary restriction being the normalization condition 
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Fyes  + FNo 4es9Yes Enjko(b)f-No(b) 

IT 0) Ohl E Ri(b))(4/±(01 =/.  (11.256) 

The above Yes/No-operations satisfy all conditions of a state verification mea-
surement. The final state Ixlif) may or may not be equal to 1‘110). For example, 
it may be given by the vacuum state 10) of the electromagnetic field. This case 
occurs, e.g. if the device measures the quanta of the field which are annihilated 
after registration. 

An important example for such demolition measurements are so-called ex-
change measurements. We define an exchange measurement as a device involving 
local interactions with each part of the system. It is assumed that the Hilbert 

(k) space 7-1 (k)  of the local part (k) of the object system and the Hilbert space 7-1 g  
of the corresponding part of the probe are isomorphic. Introducing local basis 

(k) vectors Ixi  ) and I(/) k) ) in 1-1 (k ) and le) , respectively, the local object-probe 
interaction in part (k) is supposed to take the form 

Ix (ik ) )  io(j.k ) )>  ix(ik ) ) 
 

(11.257) 

The interaction thus acts simply by exchanging the labels of the basis vectors of 
object and probe. 

It is clear that such an interaction if applied to any non-local state of the 
quantum object leads to a final object state which is isomorphic to the initial 
probe state and vice versa. For example, taking the initial object state 

oo) = E ctilx(i')) ® he)  (11.258) 

and the initial probe state 

Io  ) =  10 (i2) ) 

 

(11.259) 

we find as a result of the interactions in both parts (1) and (2) of the total system 

Ro) 1 4'0) —> (E OilX (i1) ) ®1)42) )) 

 

(E aikb (i 1) ) 10 2) )) . (11.260) 

This shows that the final state IT f) of the object system is isomorphic to the 
initial probe state I(1. 0 ), namely 

of) = E oilx(j1 )) 
 

(11.261) 

whereas the final probe state is isomorphic to the initial object state. Thus the 
rôles of object and probe state have been exchanged as a result of the local 
interactions in both parts of the system. 
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FIG. 11.15. Schematic space-time picture of quantum teleportation. The incom-
ing state 10)) in the Hilbert space of Alice (A) is transferred to an isomor-
phic copy 10( 3 )) of the Hilbert space of Bob (B). The quantum channel is 
provided by a maximally entangled state 10( 2,3 )). The bold line represents 
a classical communication channel through which Alice communicates her 
measurement result to Bob. If Alice carries out a QND measurement she is 
left with an entangled state 10 (1 ' 2 )) which is isomorphic to 10(2 , 3)), provided 
her measurement has been successful. 

It must be noted, however, that with the local exchange interactions the 
measurement is not yet complete: After the local interactions the various parts 
of the probe state must be brought together to one place, at which a local 
measurement on the probe state can be carried out. Any non-local measurement 
on the probe state is, of course, subjected to the same causality restrictions as 
discussed in the previous subsections. 

11.4 Quantum teleportation 
Non-local entangled states describe quantum correlations which are expressed 
through the joint probability for measurements performed on separated parts 
of a combined quantum system. An interesting application is to employ the 
properties of entangled states for the coherent transfer of an unknown quantum 
state from one part of a system to another, spacelike separated part. We shall 
study here this transfer of a quantum state, known as quantum teleportation 
(Bennett et al., 1993; Vaidman, 1994). 

11.4.1 Coherent transfer of quantum states 

Let us first define precisely what is meant by the teleportation of a quantum state 
(see Fig. 11.15). We consider a system which is composed of three Hilbert spaces 
7-1 (1) , 71 (2)  and 7-/ (3) . In the following these spaces are supposed to be isomorphic, 



558  MEASUREMENTS IN RELATIVISTIC QUANTUM MECHANICS 

that is to have the same dimension  D.  The total space of the composite system 
is the threefold tensor product 

_ R (1)  -H( 2 )  (11.262) 

The spaces WO and li( 2 ) describe the degrees of freedom of some localized part 
of the total system which will be referred to as part (A). The third space 71 (3)  
represents a second localized part of the system, denoted by part (B), which 
is separated from part (A) by a spacelike distance. We may associate a local 
observer, called Alice, with part (A), and a local observer, called Bob, with 
part (B). Thus, Alice can measure all local observables pertaining to the space 
W 1)  OR (2 ), whereas the local observables in the space 1-1( 3 ) are available to Bob. 

Consider now some state 

D-1 

10 (1) ) = E  (11.263) 
i=0 

belonging to the first Hilbert space "H( 1 ). 15  Alice aims to transfer this state in-
stantaneously and coherently to Bob, without measuring or destroying it: The 
absolute values as well as the phase relations of the amplitudes ai are left un-
changed after the transfer process. 

Such a transfer process can in fact be achieved with the help of an entangled 
state 0(2 ' 3 )) in the space '1-1 (2 ) 9-I( 3 ). To be definite we take this state to be a 
certain maximally entangled state, 

D-1 

10 (2'3) ) =  E Ix(2 ))  ix(i3 )). 
3 

(11.264) 

The state 10( 2,3 )) can be prepared in some localized space-time region. It is 
then separated into two parts, described by the Hilbert spaces 1-1 (2)  and li (3) . 
which are brought to Alice and Bob, respectively. Thus, the quantum correlations 
embodied in 10( 2 ' 3 )) may be detected through joint measurements carried out by 
Alice and Bob. In the following the state 10 (2 ' 3) ) will be referred to as a quantum 
channel. 

The initial state of the combined system is now given by 

D-1 

1 410) = 10 (1) ) ® 10 (2 ' 3) ) =   E  ® ix(i2 ))  ix(i3)). 
v ,j=0 

(11.265) 

Suppose then that Alice performs a certain verification measurement of the state 

15 Note that in contrast to our previous convention the index i which labels the basis vectors 
now runs from 0 to D — 1. 
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= 
D-1 

 E Ix(:)) ® 
D  k-O 

(11.266) 

which belongs to the Hilbert space available to Alice. If the state verification 
yields a positive result the initial state 'T o ) of the total system is projected onto 
the state 10( 1,2 )). As is easily deduced from the above equations we have 

D-1 
131  0  (0(1,2)14j  E  )) D i_o  

(11.267) 

This shows that Alice finds a positive result with a probability which is given by 

= M0(12) 1 4'011 2  = D12 . 
 (11.268) 

Conditioned on this result the state prior to the measurement is transformed 
into the final state after the measurement as follows, 

1 410) = 10 (1) ) 0 10 (2 ' 3) ) —> 10(1 ' 2) ) 010(3)).  (11.269) 

Thus we see that the state reduction conditioned on a positive outcome for the 
measurement of Alice leads to the desired teleportation process: The final state 
103)) in Bob's Hilbert space 1-1( 3 ) given by eqn (11.267) represents a copy of 
Alice's initial state OM) (eqn (11.263)) in 7-1('). 

The following facts should be noted. Being induced by a state reduction 
following the measurement in one part of the system, the teleportation pro-
cess (11.269) can be viewed as occurring instantaneously in all Lorentz frames. 
Namely, as we have already discussed it can be regarded as taking place along 
all spacelike hypersurfaces which cross the classical event produced by Alice's 
measurement. 

Since the teleportation of a state involves only local interactions in one part 
of the system there is, of course, no conflict with causality and no transfer of 
information with a speed greater than the speed of light. Indeed, the reduced 
density matrix which refers to Bob's Hilbert space  fl(3)  is proportional to the 
unit matrix in this space, which is due to the fact that the quantum channel 
(11.264) represents a maximally entangled state. Since the operations describing 
Alice's measurement are local and act only ink')  0?-1 (2 ), Bob's reduced density 
matrix is not affected by Alice's measurement, if the latter is described on the 
non-selective level. Bob's density matrix which describes a state of maximal 
ignorance is thus unchanged during Alice's measurement. 

However, if the result of Alice's measurement is communicated via a classical 
channel to Bob, he can use that information to conclude that his state 10( 3)) is 
isomorphic to P (1 )), provided the result of Alice's measurement was positive. 
Note that in this case neither Alice nor Bob have measured the transferred 
state. After her measurement Alice's state 10(1,2 )) is an entangled state which is 
isomorphic to the quantum channel ,( 23  teleportation of the given state 
works although it remains completely unknown to both Alice and Bob. 
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11.4.2 Teleportation and Bell-state measurement 
If the teleportation process is carried out on an ensemble of initial states in the 
manner described above it is, in general, successful only for a fraction 1/D2  of 
the ensemble. The reason for this fact is that a negative outcome of Alice's state 
verification destroys, as a rule, the initial state ,Ip (i )). However, Alice can, at least 
in principle, always design a device which yields a teleportation rate of 100%. 
For this purpose Alice performs a measurement which projects the initial state 
onto an orthogonal basis which consists of maximally entangled states, that is 
Alice performs a measurement of a Bell-state operator in 1-1 (1)  0 1-1 (2) . 

To explain this point in more detail we first note that an orthogonal basis of 
maximally entangled states in 1-1 (1) 011 (2)  is provided by the following expression, 

13_1 
10(2,2))„,  

r,k 
E  o , ( 1 )  

lu IX(k+n) mod D) O IX (102) )• 
k=0 

(11.270) 

The index v = 0, 1, ... , D2  — 1 labels the basis vectors 10(2' 2) ). Each v has a 
unique representation of the form 

v = r + nD,  (11.271) 

where 

r = v mod D == 0, I, . . . , D — 1,  (11.272) 

and n --= 0, 1, ... , D — 1. The amplitudes Or,k in eqn (11.270) are defined to be 

1  (11.273) r— exp (-27ri—kr ) . 
VD  D 

Let us demonstrate that eqn (11.270) yields, in fact, a basis of the desired i 0) ,. form. First, it is immediately clear that the  12) ) are maximally entangled. 
Namely, by an appropriate relabelling of the basis vectors in )1(1),  corresponding 
to the first factor in the tensor product, we can always achieve the condition 
that (11.270) takes on the standard form of the Schmidt decomposition. Since 
all N,k are equal in absolute value, 

1 
Pr ki = ,---, '  v D 

(11.274) 

we find that all I q5 )1  ' 2  ) ) are maximally entangled. 
It therefore remains to be shown that the 10(1 ' 2) ) are orthogonal and normal-

ized. To this end, one first verifies 

D-1 

E Or*/  ,kfir,k = 6r1r,  (11.275) 
k=0 
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which is easily done with the help of the summation formula for the geometric 
series. Setting v =  r + TtD, and v' = r' + ni D we find for the scalar product, 

D-1 (0(1,2) 10(( , 2)  E  / ( 1) 
,kf - r+1 ■X(k± n9 

k,1=0 

D-1 

 

(1)  (1) 
E 07' ,k0r,k (X (k± n' ) mod D IX(k+n) mod D) 
k=0 
D-1 

 

— E 07,  ,k Or,k 6n' n = 8r'r6n'n•  (11.276) 
k=0 

In the second and the third step we have used the orthogonality of the basis 
vectors 141))  and 1X (k2 ), whereas in the last step eqn (11.275) has been used. 
Thus we finally obtain the desired orthogonality of the basis vectors 

 

(0 ( 12) (1 ,2)) = 6v , v,  (11.277) 

which concludes the proof. Applying eqn (11.270) to the special case D = 2 
(spin-1 particles) one finds the Bell states given by eqn (11.215). 

Returning to quantum teleportation we now decompose the total initial state 
(11.265) of the device as follows, 

D 2 -1 E   
v=0 

From eqns (11.265) and (11.270) we get 
D-1 

1 03 ) (( 1 2) 'P)  =  •-\[.—D,3* D  2  r,(i—n) mod D I A-(i—n) mod D)' 
i=0 

(11.278) 

(11.279) 

For each v we introduce a corresponding unitary operator UP )  which acts in 
Bob's Hilbert space 71(3) . We define these operators by their action on Bob's 
local basis, 

UP)  )  mod D1X ((i3 )--n) mod D)) i = 0, 1,  ,D — 1.  (11.280) 

By virtue of eqn (11.274) these operators are indeed unitary. In addition to the 
multiplication by phase factors, they simply induce a cyclic permutation of the 
basis states  

This enables us to rewrite eqn (11.278) as follows, 

D 2 -1  

liP0)= l'Ip(1))  E lo,12))0u 3 )1 ,1p(3)), 
v=0 

(11.281) 

mod D IX{11)H-1) mod  k D)(X (2) X,  ) 

where 10 (3) ) is given by eqn (11.267). From this equation we read off that a 
teleportation rate of 100% is indeed possible if Alice carries out a measurement 
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Alice  Bob 

FIG. 11.16. Sketch of the setup used for an experimental realization of quantum 
teleportation. Alice's state analysis is realized by the superposition of the two 
field modes b1  and b2  at a beam splitter BS and the subsequent measurement 
of the outgoing photons in modes  c1 ,  c2 through detectors D1 and D2. The 
successful teleportation to the field mode b 3  has been demonstrated by a state 
analysis of that mode (not shown). 

of the complete basis 10P-2) ). All D 2  possible outcomes of that measurement 
occur with probability 1/D 2 . Receiving the outcome v of Alice's measurement 
via the classical communication channel, Bob can then apply the inverse of the 
corresponding unitary operator UP )  to his state which yields in all cases an 
isomorphic copy 10(3) ) of Alice's initial state IOW). 

As an example, let us apply the above construction to the case D  =  2, that 
is, to the spin-1 example studied previously. We then find that Bob has to apply 
one of the following unitary operators 

2  3 0) = ax (3)  1°-Y1 (11.282) 

depending on the outcome of Alice's measurement. 

11.4.3 Experimental realization 

We conclude our discussion with the discussion of an experimental realization 
of quantum teleportation performed by Bouwmeester et al. (1997). The experi-
mental setup is sketched in Fig. 11.16. It works with three electromagnetic field 
modes b1, b2 and b3 . We write b  biA  for the corresponding creation and 
annihilation operators, where i =  1, 2, 3 and A .<-4, t denotes the photon polar- 
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ization. The quantum channel is provided by an EPR source which generates the 
entangled two-photon state 

1 (bt bt _ bt bt )10\  (11.283) 0  244 31  21 344 

by parametric down-conversion (Michler et al., 1996). A careful design of the de-
vice guarantees that all three modes contain a single photon. The total Hilbert 
space is then isomorphic to the tensor product of the Hilbert spaces correspond-
ing to the three modes. 

The state to be transferred is given by 

= (abt ++  + fibi )  10), 1a1 2  +01 2  ------ 1,  (11.284) 

such that we have the following three-photon initial state, 

\  1  t  
—  ((Ai" + fibt, )  bt  ht  n  

vr2  •  .6++ 3I  (11.285) 

Alice performs a state verification measurement on her photons in modes bi 
and b2 using a beam splitter of transmittivity (see the discussion on homodyne 
photodetection in Section 6.4). She measures with the help of her detectors D1 
and D2 the quanta annihilated by the operators  ci,  and c2A. With a suitable 
choice of the phases for these operators we have 

CIA =  (NA +  b2),),  (11.286) 

1 , 
C2A = —0  01À NA)  (11.287)  

A crucial point of the experiment is to ensure that the photons in modes 1)1 
and b2 arrive simultaneously at the beam splitter, since otherwise they could 
be distinguished through their arrival times. A more refined theoretical analysis 
(Braunstein and Mann, 1995) is also required which takes into account the space-
time structure of the states in the various modes. We neglect such considerations 
since they do not modify the principal statements. 

In order to find the possible coincidence events measured through detectors 
D1 and D2 we solve relations (11.286) and (11.287) for bo, and b2), and substitute 
into eqn (11.285), which leads to 

1 f  
1*o) = +  vt ct _ t t citc2++ ) (abt3H  + $bt3t ) 1 0) 

\ ir,-8  (e4eti++  _ c2t tc2t ++) (abt3++  — /303 )  10) 

Vg l_c 'lli — Lc4i
2 
 ) )3 4+41 0 ) 

1 0 4  12  r 4 1  

1 I  \ 

+ .7g [Ctl++] 2  — [Ct2 ++ ]
2 
 ) ab 0). (11.288) 
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From this equation we infer that we may distinguish four different cases of 
coincidence events. In case 1, which is described by the first term on the right-
hand side of eqn (11.288), both detectors register a single photon. Note that 
in this case the polarizations of the photons are necessarily different from each 
other, since terms proportional to ct ++ 4++  or c4ct2I  do not appear in the above 
decomposition. This is an interference effect: Due to the beam splitter there are 
two different paths which contribute to the event of registering a single photon in 
both detectors. The amplitudes for these paths interfere destructively such that 
only that component of the initial two-photon state contributes which contains 
different polarizations in the modes b1, b2. It follows from the first line that case 
1 occurs with a probability of 1 and leads to the following state of mode b3, 

10 (3) ) = (abf3 ,+  +$b)  10),  (11.289) 

which represents a copy of the state 10 (1) ) given by eqn (11.284). This case 
is investigated in the Zeilinger experiment (Bouwmeester et al., 1997) where 
the teleportation process is demonstrated with the help of an additional state 
analysis carried out on mode b3 . 

Case 2, which also occurs with probability / is described by the second line 
of eqn (11.288). It consists of those events where two photons are detected by 
either D1 or by D2 with different polarizations. Case 3 (third line) and case 4 
(fourth line) represent those events where either D1 or D2 registers two photons 
with both polarizations equal to t or both equal to ++, respectively. The total 
probability for case 3 is equal to 1012/2  and equal to la1 2 /2 for case 4. 

In case 2 Bob gets the final state  (ab. — ,3bt )10) in mode b3 . By a simple 3I 
application of a, he again obtains a copy of10( 1 ) ). Thus, if Alice could distinguish 
faithfully the cases 1 and 2 from the cases 3 and 4, a teleportation rate of 50% 
could be achieved in principle with the above scheme. This is the upper limit 
since in cases 3 and 4 the (normalized) final state of mode b3  is either 1) 1'3++  0) or 

bt 10) 31  such that the phase relations of Alice's initial state OW) are irreversibly 
lost. 

Quantum teleportation offers completely new perspectives for experiments on 
the foundations of quantum mechanics. It could be used, for example, to transmit 
quantum states over large distances without destruction by decoherence effects. 
Note also that the teleported state itself could be part of an entangled state 
in some larger Hilbert space. It is thus possible to transfer the entanglement 
between particles and to carry out tests of the Bell inequalities (Bell, 1964; 
Clauser and Shimony, 1978) on particles which did not directly interact in the 
past. 

In addition to new experiments on the foundations of quantum mechanics 
several further applications of teleportation devices in quantum information pro-
cessing and communication have been suggested (Bouwmeester et al., 1997). For 
example, they could be used to store the information carried by photons on 
trapped ions, or to teleport a quantum state over large distances even if the 
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available quantum channels are of very poor quality, employing entanglement 
purification. Moreover, quantum teleportation schemes could also serve as links 
between quantum computers or to protect states in quantum computers from 
their environment. 

We remark finally that the teleportation scheme studied above provides a nice 
example of the concept of states as functionals on the set of spacelike hypersur-
faces, which was introduced in Section 11.1.1. Let us denote by x (1)  and x (2)  
the space-time points corresponding to the photodetection events at detectors 
D1 and D2, respectively. Above we have tacitly assumed that these events occur 
simultaneously in Alice's coordinate frame. However, in principle D1 and D2 
could be arbitrarily far apart and we may consider some spacelike hypersurface 
a which crosses the forward light cone based at x( 1 ) and the backward light cone 
based at x(2) . If a is flat, it may therefore be viewed as an equal-time hypersur-
face in the coordinate frame of a moving observer 0 for whom the detection at 
DI takes place earlier than that at D2. According to our discussion in Sections 
11.2.1 and 11.2.3 we find that observer 0 associates a state to the hypersurface 
a which is not related by any unitary representation of the Lorentz group to any 
state in the foliation of Alice. In fact, according to eqn (11.288) we have on a a 
state vector which is conditioned on the outcome of the first measurement at D1 
and which is given by one of six possible states, namely two two-photon states, 

ct21  (abt3++  + fibt3t) 0), ct2+, (abt3+, + Obt31 ) 1 0) ,  (11.290) 

three one-photon states, 

b41 0), bt  3++10), (abt3 ,, — )3030 10),  (11.291) 

and one three-photon state, 

01  (0 [C2$ ] 2  bt3++  — a [4 ÷+ ] 2  b3t t  ± Ct2++ Ct2$  [abt3++  — Obtn] ) 0).  (11.292) 

Note also that the mixture which describes the measurement on the non-selective 
level has no definite photon number. This illustrates once again that a state 
vector (or a density matrix) must be represented as a functional on the set 
of spacelike hypersurfaces, which means that it must be linked to the various 
foliations of space-time. 
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OPEN QUANTUM ELECTRODYNAMICS 

In quantum electrodynamics the matter degrees of freedom are coupled to the 
radiation field A 4 (x) through a local, gauge-invariant interaction density of the 
form ji-t(x)A p (x), where  j(x) is the conserved current density of the charged 
matter. Due to the linear structure of this coupling, the problem of constructing 
a complete formal representation of the reduced matter dynamics can be solved 
exactly if the electromagnetic radiation field is initially in a state describable by 
a Gaussian characteristic functional. An appropriate strategy to achieve this goal 
is the use of functional methods from field theory. In this chapter we combine 
such methods with the super-operator technique to derive an exact, relativistic 
representation for the reduced density matrix of the matter degrees of freedom. 

The reduced dynamics involves a certain time-ordered functional of current 
density super-operators which completely describes the influence of the elec-
tromagnetic radiation field on the matter dynamics. This functional has already 
been employed in our study of quantum Brownian motion in Section 3.6.4 for the 
derivation of the Feynman—Vernon influence functional and of the path integral 
representation for the propagator function of the Caldeira—Leggett model. 

The functional super-operator technique developed in this chapter can be 
used as a starting point for the derivation of the master equations encountered 
in previous chapters. Here, we illustrate this technique by means of a specific 
application. Namely, we investigate the suppression of the quantum coherence of 
charged particles through the emission of radiation in typical interference devices. 
To this end, the degree of decoherence will be characterized through a relativis-
tic, gauge-invariant decoherence functional. An appropriate technique allowing 
the explicit determination of the decoherence functional for simple interference 
devices will be developed. It turns out that the relative motion of two interfer-
ing wave packets leads to a loss of coherence which is caused by the emission 
of soft, low-frequency bremsstrahlung. This decoherence mechanism provides a 
quite fundamental process in quantum electrodynamics since it dominates for 
short times and because it is at work even in the electromagnetic field vacuum 
at zero temperature. 

Finally, we investigate the possibility of the destruction of coherence of the 
superposition of many-particle states. It will be argued that, while the decoher-
ence effect is small for single electrons at non-relativistic speed, it is strongly 
amplified for certain superpositions of many-particle states. 
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12.1 Density matrix theory for QED 
In contrast to the convention in previous chapters we shall use in this chapter 
rationalized Heaviside—Lorentz units such that h = c = 1 and the fine structure 
constant is given by 

e 2  1 (12.1) 47r  137' 
where e is the electron charge and c the speed of light. As in Chapter 11 space-
time coordinates of 4-vectors in Minkowski space are denoted by xP = (x° , 
and we use a metric tensor with signature (+1, —1, —1, —1). Accordingly, the 

 

Lorentz scalar product of two 4-vectors xi2 =  (x°,  and  y'  = (y° , y) is written 
as 

 

xy  = xii yo  = yiivxp yv = x0 y0  (12.2) 

where we use the summation convention. Occasionally, we will reintroduce factors 
of c and h. 

12.1.1 Field equations and correlation functions 
To be specific we perform our study in the Coulomb or radiation gauge. In 
this gauge the elimination of the radiation degrees of freedoms is easily car-
ried out. Although we lose manifest Lorentz covariance by taking a fixed gauge, 
the Lorentz covariance and the gauge invariance of the final results are easily 
established.  

12.1.1.1 Maxwell equations and commutation relations In the Coulomb gauge 
the free radiation field is described by the vector potential If satisfying the 
Coulomb gauge condition 

 

t' • A = O.  (12.3) 

The electric and magnetic fields are given in terms of Â by16  

Â (12.4) Ot 
= x 

The free Maxwell equations, 

•ET  = 0,  (12.6) 
•.6 = 0,  (12.7) 

 

x fa,  = —  ,  (12.8) 

aÉ'T  xij=  '  (12.9) at  
16 We put an index T on the electric radiation field ET to emphasize its transverse character. 

(12.5) 
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then lead to the wave equation for the transverse vector potential, 

E]if 
( n2

2  X-- — A) = o. ot (12.10) 

The wave equation (12.10) may be solved with the help of the plane wave 
decomposition of the vector potential, 

A(x) =  d3k  E 
 J  

[4(k)bx(k)e _ikx 4(,-i)q(k)e+2,kx}  (12.11) 
V2(27) 3 w A=1,2  

As usual, the plane wave modes are characterized by a wave vector k and two 
unit polarization vectors FAA, such that 

= ol  (12.12) ex (k)  
(k)  (k) =  (12.13) 

E e)ci(k) =  _ kik3  = 1,2,3.  (12.14) 
A=1,2  1k1 2  

The tensor Pii(k) is the projector onto the transverse component in k-space. In 
position space it takes the form 

P  aia 
2i  (it)  A  • (12. 1 5) 

The field operators b),(k) and 14(k) represent the destruction and creation of a 
photon with wave vector k and polarization ex (k), satisfying bosonic commuta-
tion relations 

[ex  (k), ex, (P)] = 0,  (12.16) 

[b),(k), OA , (re )] = 6)0,, S(k —  (12.17) 

The momentum 4-vector of the photon is written as 

= (k° ,k) = (w,rc), w =  (12.18) 

and kx lexo  =wx°  — rc • 
With the help of the above relations it is easy to determine the commutation 

relation for the free vector potential at arbitrary times, 

DT  (x — x')ii E i[A i (x),A i (x 1 )] = — Pii D(x — x').  (12.19) 

The function D(x — x') is the Pauli—Jordan commutator function of the electro-
magnetic field. Its Fourier representation takes the form 



—ik(x—x')  e ik(x —x i )) 

,  1 — x ) = 47rr  [6(r — t) — 6(r + t)] 
1 = — —sign(xo — x 10 )6[(x — x') 2 ], 27r 

(x — x') = 

Explicitly, one finds 

D(x 

d3  k 
il   2(27) 3 w (e  
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(12.20) 

(12.21) 

(12.22) 

(12.23) 

(12.24) 
(12.25) 

(12.26) 

(12.27) 

where 

r  t Eixo  

We observe that D (x — x') is an antisymmetric function and satisfies 

D(x — x0=x,0 = 0,  
00D(x —  x') 0 ,  =  — ) 

Moreover, D (x — x') solves the homogeneous wave equation 

OD (x — x') = 0, 

and is obviously invariant under Lorentz transformations' 

that is, we have 

D(A[x — x']) = D(x — x').  (12.28) 

The commutator function D (x — x') is a singular function on Minkowski space 
which vanishes outside the surface of the light cone defined by (x — x') 2  = 0 and 
has a 6-type singularity on it. It is connected to the retarded Green function 
Dret(x — x') and to the advanced Green function Dadv (X —XI) of the wave equation 
through the relations 

D (x — x') = — (D„ t (x — x') — Dadv (X — x')) ,  (12.29) 

sign(xo  — x'0 )D(x — x') = —
1

6[(x — ) 2 ]  (12.30)  27r 
= (Dret(x x ' ) Dadv(x x i )) • 

Finally, we remark that the commutation relation (12.19) immediately yields by 
virtue of eqn (12.25) the equal-time commutation relation between the vector 
potential and the transverse electric field operator, 

[ffir  (t,  A i  (t , 0)1 = +iP1i6(Z — 0)  i(5:31 (Y — 0).  (12.31) 

17 More precisely, it is invariant under orthochronous Lorentz transformations which satisfy 
A° 0  > 1. 
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12.1.1.2 The anticomniutator function As we have already seen in our study 
of quantum Brownian motion, in addition to the commutator function a further 
correlation function plays an important rôle in the description of the reduced sys-
tem dynamics. This is the anticommutator correlation function which is defined 
by 

(x — x') ii  E- ({A i (x), A i  (x 1 )1) f  (12.32)  

The angular brackets denote the average with respect to the radiation field in a 
thermal equilibrium state at a certain temperature T,  

where 

in  1  r  
(0)f = trf  2-f- exp l—il f/  ri6

L  
EITJ } 7 

Hf = f c13  k E wbtx  b), (1-i) 
A=1,2 

represents the Hamiltonian of the free radiation field, trf denotes the trace over 
the radiation degrees of freedom, and Zf is a normalization factor, the partition 
function of the field. 

With the help of 

fbA(k),  } f  = { btA (k), VA, (P)}) f  = 0,  (12.35) 

(lb),  ,(k l  )1) f  = 6,6(1; - ki) coth (w/2kBT),  (12.36) 

one finds 

(x — x')ii  -=. Pii D i  (x —  (12.37) 

with the anticommutator function 

 

Ç    d3 k (x  ----z i 2(2703w 
(e —ik(x—x`)  e  )ik(x—x' /) coth (w/2kBT) 

Dre (x — x')  (x — x').  (12.38) 

In the last line we have decomposed D 1  into a vacuum and a thermal part. The 
vacuum part is easily found to be 

d3 k 
2(27) 3 b.; 

(e —ik(x—x')  e ik(s —x i ) 

1  [  1  1 1 

 

47r2 r  r — t 
+P

r tj 

 

1  1 
27 2  (x — 42  

(12.39)
* 

P denotes the Cauchy principal value. Like the commutator function D(x — x') 
the vacuum contribution Drc  (X — x') of the anticommutator function is Lorentz 



r - t coth (—) + coth (—r  ±  t ) 
TB  TB 

Di (x - x') = 
472  r TB  

1 
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invariant and satisfies the free wave equation. While D (x - x') is antisymmetric, 
DIrac (x x l\ ) is obviously symmetric. We note that Dl'ac(x - x') does not vanish 
outside the light cone and exhibits a principal value singularity on the light cone. 

To determine the thermal part of the anticommutator function one first car-
ries out the angular integration of the k-integral in (12.38) to obtain 

CO 

D ti.11 (x - s') =  4
1

71_2r 
f du) [coth (u; I 2kBT) - 1] [sin w (r - t) + sin w (r + t)] . 
o 

(12.40) 

With the help of the formula (4.57) this yields 

 

1 1  ( 
 TB
r + t)  1 

r + t 
1 

[ 1  coth ( I'  t )  1   +  coth 
472 r TB  TB  r — t TB  j  .1 • 

(12 41) 

This expression involves the thermal correlation time 
1 

TB -1.- 7 kBT  (12.42) 

which was already introduced in eqn (4.58). 
One observes that Mh (x - x') is a regular function on Minkowski space. If 

we combine the above expression for D1 h (x - x') with expression (12.39) for the 
vacuum contribution we see that the contributions involving 1/(r ± t) cancel each 
other. With the convention that the singularity on the light cone (x-x') 2  = 0 is to 
be treated as a principal value singularity we can write the total anticommutator 
function as follows, 

1  sinh(2r/TB) -   (12.43) _ 
4712 rTB sinh[(r - ON] sinh[(r + ON] . 

It must be noted that the anticommutator function is not Lorentz invariant, 
which is connected to the fact that the thermal radiation field singles out a 
certain frame. Of course, the full anticommutator function is symmetric and 
satisfies the free wave equation. According to eqn (12.43), D 1  (x - x') changes 
sign if one crosses the surface of the light cone, that is D i  (x - x') > 0 for 
space-like distances ((x - x') 2  < 0) and D i  (x - s') < 0 for time-like distances 
((x - 4 2  > 0). 

The dipole approximation of the anticommutator function is obtained by 
taking the limit r  0 in eqn (12.43) which yields 

Di  (t, 0) =  
1 

 (12.44) 
27 2 713  sinh2 (t/TB) . 

In the limit It < TB this function diverges as t -2 , while it decays exponentially 
as exp(-210-B) for times It > TB. 
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On the other hand, by taking the limit t  0 of eqn (12.43) we find 

Di (0,r)
1 
 coth(r/TB). 27-7-7-B 

(12.45) 

This shows that D 1 (0, r) diverges as r -2  for small distances (r < TB) but decays 
only algebraically as T. for large distances (r >> TB). 

12.1.1.3 The correlation function of the electric field A simple but interesting 
application is the determination of the correlation function of the transverse 
electric field  ET (s).  Invoking homogeneity in space and time, one can see that 
it suffices to calculate the quantity 

(1E7'4), ET MD f  =  
==  80 D 1  (t, 

(t, r),  (12.46) 

where t = x° and r  In the last step we have used the fact that D 1  satisfies 
the homogeneous wave equation. By use of the explicit expression (12.43) this 
gives 

= (8ii  — " i " i )  (12.47) 

—1 [ coshRr — t)/7-B]  cosh[(r + ON]  1 
I  +  \ /  1  .

272 dr Lsinh3  [(r — t) 1 TB]  sinh3  [(r + t )1 Ta J 

where " i  = xdr. Summing over i = j we are led to the expression 

—1 [ coshRr  —  t)/TB] 
f  727.br Lsinh 3  [(r — t)/TB] 

cosh[(r  + ON]  I 
sinh3 [(r + t)17-B 1 

(12.48) 

Let us investigate first the limit r  0 of eqn (12.48) which is given by 

1 6 + 4 sinh2 (t/TB) ({ÊT(t,0),ÉT(0)1) f  =   

 

71-2 713  sinh4 (t/TB) 
(12.49) 

For times which are short compared to the thermal correlation time this yields 

\  6  
ffT,  (t, 0), ÊT ( 0) } ) f  720 ' « Ta (12.50) 

which corresponds to the vacuum contribution of the correlation function. Thus, 
the vacuum part dominates for short times and diverges as 
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The thermal contribution to the correlation function of the electric field is 
given by 

1  [ 6+ 4 sinh2  (t/TB)  6  1 
{ .É'T (t,0),f`r (°) }) th  71-24  L  sinh4 (t/TB)  (t/TB) 4 ] 

(12.51) 

For It1/7-B  0 the term within the square brackets approaches the value 2/15, 
such that we may write 

({ÊT(t,o),ÊT(o)}) =  
2  ( t 

th  157T 2 TB4  g  TB 

where the function 

15 [ 6 + 4  sinh2  T  6 
g(r) 

2  sinh4  T  y4 

(12.52) 

(12.53) 

satisfies g(0) = 1. The energy density of the field in thermal equilibrium is thus 
found to be 

1  72 (kBT) 4  
Uth = KfET(0),ET(0)/  =   

/ th  157 2 7-4  15 

which is the Stefan—Boltzmann law of black-body radiation. 
On the other hand, in the case  t  » TB eqn (12.49) yields 

16  
{ÈT(t,0),ÉT(0)}  e-2Iti/TB. 

, f  71-2 TB4 (12.54) 

The correlation function thus decays exponentially for times large compared to 
the correlation time TB. 

Finally, let us investigate the limit  0 in eqn (12.48). This limit gives 

K
- 2  r), ÉT  (0)  =  — 2  cosh(r/1-13) 

J / f  71-2 Tbr sinh3 (r/TB) 
(12.55) 

so that we have 

  for r < TB,  (12.56) 72 r4 

-2 r7-13 ({É(o r,r),ÊT(0)})f  
16  

71-2TB3r e  / for r >> TB.  (12.57) 

The correlation function of the electric field thus diverges as r -4  for short dis-
tances, r < TB. By contrast to the behaviour of the anticommutator function 
D 1  in this limit, it decays exponentially for distances large compared to TB. 
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12.1.2 The reduced density matrix 
We now turn to the reduced dynamics of the matter degrees of freedom which 
are coupled to the radiation field. In the Coulomb gauge the Hamiltonian density 
in the interaction picture takes the form (Weinberg, 1995; Jauch and Rohrlich, 
1980) 

Here, 

7-1(x)  =7-lc(x) + 7-1T (x). 

'HT (X)  =  --/(x) • X(X) E jP (X)Aiz (X) 

represents the density of the interaction of the matter current density j°(x) with 
the transverse radiation field A° = (0, if). The matter current density is assumed 
to satisfy the continuity equation 

=  0,  (12.60) 

expressing the local conservation of charge. The Coulomb energy density is given 
by 

= _21  d3 y  i°  (x° , Y):7 °  (x° ,  
471- IY — 

(12.61) 

such that 

 

o (x o  o (x o 

 

Hc  (x °  ) = 
f  xf y j

4  
(12.62) 

7 1Y

y)i 

 — 

is the instantaneous Coulomb energy of the charge distribution given by j° (x). 
For notational convenience, we have set in eqn (12.59) the scalar potential of 

the radiation field equal to zero, A°  = 0. This allows us to write the correlation 
functions of the field as 

DT (x — x') =  i [A (x), A v (x 1 )] = — P D (x —  (12.63) 
D rir  (x — x')  --=. ({A (x) , A v (x')}) f  +.13/„D1(x — x i ),  (12.64) 

where 1341)  is defined by eqn (12.15), and by -Poo = Poi -=-  I  = 0 for  j  = 1, 2, 3. 
It must be remembered, however, that these and all other correlation functions 
to be introduced later involve the transverse projection  P.  

As in the preceding section all fields are taken to be in the interaction picture. 
The interaction picture density matrix p(t) for the coupled system then satisfies 
the Liouville—von Neumann equation which we write as 

a — p(t) = f d 3  x L(t ,)p(t) .  (12.65) Ot 
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The Liouville super-operator r(x) is given by r(x) = £c(x) + .CT(x), where 
we introduce the Liouville super-operators pertaining to the densities of the 
Coulomb field and of the transverse field, 

EC (X)P  [RC (X)) P], 
 (12.66) 

-CT (X)P E  ['HT (X), P]. 
 (12.67) 

Integrating the Liouville—von Neumann equation formally with the help of the 
chronological time-ordering operator and taking the trace over the radiation field, 
we obtain the following equation, 

t f  
pm (t f) = trf T, exp f dix r(x)1 p(ti)} . 

t i  
(12.68) 

This equation relates the density matrix pm (t f ) describing the matter degrees 
of freedom at some final time tf to the density matrix p(t i ) of the combined 
matter—field system at some initial time t i . It will be the starting point for the 
derivation of the influence functional in the next section. 

12.2 The influence functional of QED 
Employing functional techniques of field theory, we derive in this section a super-
operator representation for the influence functional of QED. The influence func-
tional will be given in the form of a functional of super-operators of the matter 
current density, involving certain Green functions of the radiation field. The re-
sulting expression will be discussed physically. In particular, it will be related 
to well-known expressions for the vacuum-to-vacuum amplitude of the electro-
magnetic radiation field in the presence of a classical current density, and to 
the classical formulation of a system of charged particles in terms of a non-local 
action principle (Breuer and Petruccione, 2001). 

12.2.1 Elimination of the radiation degrees of freedom 
Our aim is to eliminate the variables of the electromagnetic radiation field to 
obtain an exact representation for the reduced density matrix pm  of the matter 
degrees of freedom. To this end, we invoke the formal representation (12.68). 
The derivation is performed in two steps. First, we eliminate the time-ordering 
of the electromagnetic variables and, second, we determine the remaining trace 
over the field variables employing the Gaussian property of the field state. 

12.2.1.1 Eliminating the time ordering of the field variables Our first step is 
a decomposition of the chronological time-ordering operator T„ into a time-
ordering operator T for the matter current and a time-ordering operator TA,_ 
for the electromagnetic field variables as T, = Ti,TA,. This enables one to write 
eqn (12.68) as 
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t f 

Prn(t f) T3, (trf 1111, 1_ exp f  (Cc (x) + .CT(x))1 P(t)})
. 

(12.69) 

The currents jA(x) commute under the time-ordering Ti„. We may therefore 
treat them formally as commuting c-number fields under the time-ordering sym-
bol. Since the super-operator Lc (x) contains only matter variables, the corre-
sponding contribution can be pulled out of the trace. Hence, we have 

[t f 

(  

t f 

pni (t f ) = V, exp f dlx re (x)] trf {V_ exp [ f dlx .CT (x)] p(t i )}) 
t i  ti 

(12.70) 

We now proceed by eliminating the time-ordering of the A fields. With the 
help of the Wick theorem (Itzykson and Zuber, 1980) we get 

] TI, I_ exp f dix LT (X) 
t i  

(12.71) 

= exp 

tf  tf 

1 
—
2 
f dix f dix i [LT(x), .CT(x')]0(t — 

[ 

exp f dIx .CT (x) 
t i  

[t f 

In order to determine the commutator of the Liouville super-operators we invoke 
the Jacobi identity which yields for an arbitrary test density p, 

 

[CT (x) , .CT (x' )]p = ,CT (x) LT  p - ,CT (x') LT (x)p 
=  (x), [7-1T (x i ),  Pfl + ['HT (x') [1T (x), 
= - [[RT (x), 'HT (41, 14.  (12.72) 

The commutator of the transverse energy densities may be simplified to read 

[RT (x), 7-iT (x')]  jt` (x)jv (x')[A0  (x), A, (xi)] ,  (12.73) 

since the contribution involving the commutator of the currents vanishes by 
virtue of the time-ordering operator Ti,. Thus, it follows from eqns (12.72) and 
(12.73) that the commutator of the Liouville super-operators may be written as 

[rT  (x),  (x 1 )]p = — [A (x) , A, (x 1 )][f (x) jv (x i ) ,  (12.74) 

It is useful to introduce current super-operators 4(x) and J _(x) by means 
of 

(x)P  (x)P,  J—t` (x)P  Pi"(x).  (12.75) 

Thus, J +(x) is defined to be the current density acting from the left, while J_  (x) 
acts from the right on an arbitrary density. With the help of these definitions 

. 



x trfexp {  f dix ,CT(x)Ip(t i )}) . 
t 

(12.77) 
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we bring the expression for the commutator of the Liouville super-operators into 
the form 

[CT (x),  (x i )] = —  (x), A, (x 1 )] (,n(x), fF (x') — J1-` (x)Jv (x')) .  (12.76) 

Inserting this result into eqn (12.71), we can write eqn (12.70) as 

tf 

pni (t f)  (exp f dix rc (x) 
ti 

t f  tf  

f d4x f d 4x 1 0(t — t i )[A 4 (x), Av (x')]4` (x)Jfk  (x i ) 

t f  t f  

f dix f d 4x 1 6(t — t')[A 4 (x), A v (4],/Lt (x)J'' (x I ) 
t i  ti  

This is an exact formal representation for the reduced density matrix of the 
matter variables. The time-ordering of the radiation degrees of freedom has been 
removed and the latter enter eqn (12.77) only through the functional 

W[4, ,1_] trf {exp f d ix ,CT (x)1 P(t)} , 
t,  

(12.78) 

since the commutator of the A fields is a c-number function. 

12.2.1.2 The influence super- operator The functional (12.78) involves an aver-
age over the field variables with respect to the initial state p(t i ) of the combined 
matter—field system. It therefore contains all correlations in the initial state of 
the total system. In the following our central goal is to investigate how corre-
lations are built up through the interaction between matter and radiation field. 
We therefore consider an initial state of low entropy which is given by a product 
state of the form 

P(ti) = p(t i )  pf, 
 (1 2. 79) 

where Pm (t i )  is the density matrix of the matter at the initial time and the 
density matrix p f of the radiation field describes the thermal equilibrium state at 
temperature T.  The influence of the special choice (12.79) for the initial condition 
may be eliminated by pushing t i  to —oo and by switching on the interaction 

t f 



tf  tf 
1 

di X d4 X 1  (CT (X)LT ( XI ))f Prn ( ti) 2 (12.81) 
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adiabatically. This is the usual procedure used in quantum field theory in order 
to define asymptotic states and the S-matrix. The matter and the field variables 
are then described as in-fields, obeying free field equations with renormalized 
mass. 

For an arbitrary initial condition p(t i ) the functional W[4, J_] can be de-
termined by means of a cumulant expansion (see Section 9.2.3). Since the initial 
state (12.79) is Gaussian with regard to the field variables and since the Liouville 
super-operator ,CT (s) is linear in the radiation field, the cumulant expansion ter-
minates after the second-order term. In addition, a linear term does not appear 
in the expansion because of (44  (X)) f = 0. Thus we immediately obtain 

t f  tf  

f dix f  (CT (x),CT (x'»  i] 
pm (t i ).  (12.80) 

t,  t, 

Inserting the definition of the Liouville super-operator .CT  (s) into the exponent 
of this expression one finds after some algebra, 

= exp 
1 

ti  ti 

tf  tf 

 

=
2
1  f dix f  trf LHT(x), NT(x 1 ),P(ti)]] 

t 2  ti  
t f  tf  

1 = f dix f 2 (12.82) 
ti  ti 

[(Ay  (X))f cL'LF (x),IfF  (s') + (A 1,(x)A, (x' )) f J  (x)J (s') 
— (A, (x')A 4 (x)) f J_PF (x)J(s') — 4,(x)A, (4) f  ,11` (x)J(4]  (ti ) 

On using this result together with eqn (12.80), we can cast eqn (12.77) into the 
following form, 

t f 

PM( t  f) =  exp [ f di x.Cc (x)  (12.83) 

t .f  t f  
1 
f dix f d 4  x'{ — (8(t —  A, (s')] +  A ii (x)) f)J_PF (x)JfF (s') 
t2  ti  
+(t9(t — t')[A(x), A v (x i )] — (A 4 (x)A,(4) f )  (x),P'(x') 

+0,(xi )A 4 (x)) f J(x)J''(x') + (A Ii (x) A, (4) f  (x)J fF (x')}] p rn (t i) 
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At this point it is useful to introduce some new notation for the correlation 
functions of the electromagnetic field, namely the Feynman propagator and its 
complex conjugate (T_, denotes the antichronological time-ordering), 

iDF(x —  (T,[A„.,(x)Av(x i )i)f  (12.84) 
= 0(t — t')[A p (x), A v (x 1 )] + (Ay  (x')A p (x» f  , 

iD*F (x —  — (T _,[A m (x)A v (x')]) f  (12.85) 
= 9(t — t')[A m  (x), Av  (x i )] — (A m (x)A v  (4) f, 

as well as the two-point correlation functions 

D+(x — x'),  (A p (x)A 11 (4) f  (12.86) 
(A v (x')A m (x)) f  (12.87) 

As is easily verified these functions are related through the identity 

— iDF(x  + iD(x x'),„„ + D± (x —  + D _(x —  = 0. 
(12.88) 

With the help of this notation the density matrix of the matter can now be 
represented in the compact form 

pm(t1) =  T  exp (ic1.[J+, J_]) prn (ti),  (12.89) 

where we have introduced the influence phase functional 

t 1  t 1  t f  
f  

1 i(1)[4, J_] = d4  x fc(x) + —2 d4 x d4  x i  (12.90) 

x { —iDF (x — x 1 ),„„J'!-Ft  (x)f±v (x') + iD F* (x —  
+D_(x — x').EFL  (x)Jv (xl) + D + (x —  

Equation (12.89) provides an exact representation for the matter density matrix 
which takes on the desired form: It involves the electromagnetic field variables 
only through the various two-point correlation functions introduced above. One 
observes that the dynamics of the matter variables is given by a time-ordered 
influence super-operator, that is a time-ordered exponential function whose ex-
ponent is a bilinear functional of the current super-operators 4(x). 

It should be remarked that the influence phase c13[4, J_] is both a functional 
of the quantities 4(x) and a super-operator which acts in the space of density 
matrices of the matter degrees of freedom. There are several alternative methods 
which may be used to arrive at an expression of the form (12.90) as, for example, 
path integral techniques (Feynman and Vernon, 1963) or Schwinger's closed time-
path method (Chou, Su, Hao and Yu, 1985; Diôsi, 1990). 
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For the study of decoherence phenomena another equivalent formula for the 
influence phase functional will be useful. To obtain this formula we use the 
commutator and the anticommutator functions which have been introduced and 
determined explicitly in Section 12.1. These functions are related to the above 
correlation functions through 

1 m D± (x -  = -D (X - X I ) - DT  (X - xi )  (12.91) 2 1  Pv  2 

D _(x - x')= -1 DT  (x x') + DT  (x - )  (12.92) 
IL  2  /iv , 

iDF(x si ) = -1 DT  (x x') - sign(t - t I )DT  (x "v  2 1  I"'  2 
1 , 

-iD (x -  = -D (x x') „„ + -
2 
sign(t t')D T  (x -  x,. (12.94) "  2 1  

Correspondingly, we define a commutator super-operator Je (z) and an anticom-
mutator super-operator Ja (x) by means of 

J L  (x)P E [im  (x),  (12.95) 

ffit  (x)P E te(x), PI,  (12.96) 

which are related to the previously introduced super-operators J (z) by 

(x) =  (x)  J (x),  (12.97) 
Jfì  (x) =  (x) + J (x).  (12.98) 

In terms of these quantities the influence phase functional becomes 

tf 

i4:13[Je , Ja] = f d4  x fc (x)  (12.99) 
ti 

t f 

+ f d4  x f d 4  x' DT  (x x')  (x)Jau (x') - T  ( -1  Dx 2  2 1  
ti  ti 

xi  4‘  (x } • 

This form of the influence phase functional will be particularly useful later on. It 
represents the influence of the radiation field on the matter dynamics in terms of 
the two fundamental two-point correlation functions D(x - x') and D 1  (x - x'). 
Note that the double space-time integral in eqn (12.99) is already a time-ordered 
integral since the integration over xio  extends over the time interval from t i  to 
t = X0 

The result expressed by eqns (12.89) and (12.99) has been used in Section 
3.6.4 for the determination of the influence functional of the Caldeira-Leggett 
model (see eqns (3.507) and (3.508)). In fact, for the Caldeira-Leggett model we 
have to use a coupling of the form 1/1  B (see eqn (3.377)). Going through 

x') Iiv, (12.93) 
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the above derivation we see that in this case the influence functional (12.99) 
takes on precisely the form given in (3.508): The commutator and anticommu-
tator super-operators Jg, J fit must be replaced by the super-operators x, and 
Sa  defined in eqn (3.510), while the counter-term (3.509) plays a similar rôle to 
the Coulomb term .Cc (x). Furthermore, the correlation functions DT (x  
and DT(x - x')„„ must be replaced by the correlation functions of the Caldeira-
Leggett model defined in eqns (3.385) and (3.386). 

12.2.2 Vacuum -to-vacuum amplitude 
It is instructive to compare eqns (12.89) and (12.90) with the structure of the 
Markovian quantum master equation in Lindblad form containing a set of Lind-
blad operators A i  (see Section 3.2.2). One observes that the terms of the influence 
phase functional involving the current super-operators in the combinations J+J - 
and J_  4 correspond to the gain terms in the Lindblad equation having the form 
Ai pni Ati  . These terms may be interpreted as describing the back-action on the 
reduced system of the matter degrees of freedom induced by 'real' processes in 
which photons are absorbed or emitted. The presence of these terms leads to a 
transformation of pure states into statistical mixtures. Namely, if we disregard 
the terms containing the combinations 4J_ and  J_ J+  the right-hand side of 
(12.89) can be written as U (t f, ti)p m (t i )Ut (t f  , t i ), where 

t f  
U(tf , t i ) =  exp  f d 4 x 7-ic (x)  (12.100) 

t, 
tf  tf 

- - f d 4 x f d 4 5'DF(x x i LiviAL(x)iv(x 1 ) 

This shows that the contributions involving the Feynman propagators and the 
combinations J+ J+  and J_ J_ of super-operators preserve the purity of states. 

 

Taking the limits t i  -co  and t  - oo the operator U(tf , ti) becomes 
the time-ordered product of the functional 

A[j]  exp [-i f d4  x c (x) - f d 4  x f d 4  D F -  

 

E eXp [i (s (1)  iS(2) )] .  (12.101) 

At zero temperature this expression is the vacuum-to-vacuum amplitude in the 
presence of a classical current density ji2  (x) (Feynman and Hibbs, 1965). It yields 
the amplitude for the field to start in the vacuum at t i  =  -oc and to end up in the 
vacuum at t + oo . In the second equation of (12.101) we have decomposed the 
exponent into real and imaginary parts, using the corresponding decomposition 
of the Feynman propagator as given in eqn (12.93). 
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The exponent of  A[j]  provides a complex action functional S 5 (1)  +  j5(2).  
Its imaginary part is found to be 

s( 2) = f d4 x f d'x'Di(x -  (x) • -IT (x i ) 

=  f  f d4  x' (x — x i )j 1,(x)im (x').  (12.102) 

In the first line jT  denotes the transverse component of the current density, 
satisfying tr*  • j'T = 0. The coupling to the transverse component is due to the 
fact that DT (x x') p,„ contains the transverse projection Pp,. In the second line 
of (12.102) we have used the current conservation (12.60) to cast the expression 
into covariant form. To see how this form emerges we transform into Fourier 
space, using (12.38) and the Fourier transform of the current density, 

(k) = f d4  xe -d" (x).  (12.103) 

This leads to 

1f  d3 k  
J  2(270 3 w 

1  f  d3k  
J  2(270 3 w 

coth(w/2kBT) (Pk) • j*  (k) 

coth(co 12kBT)  RV:1(k)) 

(ij • j(k))(k#  • 1(k)) *  

(12.104) 

s(2) 

where we have used 

1(k) • j* (k) 
 (k" • 1 (k)) (lc* • (10)*  == -1(k)'P(k) -- jo(k)iô(k) 

=  (12.105) 

which follows from current conservation, km?' (k) = 0. Thus we have 

exp [-28 (2) ] 

d3  k  (k))1 = exp {— 
j 2(27 )3w 

coth(w 12kBT) 
 

(12.106) 

This is the no-photon emission probability, that is the probability that the cur-
rent density does not emit any photons (Itzykson and Zuber, 1980). We see that 
for finite temperatures, T > 0, the no-photon emission probability is reduced in 
comparison to the vacuum case. This is just the effect of induced emission and 
absorption processes. 
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By use of the relation (12.30) and of current conservation the real part of the 
action functional if found to be 

SO) — _-8117  f d4 s f d4 si  { 6(1 2_ zx, 1°I )  jo(x)jo(x i ) — 6 [(x —  x /) 2] (x) • ji, (x 1 )} 

f d4 x f d I x'6[(x x') 2 ] jii (x)Y -1 (x`). (12.107) 

This is the classical Wheeler—Feynman action (Wheeler and Feynman, 1945, 
1949; Rohrlich, 1965). It allows the description of the interaction of a system of 
charged classical particles by means of a non-local action principle. The degrees 
of freedom of the electromagnetic field have been completely eliminated under 
the boundary condition of no net emission of radiation (which is known as the 
complete absorber theory). As a result one is left with a non-local action func-
tional which contains both the retarded and the advanced Green function (see 
eqn (12.30)). 

12.2.3 Second-order equation of motion 
The representation (12.89) immediately yields the following second-order equa-
tion of motion for the density matrix of the matter degrees of freedom, 

d 
—
dt

Pm(t) =  [H(t), Pin(t)]  (12.108) 

f  d3  f d3 s' f ds'o D(x — s i )[-IT(x),{ -1T(x 1 ),pni(t)}] 
ti 

1 — f d3  x f d3 X' f &Pi (X — X') {JT (X), {jr (x 1 ), Pm (t)} , 2 
t i  

where s = (t, i) and x' =  -± # ') This equation is just the time-convolutionless 
master equation to second order in the coupling. As we know it provides a non-
Markovian master equation since it involves the non-local dissipation and noise 
kernels D(x s') and D i  (x — s'), respectively. The various master equations 
encountered in the previous chapters can be derived from this equation. For 
example, the quantum optical master equation is obtained from it by performing 
the Markovian and the rotating wave approximation. 

12.2.3.1 The quantv,m optical limit It might be instructive to sketch how the 
quantum optical master equation can be derived from eqn (12.108). To this 
end, we insert the Fourier representations of the Green functions D(x — y) and 
D i  (x — y) (see eqns (12.20) and (12.38)) into eqn (12.108). Using then the Fourier 
components of the transverse current density which are defined by 

3 jT (X0 , 1-j) = f d s jT (so, Z)e -ik.Y (12.109) 



H  f  d3  k N 
ss =  2(27) 3w wn  -w con  

(Pr (wn, rc).7T (wn , — (wn, NtT (wn, k)) 
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the space integrals over  i and i t  can easily be evaluated. Next, one performs 
the Markov approximation which consists in the replacement 

f dx`o  f dsio  = f dr,  (12.110) 
-00 

where we have substituted T  E t x to . Finally, we introduce the decomposition 
of the current into eigenoperators of the system Hamiltonian, such that 

 

an 

^ ̂

(X0,  = E e  JT(Wrt,k).  (12.111) 
co n  

The sum runs over the frequencies con  of the system defined by the energy differ-
ences of the unperturbed system. This representation enables us to employ the 
rotating wave approximation in the quantum optical limit. The latter consists 
in keeping only the secular terms in double sums over the system frequencies w 
and is equivalent to an averaging procedure over the rapidly oscillating terms. 
Putting it all together we obtain the following master equation, 

—d pm (t) =  [He (t), pm  (0] dt 
 i [His + H ss, pm (t)]  (12.112) 

+ E -y- (Wn) f (k) (irr (con, k*) Pm itT (‘-‘)n  — 
wn>0 

+E  (wn) f cin (k)  (Wn, k)Pin.ir(con,k') 

where dQ(k) denotes the element of the solid angles in the direction of the 
wavevector  k. 

The last two terms on the right-hand side in (12.112) represent the dissipator 
of the master equation describing incoherent processes, namely induced absorp-
tion processes, the rates of which are proportional to -y± (wn) = wn N(con )/870, 
as well as induced emission and spontaneous processes taking place with a rate 
which is proportional to 7_ (w ii ) = wn [N(w n ) + 1]/87r 2 . 

The coherent Hamiltonian part of the dynamics contains the Coulomb in-
teraction H.  Additionally, it is modified through the presence of the radiation 
field which leads to contributions from the Lamb shift Hamiltonian 

HLS 'EP f  d3k  1  h(wn,k) -1T(C'in,k) 

and from the Stark shift Hamiltonian 

{Pr (wn,  (con, TO, Pm }) 
1 

liT(wn ,  k4)74(wn ,  Pm}) 
r  

W71, 

2 (270 3 w wn  - w 
(12.113) 

(12.114) 
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It is easy to check that the density matrix equation (12.112) leads to the various 
forms for the quantum optical master equation used in previous chapters (note 
the change of units here). 

12.2.3.2 Mass renormalization and Lamb shift Let us have a closer look at the 
Lamb shift Hamiltonian (12.113). The contribution from IILs is formally infinite 
and must be renormalized according to the renormalization procedure of QED 
(see, e.g. Weinberg, 1995). For our purposes it suffices to make a few remarks on 
the non-relativistic treatment of this term. 

Invoking the dipole approximation and introducing the spectral decomposi-
tion of the system Hamiltonian through Hs = En  En in)(ni, we find for the shift 
AE, of the n-th level induced by HLS: 

AE rt  = e 2 E P  
mOn 

i-2  in ax  

f „b., 
 w I ( w _ Wmn 

71 1/51 74 2  , 
0 

(12.115) 672 77-1 2 

where comn  = Em  — En  and ft max  is an ultraviolet frequency cutoff. To leading 
order, the frequency integral diverges linearly with the cutoff. To split off the 
linearly divergent part we write the integrand as 

(.4.)  Wmn 
 = 1 +   
W — Wmn  W — Wmn 

Correspondingly, the energy shift consists of two parts, 

AEn  = AE nt  + 

The first part is given by 

e2 

672 m2  E mn  

in ax 

f (kJ I (n1/51 111 ) 1 2  
0 

e2 0 %) g,max • 1 -.2 
672 7112  MP In). (12.118) 

This term may be interpreted as the matrix element which stems from a renor-
malization of the mass in the kinetic energy of the system Hamiltonian. In fact, 
if we write the physical mass m = m0  + 6m as a sum of a bare mass m0 and an 
electromagnetic mass contribution 6m, the total kinetic energy reads 

,--.2  ,-*2  ,--.2 
.1-'  Y  Y  6m  42 — =   •-...• •-...• 
2m 2(m o  + 6m) 2m0  2m0  . (12.119) 

Comparing this with (12.118) we see that the mass correction is given by 

2 e 0 
max  6m = 372 . (12.120) 

This is the same mass renormalization as found from the classical Abraham- 
Lorentz equation for the electron (see Section 12.3.4). If we take the cutoff Qmax 
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to be on the order of the electron mass, we find that the mass correction is small, 
Im = 0/372  0.0031. We note that in a full relativistic treatment Sin only 

depends logarithmically on the cutoff, that is we have (Bjorken and Drell, 1964) 

3e2 771  Cmax ôni =  ln 872 

The second part of the energy shift in (12.117) is given by 

=  
2 

67
62m2 E P  dw  Winn  1(nlfr1 )1 2 ' — W inn, 

rnOn 

t-2 1-111:16X 

(12.121) 

(12.122) 

In our present non-relativistic calculation this expression gives the main contri-
bution to the observed atomic level shift caused by the vacuum fluctuations of 
the electromagnetic field. The sum over intermediate states can be worked out 
and yields the famous Bethe formula for the Lamb shift in hydrogen (Bjorken 
and Drell, 1964). 

12.3 Decoherence by emission of bremsstrahlung 

As a further application of expression (12.99) for the influence phase functional 
we investigate in this section the destruction of quantum coherence through the 
emission of bremsstrahlung. To this end, we investigate a simple, prototypical 
interference device for a charged particle and ask for the loss of coherence which 
is induced by the interaction with the radiation field. The interference device 
involves two possible paths of the charged particle: The initial wave packet is split 
into two components which first move apart and which are then recombined to 
measure locally their capability to interfere. This type of interference experiment 
thus involves a relative motion of two spatially separated components of the wave 
function. It turns out that the possibility of the emission of radiation leads to a 
(partial) destruction of quantum coherence which results in a reduction of the 
interference contrast. 

An appropriate measure for the decoherence in the interference experiment 
is a certain relativistically covariant and gauge-invariant functional, the decoher-
ence functional, which will be derived and determined explicitly in the present 
section. It will also be demonstrated that the obtained decoherence functional in-
volves the typical features of the emission of bremsstrahlung. Explicit analytical 
expressions for the vacuum and the thermal contribution to the decoherence func-
tional and for the corresponding coherence lengths are determined. These expres-
sions reveal that bremsstrahlung leads to a fundamental decoherence mechanism 
which dominates for short times and which is present even in the electromag-
netic field vacuum at zero temperature. The influence of bremsstrahlung on the 
centre-of-mass coordinate of a systems of many identical charged particles is also 
studied and shown to lead to a strong suppression of quantum coherence. 
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W2 ) 

FIG. 12.1. Sketch of a prototypical interference device which is employed to 
introduce the decoherence functional. An electron emerges from the source 
Q and can follow two possible paths  Yi  and y2, which leads, in general, to an 
interference pattern observed on a screen at S. The two quantum alternatives 
may be described through the wave packets IT 1 ) and ITO. 

12.3.1 Introducing the decoherence functional 
Let us consider an interference device of the type sketched in Fig. 12.1. A charged 
particle, say an electron, is emitted by the source Q and can move along two dif-
ferent world lines yi and y2 to reach a screen at S, where an interference pattern 
is observed. These paths represent two quantum alternatives whose probability 
amplitudes may be described by two wave packets I (ti )) and 11P 2 (ti )). With 
the help of the superposition principle we find that the wave function 

= Ri(t)) + i 4'2(ti))  (12.123) 

describes the physical situation depicted in the figure. Alternatively, the electron 
state can be represented in terms of the density matrix pm (ti) = IT(ti))(T(ti)I 
which may be written as 

Pm(ti) =  + p22(ti) + p 12 (ti ) + p21 (ti ),  (12.124) 

where pafi(t i ) = IT a (t 2 ))(T o(t i )I with o43  = 1, 2. One observes the emergence 
of the interference term p 12 (t i ) +  P21 (t i ). Remember that we are working in the 
interaction picture and that we therefore have pm (t) = pm (t i ) for all times in 
the case of a vanishing coupling between matter and electromagnetic field. 
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Our aim is to determine with the help of the influence super-operator the 
structure of the electron density matrix pm  in the presence of the electromag-
netic radiation field. An essential simplification is achieved if the matter current 
density can be treated as a classical current. This approximation can be justified 
under the following conditions. First, we assume that the wavelength A = c/w 
of the photons emitted by the currents is large compared to the Compton wave-
length Ac of the electron, 

h 
A » Ac =  ,  (12.125) me 

and, thus, also large in comparison to the classical electron radius re  = ac r^:J 

2.8 x 10 -15 m. This requirement is equivalent to hw < mc2 . In this low-energy 
regime one may neglect pair creation and annihilation amplitudes and treat 
the matter current density as a given classical field (Jauch and Rohrlich, 1980; 
Cohen-Tannoudji, Dupont-Roc and Grynberg, 1998). The same procedure is 
used, for example, in the non-perturbative analysis of radiative corrections in 
the low-frequency limit (see below). In an experiment of the type sketched in 
Fig. 12.1 the paths involve an acceleration of the electron through a certain field 
of force. This force gives rise to a certain characteristic acceleration time Tp . We 
define Tp as the inverse of the highest frequency in the power spectrum of the 
force acting on the electron. In the following we call Tp  the preparation time since 
it can be interpreted as the time required to set into motion the interfering wave 
packets. As a consequence of the existence of such a characteristic time we have 
a natural upper cutoff Rna,, for the frequency spectrum of the emitted radiation 
which is of the order 

(12.126) 
"rp  go 

where the length scale o-0  represents the order of the minimal wavelength of the 
radiation. Our above requirement thus takes the form 

ao >> Ac.  (12.127) 

This also implies that the characteristic acceleration time Tp  is large compared 
to  re/c. It is known from classical electrodynamics that this condition ensures 
that the energy radiated is small compared to the kinetic energy of the particle 
and that therefore radiative damping effects are small (Jackson, 1999) (see also 
Section 12.3.4). 

The second condition is that the motion of the current can be reasonably 
described within a semiclassical approximation. This leads to the requirement 
Ay/y < 1, where y is a typical velocity and Ay the velocity uncertainty. Assum-
ing that the wave packets represent states of minimal uncertainty with spatial 
width Ax one is led to the condition 

1  c 
9max r.....,  - = - 

, 

Ay  h 
,   

y myAx 
<1

' 
(12.128) 
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or, equivalently, 

AdB  

<< 
 

(12.129) 

where Ads = h/mv is the de Broglie wavelength. This is the typical condition 
for a semiclassical treatment. 

In view of these conditions we now assume that  p(ti) represents a state 
which is an approximate eigenstate of the current density. Thus, if pm (ti) is a 
pure state, 

we suppose that 

where .9 1  (x) is a classical current density. Hence, we also have to the same degree 
of accuracy, 

f(x ) pin ( ti) = Li"(x), pm (tt)]  O. 
 (12.132) 

The initial state  p(ti ) does not necessarily have to be a pure state. It suffices 
to require (12.132), where 

(j/.L W) = trm  (x)p m (ti)} = e(x)  (12.133) 

is the expectation value of the current density. In any case we immediately obtain 
with the help of (12.132) and expression (12.99) for the influence phase 

pm(tf)  pm(ti). 
 (12.134) 

This equation states that the system is essentially unaffected by the radiation 
field, i.e. by virtue of our assumption that the initial state is an approximate 
current eigenstate, the dynamics of the density matrix is nearly the same as that 
of the free system. The same conclusion can be drawn from an investigation of 
the dynamics of a Gaussian wave packet under the influence of the radiation 
field by use of the exact analytical expression for the propagator function in the 
dipole approximation (see Section 12.3.4). 

Let us now return to the interference device and assume that the superposi-
tion (12.123) consists of two approximate current eigenstates, 

iNx)iTi(ti)) '^dd si(x)Ri(ti)),  (12.135) 

iNx)IT2(ti)) k'dd 4(x)IT2(ti)),  (12.136) 

where s i (x) and  82(5) are classical current densities. These currents are assumed 
to be concentrated within two world tubes around the paths Iii  and y2  of the 
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C =o 

FIG. 12.2. A closed current world tube indicating the support of the current 
difference density c# = sn/Nd The world tube is located around the 
closed path C = y l  — y2  formed by following  Yi  in the positive and y 2  in the 
negative direction (see Fig. 12.1). 

interference device, respectively (see Fig. 12.2). By virtue of eqn (12.135) we 
have 

and 

where 

4t (x)P11(ti) ;zid 4L (x)p22(ti)  0, 

 

(x) ion (ti )  (8'11  (x) —  (x)) p12(ti), 

 

Jfit(x) p i 2 (ti)  (4(x)  + 4 (x)) pi2(ti), 

f (x)p i  (4)  c(x )P2 2 ( t )  0,  
re  (x)P12 (ti)  (x)  9-1c2(x)) )912 (t i ), 

Rc i , 2 (x) = 1 
f  d3y  

 

 

2  471i— yi 

(12.137) 
(12.138) 
(12.139) 

(12.140) 

(12.141) 

(12.142) 

are the Coulomb energy densities associated with the current densities 4 (x)  and 
$'IL (x), respectively. We may suppose that the corresponding Coulomb energies 
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for both possible paths are equal to each other. The expression (12.99) for the 
influence phase functional now immediately leads to 

Pm(tf)  pli (ti) + P22 (ti) exp(i4)p 12 (ti ) + exp(—i43*)p2i (ti ),  (12.143) 

where 

i(13  821 
t f  

= f d4  x f d 4  DT  (x — x') (sm (x) — 4(x)) (4(x') + (x')) 
2  pv 

(12.144) 

t i  t i 
t f  t f 

— -1  f d's f d4xiDrir(x —  (4(x) — 4(x)) (4(x') — s12'(x')) . 
4 

ti  ti 

We observe that the electromagnetic field affects the interference terms through 
a complex phase 4. = 41[8 1 ,82] which is a functional of the two possible classical 
paths  Yi  and y2, or, more precisely, of the associated current densities 4(x) and 
4(4 The real part of 4. leads to a distortion of the interference pattern. The 
imaginary part of 4), on the other hand, yields a suppression of the interference 
terms in (12.143) given by the factor 

lexp(i4)) I  exp F.  (12.145) 

The exponent F will be referred to as the decoherence functional (compare the 
discussion in Section 4.1). From the second term in eqn (12.144) we infer that F 
represents a bilinear functional of the current difference 

(x) =  (4(x) — 4(x)) 

and may be written as follows, 

tf  tf 

F[c] = --
1 

dix f d 4  (x —  x1 )c#  (x)ev (xi 
2 

ti  ti 

(12.146) 

(12.147) 

12.3.2 Physical interpretation 
To bring F[c] into a more convenient form let us define to  to be the time cor-
responding to Q (see Fig. 12.1), that is the time at which the wave packet is 
separated into two components, while tf  denotes the final time when both pack-
ets are recombined at S.  It is obvious that the current difference c4  (x) vanishes 
for times prior to t o  and for times later than the final time t f . In fact, the support 
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of the current difference cA(x) lies in the interior of a closed world tube around 
the loop 

C = yi — y2  (12.148) 

which is formed by following y l  in the positive and y2  in the negative direc-
tion, as illustrated in Fig. 12.2. Current conservation, OA & = 0, therefore en-
ables us to write the decoherence functional as (compare the discussion following 
eqn (12.102)) 

F[c]  21  f .4 x  f d  d4 x / D1 (x — s') [ — di  (x)cli (4] - (12.149) 

We observe that F[c] represents a relativistically covariant and gauge invariant 
functional. Moreover, F[c] is Lorentz invariant in the vacuum case as may be 
seen explicitly from the fact that Dr"(x — x') is given by the invariant function 
(12.39). 

Equation (12.149) suggests several interesting physical interpretations. With 
the help of the Feynman propagator (12.84) and the two-point correlation func-
tions (12.86) and (12.87) we can express the complex phase factor exp(i(1)) in 
eqn (12.143) as follows, 

exp(i43) = A[81]A[s2] *  (12.150) 

x exp [-1 f dix f dix'D_ (x — x') Av .4(x)s 2v (x i ) 2 
1 + - f d4x f d 4x 1 D+(x — 2 

where  A[j]  is defined in eqn (12.101). This form for the phase factor was first 
derived by Ford (1993) for the case of zero temperature with the aim of studying 
the influence of conducting boundaries on electron coherence. As we have seen, 
at zero temperature  A[j]  is the vacuum-to-vacuum amplitude in the presence of a 
classical current density jA(x). The first term on the right-hand side in (12.150) 
is thus the product of the vacuum-to-vacuum amplitudes in the presence of 
the current densities slit and .5 -'. This contribution describes virtual processes 
in which photons are emitted and reabsorbed by either the currents sii.  and 4. 
Correspondingly, the exponential on the right-hand side of eqn (12.150) is the 
contribution of the emission of real photons. These processes also contribute to 
the decoherence functional since a photon can be emitted by both currents and 
carries away information on the path taken by the electron. Moreover, at finite 
temperatures thermally induced emission and absorption processes occur. 

Expression (12.150) also answers the question as to whether virtual vacuum 
processes or real photon emissions are responsible for the decoherence effect 
expressed by the functional F[c]. We see that the decoherence factor (12.145) de-
pends on virtual processes through the Feynman propagator DF(s-- x l ) Av  (which 
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is contained in the vacuum-to-vacuum amplitudes) as well as on real processes 
described by the Green's functions D± (s—xi),,„. Thus, it is the combined effect 
of virtual and real processes which leads to decoherence. The physical reason 
is that the mere possibility of real photon emissions also reduces the vacuum-
to-vacuum amplitudes which can already lead to a reduction of the interference 
contrast. For example, one can think of an interference device in which the path 
Yi  describes a uniform motion of the electron, whereas the other path y2 is 
strongly bent, involving a large acceleration of the electron. Suppose we observe 
the photons emitted in the experiment. If we know that no photon has been 
emitted it is then very likely that the electron has taken the path y i , which 
results in a suppression of the interference pattern formed by the electrons of 
the corresponding sub-ensemble. This situation is similar to that of a two-level 
atom which is initially in a superposition of the excited state and the ground 
state. If we find that the atom did not emit a photon during a large time in-
terval (large compared to the inverse of the emission rate) we have effectively 
measured the state of the atom to be the ground state. Thus, the off-diagonal 
terms of the atomic density matrix approximately vanish without the emission 
of real photons. 

It is also interesting to express the decoherence factor directly in terms of the 
amplitude A[c]. Invoking (12.91) we find 

exp (F[c]) = IA[c]1 2  .  (12.151) 

Obviously, we have F[c] < 0, and F[c] = 0 for s ii' = si t , that is for a vanishing 
current difference, c11  = O. Equation (12.151) gives rise to another interesting 
interpretation: The decoherence factor which multiplies the interference term 
is given by the no-photon emission probability in the presence of the current 
density 02 . This current is the same as the current which would be created 
by two particles with opposite charges ± e1-4, one moving along y i  and the 
other along y2 . The smaller the vacuum-to-vacuum amplitude for this current 
density the larger the reduction of the interference contrast. This must have 
been expected since it is the difference between the currents s i  and s2  which 
determines the extent to which the two possible paths can be distinguished, and, 
thus, the degree of the loss of coherence. 

These interpretations in terms of the emitted photons must be taken, how-
ever, with some care. The reason is that we consider here processes on a finite 
time scale and not transitions between asymptotic states. It is well known that 
certain matter currents emit an infinite number of long-wavelength (soft) pho-
tons whose frequencies approach zero, while their total energy adds up to a fi-
nite value. This is the so-called infrared catastrophe (Weinberg, 1995; Jauch and 
Rohrlich, 1980) which arises in the perturbative calculation of radiative correc-
tions to any process involving charged matter. The complete removal of infrared 
divergences requires a non-perturbative treatment in which the amplitudes for 
the emission of real and virtual soft photons are summed to all orders, such that 
the processes involving real and virtual photons become indistinguishable in the 



596  OPEN QUANTUM ELECTRODYNAMICS 

low-frequency limit. Infrared divergences can be shown to cancel provided a finite 
resolution Ruin  for the photodetection is introduced: Insisting on the perturba-
tive picture, one could say that there is always an infinite number of quanta, 
namely those whose frequency is lower than Stmin , which escapes undetected and 
cannot be observed in principle. 

Our analysis treats the matter current classically but it is non-perturbative 
(Jauch and Rohrlich, 1980). In view of the above considerations it is obvious 
that the decoherence functional F[e] does not lead to infrared divergences since 
it describes a process taking place in the finite time interval between the splitting 
of the wave packet at t o  and the recombination at t1 .  This gives rise to a natural 
frequency resolution of the order 

Qmin  (12.152) 
tf — to  

The emergence of this effective infrared cutoff will be seen explicitly in the cal-
culations of the next subsection, where it will be demonstrated that the arising 
integrals over the photon frequencies converge at the lower limit w —4 0. In 
addition we also have an ultraviolet cutoff Stmax  which has already been intro-
duced in eqn (12.126). This cutoff can be accounted for by the introduction of a 
finite width ao  characterizing the current world tube, as will be seen in the next 
subsection. 

12.3.3 Evaluation of the decoherence functional 
We wish to evaluate here the decoherence functional for some specific situations. 
On using eqn (12.149) and the Fourier representation (12.38) for the anticom-
mutator function D 1  (s  — s') we find 

F[c] = — 
f  d3k  

2(27 )
3w coth(w/2kBT) [—d-i(k)eil(k)] ,  (12.153) 

where we have introduced the Fourier transform 

c(k) f d i xexp(—ikx)e(x)  (12.154) 

of the current difference c1-' (s).  
Let us first show explicitly how a finite width of the current world tubes 

gives rise to an ultraviolet cutoff scale. To this end, the currents  s(x) and 4(x) 
are taken to be concentrated within world tubes of spatial extent cro  around the 
world lines yi  = (7- ) and y2  = y2 (7.). The world lines are parametrized by their 
proper time T such that 

1 

= dY2(T)  di- 

are  the corresponding 4-velocities. To be specific we write 

(12.155) 



where 
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(x) = e f dy  2 (7)6 cro (x 1,2  1,  

1 exp 

- y i , 2 (T)), 

(-  gi)21 [  

2o- ci 
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(12.156) 

(12.157) Sao  6(X0 (X — x l ) =  x) 
 u 

is a smeared 6-function described by a Gaussian with width oro . We remark that 
we neglect the spin contribution to the current density. This is justified as long as 
the length scales involved in the problem under consideration are large compared 
to the Compton wavelength (Ford, 1993). 

On using eqn (12.156) in eqn (12.154) the Fourier transform of the current 
difference is found to be 

cl (k) = — [f dr (r) exp(-ikYi (7)) - f dr u(r) exP( -ikY2(r))1 

[__1 0.02w 2] x exp 2 (12.158) 

We see that the finite width ao of the current world tubes yields an effective 
ultraviolet cutoff Q. - a-0-1  as given in eqn (12.126). Our main interest is 
an estimation of the decoherence functional for some specific situations. We 
therefore ignore in the following the specific form of the cutoff function in (12.158) 
and work with a sharp cutoff at the maximal frequency co = Qmax . It will be seen 
below that the final expression for F[c] depends on Qinax  only through ln Qmax . 
This extremely weak logarithmic dependence shows that the precise value of o-0  
or of the preparation time Tp is rather irrelevant. The important point to note 
here is that the emergence of an effective ultraviolet cutoff has a clear physical 
origin. 

Thus, we now write eqn (12.153) as 

C2  max 
1  

F[c]  f cico coth(co/2kBT) f (100 [-c1L (k)e7,(k)] ,  (12.159) 167r 3  

where c/Q(k) denotes the element of the solid angle in the direction of the unit 
vector k Oki. The Fourier transform of the current difference can be expressed 
as a loop integral over the closed loop C = yi - y2) 

exp( -ikx).  (12.160) 

For simplicity let us consider the case that the loop C consists of four straight 
world line segments (see Fig. 12.3(a)). The vertices of the loop are denoted by 
ao , al , a2, a3 , whereas the corresponding 4-velocities are given by 
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a) 
 b) 

a 

a() 

FIG. 12.3. (a) The closed loop C = Yi  — y2  used for an explicit determination 
of the decoherence functional F[c]. The loop consists of four straight world 
line segments with 4-velocities u i ,  u 2 , u 3 ,  u4. The vertices are located at the 
space-time points ao , a l , a2 , a3 . As indicated, the loop corresponds to the 
total time 2tf. (b) A single line segment with initial point a, endpoint b and 
4-velocity u. 

ulri, =  712,  - ( 1 _ liln i2) - 112 .  (12.161) 

We further assume that the arrangement is symmetric, that is we suppose that 
u 1  = u4, tt2 = u3, and that a l  — ao = a2 — a3, a2 — al = a3 — ao. For a single 
line segment with initial point a, endpoint b and 4-velocity u (see Fig. 12.3(b)) 
we obtain 

b 
_u —ikb e —ikal f dx exp(—ikx) i re  _ 
ku L  

a 

(12.162) 

With the help of this formula the Fourier transform (12.160) of the current 
difference is found to be, 

U2 
C(k) +_111  re —ikai e —ikaol ± _ [e 2 e —ikail = —ie 

 

ku 1 L  kU2 

u3 r  _ika3 — e ol _ U4 [e _ika 2  _ e —ika31 
—  e  . — L  -  ]  (12.163) ku3  ku4 

It should be noted that kli cP(k) = 0 as required by current conservation. Note 
further that ell (k) shows the correct behaviour under Lorentz transformations. In 
particular, one finds that 1L  (k)  transforms into cA (k) exp( — ikb) under a space-
time translations by the 4-vector b. If we now use the symmetry properties of 
the loop we arrive at 
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c(k) = — u
ie  2  U4 I  

\/ kU2 kU4 

where we have introduced 

Ç(k) = e —ika2 (1_ eik(a2—a3)) ( 1 eik(a 

(12.164) 

(12.165) 

Using these results one is led to the following expression for the decoherence 
functional, 

Oma.  2 dw F[c] =  — coth(w/2kBT) f dft(k)w 2  [ u2  — u4  ig(k)1 2 . (12.166) w  ku2 ku4 
o 

We denote the time interval associated with a single line element of the loop by 
t f , that is we set to  = —t f  and t — to  = 2t (see Fig. 12.3(a)). Then we have 

k(a2 — a3) = cotf (1 — k • 174),  (12.167) 
k(a2 — ) = wtf (1 — k • 172)• 

 (12.168) 

In order to estimate further the expression (12.166) we approximate 

k(a2  a3)  k(a2 al )  wt1 ,  (12.169) 

which leads to 

1 
Ig(k)1 2  =8 [(I — coswtf)— :4 (1 — cos 2wtf)1 . (12.170) 

This allows us to estimate the decoherence functional (12.166) as follows, 

max  

a  dw  tot. TT\  f  1 fi  F[c]  f —  z&B.  — cos wtf) — —4 y_ — cos 2wtf )1 
o 

x f dft(k)w 2  [ U2  U4 2  

kU2 kU4 
(12.171) 

Let us first concentrate on the integral over the photon frequencies w, that is 
on the first integral on the right-hand side of (12.171). The integrand is propor-
tional to which is a typical signature for the spectrum of bremsstrahlung 
(Jackson, 1999). In addition to vacuum bremsstrahlung there may be thermally 
induced emission and absorption processes (Itzykson and Zuber, 1980), which 
are embodied in the factor coth(w/2kB T). At zero temperature (vacuum field) 
this factor may be replaced by 1. 
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In order to calculate the frequency integral it turns out to be useful to decom-
pose it into a vacuum contribution and a thermal contribution which vanishes 
for T = 0. We therefore write 

where 

o max  
F E f (lbw, 

— coth(w/2kB T) (1 — cos wtf) = Fvac ± Fth ) 

0 

(12.172) 

(1 — coswtf)  (12.173) 

is the vacuum contribution, while 

umax  

 

Fth E f t 
— [coth(w/2kBT) — 11(1 — cos wtf) 

o 
(12.174) 

is the thermal contribution. The frequency integral F,a, can be evaluated as 
follows. Substituting x = wtf we get 

QMEtX t f 

FVaC  (1 —  COS X) = ln (02,,,ax tf) ± 0  1  
x ( 91-naxtf ) 1  o  

(12.175) 

where lng ',:,-,' 0.577 is Euler's constant (Gradshteyn and Ryzhik, 1980). For 
Qmaxtf >> 1 we thus have asymptotically 

In (gRnaxtf) .  (12.176) 

This relation demonstrates that the vacuum integral over the photon frequen-
cies converges at the lower limit w --> 0 and that it gives rise to an effective 
infrared cutoff of order ft mi r, — Of, as discussed in the previous subsection 
(see eqn (12.152)). We also observe that the vacuum frequency integral increases 
weakly with the logarithm of Qmax tf . . As indicated in eqn (12.176) we keep for 
simplicity in the following only the leading contribution in our expressions. It 
should be kept in mind, however, that one can include without difficulty the 
terms of higher order which vanish in the limit Q max tf —4 oc. The integral 
(12.173) has already been evaluated in Section 4.2.2, where we have used, how-
ever, an exponential cutoff. A comparison with the formula (4.54) shows that a 
change of the cutoff shape introduced only a small change in the value of the 
integral. 

The thermal contribution Fth has also been evaluated in Section 4.2.2 (see 
eqn (4.55)) under the condition kBT < hRua„, which will also be assumed here. 
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To give an example for this condition we take the ultraviolet cutoff  12„,,, --, 
10 19  s -1 , corresponding to a length scale of order 100Ac. The above condition 
then means that T < 108  K. Thus we obtain with the help of (4.55) 

(sinh (tf /TB)  ) Fth ln 
tf /TB  J . (12.177) 

On using the results (12.176) and (12.177) we can now determine the frequency 
integral in eqn (12.171), 

St rna. 

J dw 

 

 1 
—

c,,., 
coth(w / 2) [(1 - cos wt

f
) - -4 (1 - cos 2wtf)] 

o 

 

(sinh(t f I  TB))  1  (sinh(2t/ /TB)  ) . ln (0/ 1,,,x tf) + ln  ln  ri i  
TB 4  tf /TB  4  htf /  

(12.178) 

It remains to calculate the frequency-independent angular integral in eqn 
(12.171), that is we have to evaluate integrals of the form 

UnUrn  
/(nn, urn) :=_-_- f ciSICk)co2 

(kun)(kurn) 
1 — V • il  = f dn(k)  ,  n M,, 

(1 — k • fln)(1 - k • f1m )' 

(12.179) 

(12.180) 

where n, m = 2,4. We note that the combination c/1(k)w 2  is an invariant quan-
tity, such that gu n , um ) is a Lorentz-invariant integral. To determine this in-
tegral we may therefore transform to a coordinate system in which the second 
velocity is equal to zero, that is Vni  = 0. In this system the magnitude vn  = izinl 
of the first velocity is equal to the relative velocity 

(12.181) 

which is, by definition, a relativistic invariant quantity. Thus we arrive at 

47r /(Un , Urn ) = f c8-2(k)  1„  = — tar 1  m v„ m .  (12.182)  
1 - k • fl'n  VTLM 

This formula is correct also for the case u n  = um , giving /(un , ?in ) = 47r, as may 
be seen directly from the expansion of tanh -1  (s) for small arguments, 

1 ,  1 tanh-1  x = x + 
3
-x-  + -5 x5 ± . . (12.183) 

Thus we find, 



(  1  tanh 1 
 v24 - 1) 

- 

V24 
(12.187) 
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2 

 

f A2(k)W 2  LU2  7,1.14  = gU2, 2/2) ± /(2/4 2/4) 2I(U2) U4) 

 

riAt2  rtoU4 

=-87r  ( —1 tanh-1  v24 - 1) . 
v24 

(12.184) 

Substituting (12.184) and (12.178) into eqn (12.171) we finally obtain 

r[c] = rvac rth, 
 (12.185) 

where 

1' vac 
6c  1 ln (02,, ax t f)  tanh -1 1)24  - 1) (12.186) 

V24 

is the vacuum decoherence functional and 

rth 
8a  [in  (sinh(tf/TB)) 

 7r {  tf/TB 
1 ln  (sinh(2tf  /TB)  )1 
4  2t f /TB  

is the thermal contribution to the decoherence functional. As expected, we see 
from these expressions that F[c] strongly depends on the relative velocity V24 
which is due to the fact that the decoherence is caused by the emission of 
bremsstrahlung. The larger 1,24 the larger is the involved acceleration of the 
charged particle which creates the radiation field. 

An important result is that bremsstrahlung leads to a partial destruction of 
coherence even at zero temperature. The magnitude of the vacuum contribution 
rva, is seen to increase as the logarithm of the time tf if the relative velocity is 
held fixed. This weak dependence is connected to the effective infrared resolu-
tion SIm in  Of  of the interference device: For increasing tf photons of lower 
and lower frequencies could in principle be detected and, thus, more and more 
information is lost on tracing over the photon field. On the other hand, the term 
within the square brackets in (12.187) approaches tf/2TB  for tf » TB. Thus, 
keeping fixed the relative velocity the magnitude of the thermal contribution 
rth  increases linearly with t1 for times tf >> TB. This describes the decohering 
influence of absorption and emission processes induced by the thermal field. It 
follows that for short times the vacuum contribution dominates, while decoher-
ence is mainly due to thermally induced processes for large times. The time ef  
corresponding to the cross-over between these two regimes is determined by the 
relation 

2 t*f  
ln (0/maxt*) =   

f  3 TB .  

Taking S./ max  - 1019  s -1  and T = 1 K we find from this condition that the 
cross-over time is of order 

(12.188) 
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t f* ,--, 30 TB ^-, 10 -10  s.  (12.189) 

This means that for the given example the vacuum decoherence dominates for 
times small compared to 10' s. 

To facilitate the further discussion, let us investigate the case of opposite 
velocities with equal magnitude, that is VI  = gl =  -V2  =  -V3  (see Fig. 12.3(a)). 
The relative velocity is then found to be 

where 

2v 
V 2 4 =   1 + v2  ' (12.190) 

v=  la4 --5,31  
2tf  ' (12.191) 

This situation corresponds to the case of two wave packets in a superposition 
which first move apart with opposite mean velocities fA and 6 = —VI, respec-
tively, and, having reached their maximal distance icli  — c13I, approach each other 
again with velocities t72 and fl4  = —V2 . For non-relativistic velocities we have 
v24 ,=.-., 2v and we may use the expansion (12.183) to obtain 

16ct tf 2 rth -- - V , t f » TB • 
37r TB 

(12.192) 

One can then ask the following question: Given a fixed electron energy, that is 
a fixed velocity v, how far can we coherently separate the components of the 
electronic state without exceeding a given threshold i Fui for the decoherence? 
Provided the thermal contribution dominates, eqn (12.192) leads to the condition 

16cv tf 2 
37 

TB
V = iro i, (12.193) 

from which we obtain the maximal possible separation 

37 i rol  crB  dma. = 2vt1 =   .  (12.194) 8a v/c 

Choosing iro i = 0.01, which corresponds to a threshold of 1% decoherence, we 
find that the maximal distance at T = 300 K is given by 

dmax 
4 ium ,-.)--   v / c ' (12.195) 

This shows that one can achieve rather large coherent separations for non-
relativistic electrons. For example, in the experiment performed by Hasselbach, 
Kiesel and Sonnentag (2000) an electronic beam was coherently separated by 
a lateral distance of about d = 100  sum. To compare this experiment with our 
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results we take an electron energy of 1 keV and use a fixed value of 10 cm for 
the distance corresponding to the time interval from t o  to tf. For 1F0 1 = 0.01 
condition (12.193) then yields dmax  -,-:,' 4.5 cm at T = 1K and dmax P..)-' 0.26 cm at 
T = 300 K. Note that the quantity y in (12.193) represents the magnitude of the 
lateral component of the electron velocity in the experiment, which is due to the 
fact that it is the relative velocity that enters the formula for the decoherence 
functional. The values obtained for dmax  are large compared with the lateral 
distance d of the experiment, demonstrating that our theory is in full agreement 
with experiment. 

The result expressed through eqns (12.186) and (12.187) can also be dis-
cussed from another point of view. Namely, instead of keeping fixed the velocity 
y (eqn (12.191)), we consider a fixed maximal spatial distance A', 1  — a3 1 between 
the paths. Thus, for increasing tf the velocity y becomes smaller and smaller and, 
consequently, the decoherence effect through bremsstrahlung becomes smaller 
and smaller. For large enough times y is non-relativistic such that the vacuum 
and the thermal contribution to the decoherence functional are given by 

rvac  lai – d31 2  – —2a ln (01maxtf) 7r  t2  ' f 
(12.196) 

and 

8cv [ 
 rth  –  ln 
(sinh(tf  /7-B))  1 ln  (sinh(2tf /TB)  )] lai —2 a312 . (12.197) -,-,:ii —37  

tf /7-B  4  2tf /7-B  tf  

According to eqn (12.196) the magnitude of r,, decreases essentially as tf-2 , 
while eqn (12.197) shows that the magnitude of the thermal contribution rth 
decreases as t -1  for tf » TB, f 

4a lai — 5,31 2  rth Re,  q  . 07r t f TB 
(12.198) 

We again observe the cross-over between two regimes of times: For short times 
the vacuum decoherence dominates, whereas the thermally induced decoherence 
dominates for large times. This can be seen in Fig. 12.4 where we have plotted 
the expressions (12.186) and (12.187) as a function of tf for a fixed value of 
11 — cI31. 

The expressions (12.196) and (12.198) suggest we define a vacuum and a 
thermal coherence length by means of 

rvac  
ld1 – 7/31 2  

 

(12.199) 
v  1  2L(ti ) ac 

 1571 — 63 1 2  rth = (12.200) 
2L ( t f ) t2h • 

This leads to (reintroducing factors of c) 
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FIG. 12.4. The vacuum contribution r - vac and the thermal contribution rth 
of the decoherence functional F according to eqns (12.186) and (12.187). 
For a fixed maximal distance 151  — c7,3 1 = c7-.8  between the paths the two 
contributions are plotted against the time tf which is measured in units of 
the thermal correlation time TB. Parameters: T = 1 K and ftmax  = 10 19  5 -1 . 

L(tf)„a, = 7r  10.4  c tf r-:..... ,'  c • tf, 
4a ln (02maxtf)  On (Anaxtf) 

(12.201) 

and 

L(t f) t h ,----- 37 
v

C2 TBt f `,:.`.,' 12.7\ I C2 TBt f CX t11/2  • T-1 /2 . 
8ct 

(12.202) 

Equation (12.201) implies that the vacuum coherence length is roughly of order 

L(t i ) vac  — c • t f.  (12.203) 

This simple result means that for a given time t1  the radiation field does not 
destroy quantum coherence on length scales which are small compared to the 
distance that light travels during this time. This also explains why the radiation 
field is quite ineffective in destroying quantum coherence of single, localized 
electrons. 

We close this section by considering briefly another interference device which 
is depicted in Fig. 12.5: Here we suppose that the wave packets brought to 
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a2 

U2  I  U4 

211 

FIG. 12.5. A current loop involving two line segments which meet in the infinite 
past (compare with Fig. 12.3(a)). This situation corresponds to an interfer-
ence device in which the relative velocity v13 between the interfering wave 
packets vanishes initially. 

interference are at rest initially. As indicated in the figure this case corresponds 
to a situation in which the line segments described by the 4-velocities u 1  and 
u3  meet each other in the infinite past. Thus we set u 1  = u3  in eqn (12.163) to 
obtain, 

c(k) = ie{ u1 [ e  —ikai _ e—ikae_'"3]  
.N/2 kul 

U4 [ —ika2 U2 [e  —ika2 _ e —ikail _ ______ e  
'  ku4 

 
ku2 

_ e3]} 

(12.204) 

Performing here the approximation (12.169) we are again led to expression 
(12.166), where now 

0012 = 2(1 - cos wtf),  (12.205) 

which immediately yields the expression 

 

r[ci  2a [in olmaxtf ln  (sinh (tf /TB)  )1 ( 1 

 

j  7r [  tf/TB  V24 

In the non-relativistic limit we use the expansion (12.183) to obtain 

F[c] -  [ln (02maxtf) + ln
sinh(t /TB)  )] v2 , 37r  t f  / TB 

— tanh-1  v24 - 1) . (12.206) 

(12.207) 

where we have again assumed '62 = —774. 
Decoherence through bremsstrahlung exhibits a highly non-Markovian char-

acter since the decoherence functional depends on the whole paths of the in-
terference device. This can be illustrated by a comparison of eqn (12.206) with 



DECOHERENCE BY EMISSION OF BREMSSTRAHLUNG  607 

eqns (12.186) and (12.187): After the time corresponding to the maximal distance 
between the wave packets we have in both cases two wave packets approaching 
each other with opposite velocities of the same magnitude v. The difference 
between the decoherence functionals obtained in the two cases shows that the 
suppression of quantum coherence through bremsstrahlung depends on the total 
history of the process and that the memory time is of the order of the total time 
t1 of the experiment. 

12.3.4 Path integral approach 

An exact analytical representation for the problem of a single electron interact-
ing with the radiation field which takes into account the finite width as well 
as the spreading of the wave packets can be obtained in the (non-relativistic) 
dipole approximation (Barone and Caldeira, 1991; Diirr and Spohn, 2000). This 
simple case is of special interest for it allows an analytical treatment for several 
interesting cases which already exhibit the basic physical mechanism leading to 
the decoherence mechanism through bremsstrahlung (Breuer and Petruccione, 
2000). 

Invoking the dipole approximation we may replace the commutator function 
(eqns (12.19) and 12.20)) and the anticommutator function (eqns (12.37) and 
(12.38)) with their space-independent expressions as follows, 

00 

DT  (x —  x')    fS ii D(t t')  t5j  sin c.4.; (t — t'),  (12.208) 

co 

— x' ) ii  SiiD i (t — t') öj f cica(w) coth (w/2kBT) cos w(t — t'), 

(12.209) 

where the spectral density is given by 

e2 
J(w)  00/max Ci) ). 37.6 (12.210) 

As before we have introduced here an ultraviolet cutoff nmax . One observes 
that the spectral density increases with the first power of the frequency w. Had 
we used the dipole form  • ET  for the coupling of the electron coordinate 

to the electric field (which is obtained through a canonical transformation), 
the corresponding spectral density would be proportional to the third power of 
the frequency. This means that the coupling to the radiation field in the dipole 
approximation may be described as a special case of the Caldeira—Leggett model 
discussed in Section 3.6. In the language of the theory of quantum Brownian 
motion the radiation field constitutes a super-Ohmic environment (Barone and 
Caldeira, 1991; Anglin, Paz and Zurek, 1997). Note also that we now include the 
factor e2  into the definition of the correlation function. 
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Within the non-relativistic approximation we may replace the current density 
by 

j(t,  12 6(1 Z(t)) + (5(g — I(t)) 1-3.(t)  ,  (12.211) 
ma  ?no 

where  j(t)  and I(t) denote the momentum and position operator of the electron 
in the interaction picture with respect to the Hamiltonian 

772 
Hm   =  ±  V (4 

2mo 
(12.212) 

for the electron, V(i) being an external potential. The bare electron mass is 
denoted by mo  (see below). 

We are thus led to the following non-relativistic approximation (neglecting 
the spin degree of freedom) for the influence functional representation of the 
single electron density matrix (compare with eqn (12.99)), 

p (t) p (t 
Prn.(t f) = T, ( exp I dt 1 clti  {—i  D(t — t i ) -'e  -'a ') 

ti  ti  
2  mo mo 

(12.213) 

--
1

D i (t — t i ) 15'e(t)15c(e) } ]) prn (t i ). 
2  mo mo 

In accordance with the definitions (12.95) and (12.96) fie  is a commutator super-
operator and 75,, an anticommutator super-operator. 

12.3.4.1 Path integral representation and classical equations of motion As we 
know from Section 3.6.4.2 the reduced density matrix given in eqn (12.213) 
admits an equivalent path integral representation. We introduce new coordinates 
through the relations d' and = (i ± it ), and set, for simplicity, the 
initial time equal to zero, t i  = 0. The propagator function J is then defined by 

prri (ilf,d'f,tf)= f d3 ri  f d 3qiJ(rf,q'f,tf;ri,)p,,,(4,6,0),  (12.214) 

and admits a path integral representation of the form (see eqn (3.527)) 

J(Ff, 67f, tf;77;,  = fDrf Dd'expfiAV,  (12.215) 

This is a double path integral taken over all paths fqt), d'(t) which satisfy the 
boundary conditions, 

r.(0) =  i ,  f(t 1 ) =  4(0) =  (At f ) = qf .  (12.216) 

The weight factor for the paths is defined in terms of an effective action functional 
A given by (see eqn (3.531)) 
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tf 

= f dt (n-1 0 ;1.4 — (71  + (772) + V(71 — (772)) 
0 

tf  tf f dt f  9(t t')D  t(t)(t') 
o  0 

tf  tf 

+ -
4 
f dt f D i (t — )(t)(t i ). 
o  o 

(12.217) 

It is instructive to investigate first the classical equations of motion deter-
mined by the effective action functional. The first variation of A with respect to 
f(t) and (At) leads to the classical equations of motion, 

1  d 
m)t) + —2 Vf:(V(e+ (772) + V(71 - (772)) + —

dt 

f D(t — )7(t i  ) 
0 

tf 

d  f dt' D  — t i)(t f ), 
o  

2 
(12.218) 

and 
tf 

mo(t) + 2t 4.(v(F+ (772)+ v(F-- (772)) +  f .13(e — t)Ot i ) = 0. 

(12.219) 

The real part of the equation of motion (12.218), which is obtained by setting 
the right-hand side equal to zero, yields the famous Abraham-Lorentz equation 
for the electron (Jackson, 1999). It describes the radiation damping through the 
damping kernel D (t - t'). To see this we write the real part of eqn (12.218) as 

d moi(t) + —dt f D(t  )77'.  (t i  ) = P (t), 
o 

(12.220) 

where P(t) denotes the external force derived from the potential V. The damping 
kernel can be written as 

Sl ma, 

 

e2  e2 d  
D(t — t') = f W sinw(t — t') 

0 
dco  2 

37r  372  dti f  ti) ' 

where we have introduced the function 

(12.221) 
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sin Qmax t f (t)  t  (12.222) 

To be specific the UV-cutoff ftmax  is taken to be Wmax  = mc2 , which yields 
Qmax  0.78 x 1021  s -1 . The term of the equation of motion (12.220) involving 
the damping kernel can be written as follows, 

 

t  t 

 

2  d  • 
(12.223) d  f de D (t - t i );1(t` ) = — -e  = f de [—

d 
f (t - t' ) ] 7- (t') a  3R-2 dt  dt' 

 

0  0 
t 

•• •  • 
= -e-

2 d - f de f (t - t i  Mt') + f (0)r(t) - f (t)f'(0) . 372  dt 
o 

For times t such that Qmax t » 1, i.e. t » 10' s, we may replace f (t) by 7(5(0 , 
and approximate f (t) 0, while f (0)  = Qmax. Thus we obtain, 

d f  D(t t')F.  (t i  ) = 3e722 ddt  [  (t) + Qinax f•'.  (0] 
o 

which finally leads to the equation of motion, 

e2 
(  

e2 f/max  ) • 
mo + 372  /At) - 

Gir  
— v(t) = P(t), 

(12.224) 

(12.225) 

where ti = ;7.' is the velocity. This equation is known as Abraham-Lorentz equa-
tion (Jackson, 1999). The above derivation, which is similar to the one given 
by Barone and Caldeira (1991), shows that the damping kernel leads to two 
contributions. The first one provides a dressing of the electron mass by an elec-
tromagnetic mass contribution Sm = e21 max /37 2 . This renormalization of the 
electron mass is the same as the one found in Section 12.2.3 (see eqn (12.120)). 
The second contribution introduced by the damping kernel is proportional to 
the third derivative of 77'(t) and describes the damping of the electron motion 
through the emitted radiation. This term is independent of the cutoff. 

The equation of motion (12.225) can be obtained heuristically by means of the 
Larmor formula for the power radiated by an accelerated charge. More rigorously, 
it has been derived by Abraham and by Lorentz from the conservation law for 
the field momentum, assuming a spherically symmetric charge distribution and 
that the momentum is of purely electromagnetic origin (Jackson, 1999). The 
decomposition in  = mo  + Sm of the electron mass into a bare mass mo  and an 
electromagnetic mass contribution (5m is unphysical since the electron is never 
observed without its self-field and the associated field momentum. In other words, 
we identify m with the observed physical mass which enables us to write eqn 
(12.225) as 
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m (il(t) — To  -11,'(t)) = 

where we have defined the characteristic time constant 

e2 
TO =   = —2 r e  0.6 x 10 -23 s. 

67rm 3 

(12.226) 

(12.227) 

As is well known, eqn (12.226), being a classical equation of motion for the 
electron, leads to the problem of exponentially increasing runaway solutions and 
to an apparently acausal classical behaviour known as pre-acceleration (Jackson, 
1999). The time 7-0  represents a characteristic radiation time scale of the electron 
motion in the following sense (see also the corresponding discussion in Section 
12.3.1). Suppose the electron is at rest initially. If the external force f(t) acts 
upon the electron for a short period of time T the condition T >> TO implies 
that the kinetic energy of the electron is large in comparison to the radiated 
energy according to Larmor's formula. This implies that the influence of radiative 
damping may be neglected provided P(t) changes only slightly over times of the 
order of To . As in Section 12.3.1 we shall use this condition in the following. 
It allows us to discard the term involving the damping kernel altogether in the 
classical equations of motion. In the language of Brownian motion we could say 
that the short-time behaviour is that of a strongly underdamped particle and 
that decoherence is entirely due to the noise kernel in the electron propagator 
function. 

It might be useful to formulate this condition also for an electron which moves 
in a harmonic potential 

1  2 _i2  
V(x) = 

2
-mc.,./ o x . 

In this case the classical equation of motion reads 

d2  613  
P+  471- To

dt3
77 ' = 0. 

(12.228) 

(12.229) 

With the help of the ansatz ?At) = 6 exp(zt) we are led to a cubic equation for 
the characteristic frequencies, 

,  — ToZ 2  3  0 

 

Z2 1- Wo  = . (12.230) 

For vanishing coupling to the radiation field (TO  = 0) the solutions are located at 
z+ = ±iwo , describing the free motion of a harmonic oscillator with frequency 
(43 . For TO  > 0 eqn (12.230) has three roots, one is real and the other two are 
complex conjugated to each other. The real root corresponds to the runaway 
solution and must be discarded. Let us assume that the period of the oscillator 
is large compared to the radiation time, 

1 
To < —• 

Lao 
(12.231) 
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Because of (12.227) this assumption is well satisfied even in the regime of optical 
frequencies. We may thus determine the complex roots to lowest order in w0 g-0 , 

1  2  
Z+ = ±iWo — Toc06.  (12.232) 

The purely imaginary roots ±ic.00  of the undisturbed harmonic oscillator are thus 
shifted into the negative half-plane under the influence of the radiation field. The 
negative real part describes the radiative damping. In fact, we see that r(t) decays 
as exp(--yt/2), where 

2  2  traiô 'Y = Tocuo = —3 a mc2  (12.233) 

is the damping constant for the radiative damping of the oscillator. If we consider 
time intervals T of the order of magnitude of one oscillator period, coo-  - 1, we 
have -yr = (woro )(wor) wo ro  < 1. Thus we see again that we may neglect 
effects of radiative damping provided the radiation time TO  is small compared to 
the typical time scale wo-1  of the undisturbed mechanical motion. 

12.3.4.2 Determination of the propagator function We can now determine the 
propagator function for the electron density matrix explicitly for an arbitrary 
quadratic potential. The procedure is essentially the same as the one used in 
Section 3.6.4.2 for the Caldeira-Leggett model. We therefore sketch only briefly 
the result for a free electron moving in the radiation field. The details of the 
calculation may be found in (Breuer and Petruccione, 2000). 

Under the above conditions the propagator function for the electron is found 
to be 

3 f. m 
27rtf exp V.( — (Tf — +  r(Tf,Ctf)} . 

t f 
(12.234) 

As expected, depending only on the difference f'f -  i ,  the propagator function is 
invariant under space translations. Furthermore, one easily recognizes that the 
contribution 

3 
Go (17:f  6,tf)  ( 27rtf  exP  {—tf lrf 17.i)(6t  f 

m, 

is simply the propagator function for the electron's density matrix in the case of 
a vanishing coupling to the radiation field. 

The function T(Tir,  j ,  tf) in eqn (12.234) describes the influence of the radi-
ation field and may be written as 

[ln 0Imax tf + ln (sinh(tf/TB ))1  (qf  Ti ) 2  
t f  I TB  ) J  (ct f) 2  

-  6) 2  (12.236) 2L(tf ) 2  

ArflTf)tfif;14 .i) = 

(12.235) 

r(Tf,Ti,tf) 
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Here, we have introduced the quantity  L(t1) which is defined by 

L(t f) 2  — 
37r 

 [ln af
max 

 

l  t f + ln (
sinh(tf/TB))]  —1 • (ct1) 2 ,  (12.237) 

4a  tf /TB 

and which can be interpreted as a time-dependent coherence length. 

12.3.4.3 Wave packet dynamics With the help of eqn (12.234) we can study 
the time-evolution of electronic wave packets in order to estimate the influence 
of the finite width and of the spreading on the decohrence mechanism. To this 
end, we investigate an initial state given by the superposition of two Gaussian 
wave packets separated by a distance 2a. We assume that both packets have a 
width ao  and that they are centred initially at Y = = ±(a, 0, 0). The packets 
are supposed to approach each other with the average speed y = ko /m > 0. For 
simplicity the motion is assumed to occur along the x-axis. Thus we have the 
initial state 

3/4 

 

5o (x) = 111 (  1 27ra  
exp [  6)2  iko  (Y Et )] 

6  4a6  

 

± A2 
( 

271-0-6

1 )3/4 
exp 

[  dy2  
iko(+ et)] ,  (12.238) 

 4a-02  

where ic'o  = (ko ,  0,0)  and A 1 , A2 are complex amplitudes. Our aim is to determine 
the interference pattern that arises in the moment tf = a/v of the collision of 
the centres of the packets at Y = 0. The position space density at the time tf is 
found with the help of the formula 

Prn(f.f,tf)  E  Prn(rf,q.f = 01t1)  (12.239) 

 

3  2 

 

= f d3 ri f d3 qi m  exp  (r1 77'04;  qt   27rtf  2L(t f) 2  
11 

0(i  + —2 aii4-,;( 17/ - 

Performing the Gaussian integrations we get the result 

(

1   \ 3/2 

 (12.240) 
27 (3- (t f  ) 2  ) 

exp [ 2  1:(ftf2 )2 j  

x 11A 1 1 2  + 021 2  + (A i  A; exp [icp(Ff) + r(t f )i)}. 

We recognize a Gaussian envelope centred at r f  = 0 with width a- (tf). an inco-
herent sum lAi 1 2  ± 021 2 , and an interference term proportional to _4 1 _4. The 
interference term involves the phase 

Prn(Ff ) t  f) = 

cpVf ) = —2k.oFf  (1 —  (12.241) 
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as well as the decoherence function 

(12.242) 

The quantity E is given by 

-1 (  Li  (b)2  n.1 2 0.4 (t f  )2 ) 
E = 1 +  j, +   

44  t!  f 
(12.243) 

The term —24rf of the phase cp(f'f) describes the interference pattern as it 
would be obtained for a free Schrödinger particle, while the term 2k'orf  E leads to 
a modification of the period of the pattern. Moreover, without the contribution 
proportional to E the decoherence function (12.242) exactly coincides with the 
expression (12.207). Thus we see that the influence of the finite width and of the 
spreading of the wave packets brought to interference may indeed be neglected 
provided the condition E < 1 holds. This condition is always satisfied in the 
present approximation. Since E attains the maximum value 

1 
Em ax =  (12.244) 

1 + mL(t f) 2  It f 

one is led to the requirement L(t f) 2  » ht f / rn, which is always fulfilled for times 
tf and temperatures T satisfying ctf »  Ac and kBT < mc2 . 

12.4 Decoherence of many-particle states 

In the previous section we have obtained several expressions for the decoherence 
functional which describes the loss of coherence in an interference device. We 
address here the question as to whether these results could explain the absence 
of the coherence of certain superpositions of states that can be considered as 
macroscopically distinct. 

For single electrons the vacuum decoherence through bremsstrahlung turns 
out to be small at non-relativistic speeds. For example, taking (A max  — c/Ac and 
t1  of the order of 1 s, and using a velocity y which is already as large as 1/10 
of the speed of light, one finds that iFyac i — 10 -2 , which corresponds to a 1% 
suppression of interference. By virtue of the weak logarithmic dependence on the 
cutoff scale this estimate is true also for other particles carrying an elementary 
charge. 

Matters could however be different for many-particle states. To investigate 
this case it is important to specify clearly the structure of the superposition 
under consideration. We distinguish two extreme classes of many-particle states 
(Joos, 1996). If (,) and bp2) are two states containing only a small number of 
particles, one may consider a superposition of the form 

i tF = (cd(P1) + 3 1S02» N  .  (12.245) 
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As our notation indicates, the state IT) is an N-fold tensor product of a superpo-
sition of the few-particle states ly t ) and Iç 22 ). Therefore, the decoherence factor 
for IT) is expected to be very small. 

The situation changes, however, substantially if one considers another class 
of states, namely those of the form 

IT) = ctl(Pi N  + 01(P2r.  (12.246) 

In contrast to (12.245) this is a superposition of two N-fold tensor products. It 
is this class of states that will be investigated in the following regarding their 
decoherence properties. Our aim is to derive the dependence of the decoherence 
functional on the particle number N 

Let us consider a system which is composed of N identical particles with 
mass m and charp e. Our aim is to construct an effective master equation for 
the density pcm  (R, fi') of the centre-of-mass coordinate 

1  (12.247) 
i=1 

for such a system. Here, the  x are the particle coordinates and we suppress, for 
simplicity, the spin degree of freedom. We introduce the relative coordinates ei  
through 

fi + 4 (0.  (12.248) 

Since the sum up to zero, they are functions of 3N — 3 internal variables which 
we denote collective by q. Let us suppose that the state of the N-particle system 
is described in the position representation by a density matrix of the form 

Pm = Pcm(fi, fi')Pint(q, q`),  (12.249) 

where pcm  and pint  are separately normalized to 1, 
I. 
 d3  R pcni (14, fi) = f dq pi nt (q,q) = 1.  (12.250) 

The density matrix pcm  describes the centre-of-mass coordinate, while pint  rep-
resents the state of the internal degrees of freedom. For example, one finds that 
the quantity 

1 W - R) = f dq E  fi 71(q)) pint (q,q) 
j=1 

(12.251) 

is the density of finding a particle at Y under the condition that the centre-of-
mass coordinate is at R. This function is obviously normalized as 
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f d3 x w(i) = 1.  (12.252) 

If the system described by the state (12.249) performs a translational motion 
it is reasonable to assume that its total current density can be approximated by 
an effective current density of the form 

(x) = —Ne  {/5w(I fi) +  fi)P} ,  (12.253) 2M 
where 1  = -ialafi is the total momentum canonically conjugated to the centre-
of-mass coordinate fi, Ne is the total charge and M = Nm the total mass. The 
expression (12.253) implies that the current density of the internal degrees of 
freedom vanishes. In particular, it excludes the possibility that the whole systems 
is in a rotational state which would require us to introduce three further collective 
coordinates as, for example, the three Euler angles. 

Equation (12.253) shows that the case of an N-particle system can be dealt 
with by using the replacements e -4 Ne and m M = Nm, and by interpret-
ing the length scale cro , which appears in the UV cutoff scale ftmax 1/a-0, as the 
linear extension of the one-particle density w(Z). A representation for the density 
matrix pcm  (fi, 11`) is then obtained from (12.89) by substituting the effective cur-
rent (12.253) into the functional (12.99). Invoking the non-relativistic (dipole) 
approximation one is led to the following representation for the centre-of-mass 
density, 

t f  t f  

Pcm (tf ) = T (, exp f dt f de {—i  D(t — t') 
ti  ti  

2  
P (t) P(ti)  
M M 

--
1

D1(t — ti)
fic(t)  Pe (t' )  

2  M M 

(12.254) 

Pcm (ti), 

  

where 15,(t) and 1(t) denote the interaction picture commutator and anticom 
mutator super-operators for the total momentum. The dissipation and the noise 
kernel are given by the expressions (12.213), where the spectral density now takes 
the form 

N 2 e 2 
J(w)  32  ci.; 0(Q max  —  (12.255) 

The results of Section 12.3.4 can now immediately be transferred to the 
present case with the help of the replacements given above. It follows that the 
vacuum decoherence functional for an N-particle state scales with the square N2  
of the particle number, 

—N 2-8Q  ln (gnmaxtf) V 2 .  (12.256) 37r 
This scaling with the particle number obviously leads to a strong amplification of 
the decoherence effect. To give a very extreme example we take N = 1022  which 

rvac 
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corresponds to u0  — 1 cm for typical free electron densities in metals. Let us ask 
for the maximal speed y leading to 1% decoherence. With the help of (12.256) 
we find y 10 -14 m s -1 . For a distance of 1 m this implies, for example, that a 
successful interference experiment would take about three million years! 

The scaling (12.256) of F with the square N 2  of the particle number can be 
traced back to two facts. First, the radiative back-action is proportional to the 
square of the total charge since the emitted radiation adds coherently in the 
limit of long wavelength. Second, the decoherence functional only depends on 
the logarithm of the cutoff  1max,  which means that it depends only very weakly 
on the total mass or on the spatial extent of the N-particle state. In the cases 
discussed here one must expect, of course, a large radiative damping in addition 
to the decoherence effect. It is of great fundamental interest to investigate also 
the influence of these phenomena for composite neutral objects. 
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