
Physics 581, Quantum Optics II 
Problem Set #3 

Due: Monday March 7, 2024 
 

Choose 2 out of 3 problems.  Extra credit for all three or any combination of these. 
 
Problem 1: Gaussian States in Quantum Optics (35 points) 
 
The set of states whose quadrature fluctuations are Gaussian distributed about a mean value is an 
important class in quantum optics.  These states have Gaussian Wigner functions.  In this problem, 
we explore Gaussian states, their relationship to squeezing, and the canonical algebra of phase 
space. 
 
Consider a field of n-modes, with quadrature defined by an ordered vector: 
 

. 
 

The operators associated with these quadratures satisfy a set of canonical commutators relations 
that can be written compactly as, 
 

, where  is a skew-symmetric matrix.   

We define an “inner product” in phase space as   (summed over repeated indices 
through this problem). 
 
(a) Show that the phase space displacement operator can be written 
 

 

 
A Gaussian state is one whose Wigner function is a Gaussian function on phase space.  Recall 
the characteristic function of a quantum state is defined .   
The general form of the characteristic function for a Gaussian state with is: 
 

. 

 
Where  is known as the covariance matrix, and  is a real vector. 
 

(b) Show that: , and , where . 

Hint:  Recall how moments are found from the characteristic function. 
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The Gaussian state is thus determined by the mean position in phase space and the covariance of 
all the fluctuations. 
 
(c) Find the Wigner function for a state with the general form of the characteristic function. 
 
Let us restrict our attention to Gaussian states with zero mean (the mean is irrelevant to the 
statistics and can always be removed via a displacement operation).   Consider now unitary 
transformations on the state.  A particular class of transformations is the set that act as linear 
canonical transformations, i.e. 
 

, where  is a symplectic matrix, defined by . 
 

 
A unitary map on the state transforms the state according to  
 

. 
 

(d) Show that for a symplectic transformation, the characteristic function transforms as 
 

 
 
and thus the action of the unitary is to preserve the Gaussian statistics, by transforming 
covariance matrix as . 
 
(e) Show that the following operations preserve Gaussian statistics: 

• Linear optics:  

• Squeezing:  
 

(f) For each of these, show how the covariance matrix of the Gaussian transforms. 
 
(g) Starting with the vacuum (a Gaussian state) apply the squeezing operator above.  Show that 
the symplectic transformation on the covariant matrix leads to the expected result. 
 
 
Problem 2:  The EPR state (35 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of 
measurements on an entangled state of the motion of two particles.  The EPR state is a 
simultaneous eigenstate of relative position and the center-of-mass momentum 
 

 ,   
 

The purpose of this problem is to show how one can create an approximation to this state in 
quantum optics, and to study their entanglement properties. 
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Consider now a parametric oscillator beyond the perturbative limit, where two modes (A and B) 
are phase matched with the pump.  The resulting output state is a two-mode squeezed vacuum 
state 
 

 
 

Our goal is to show that in the limit of infinite squeezing, the is the EPR state. 
 
(a) Show that, , and thus this operation squeezes the “relative 
position” and “center-of-mass momentum” quadratures.  
 
(b) Show that ,  .  This is a 
Heisenberg statement. (d) From this argue that, up to normalization (which is tricky) 
 

 
 

(c) Show that the (normalized) position space wave function for the two modes is 
 

  (plot for r=2) 

 
and in the limit of infinite squeezing  

 
 

(d) By similar arguments, show that the (normalized) momentum space wave function is 
 

   (plot for r=2) 

 
and in the limit of infinite squeezing  

Thus argue that in the limit of infinite squeezing, the two-mode squeezed vacuum is the EPR 
state.   
 
 
(e) Show that in the limit of infinite squeezing, the two-mode squeezed state can be expressed as 
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Note:  This is maximally entangled state in infinite dimensions.  It is not a physical state, 
however, as it requires infinite energy.  Nonetheless, we approximate is with large, but finite 
squeezing. 
 
(f) Show that the Wigner function for the two-mode state is  
 

 

 
(g)  The Wigner function is positive, meaning there is a classical local probabilistic description 
of joint measurements of .  What are the implications for the EPR paradox and 

Bell’s inequalities?  
 
 
Problem 3:  Quantum Tomography  (35 points) 
 
We have shown that Wigner function could be expressed as 
 

, where   

 
(a) Show that . 
 
(b) Show that .  (This is not straight forward.  You may assume the answer and 
work backwards or try to find a direct proof). 
 
Note: the operator  is the “parity operator” (+1 for even 

parity, -1 for odd parity).  Thus, we see that the Wigner function at the origin is given by the 
expected value of the parity. 
 

. 

 
(c) Show that general expression 
 

, 

and thus . 
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†â

(−1)â
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This expression provides a way to “measure” the Wigner function.  One displaces the state to the 
point of interest, , one then measures the photon statistics 

.  Putting this in the parity sum gives  at that point! 
 
This is a form a quantum-state reconstruction, also known as “quantum tomography.”  
 
Form Wikipedia: “Tomography refers to imaging by sections or sectioning.”  The idea is to 
reconstruct a three dimensional object by a series of projections onto different planes. 
 

 
The term “quantum tomography,” was coined by the group of Raymer (Smithey et al., PRL 70, 
1244 (1993)) in the context of reconstructing the Wigner function of a light mode.  This was based 
on the work of Vogel and Risken (PRA 40, 2847 (1989)) who showed that the Wigner function 
was related to the measurements of the marginals – the projections of the Wigner function onto a 
plane. 
 

 
 

We learned that a homodyne detector measures a quadrature of the field with the plane 
determined by the phase of the local oscillator.  Thus, the measurement outcome sampled from 
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the probability distribution, ,  where   are the eigenstates of 

  
 
The goal of quantum tomography is to invert and determine   (or equivalently ) given 

.   
 
(d) Prove the following Lemma. 

Given , show that by transforming the polar coordinates in the 

Fourier plane, 

. 

 
(e) Starting with the trivial identity, 
 

, 
 

and the result of part (a), show that the Wigner function can be obtained form the marginals by, 
 

,  

where the integral kernel  
 

 . 

 
This is known as the “Radon transformation,” originally written in the context of classical 
tomographic image processing. 
 
We see immediately that integral kernel is not well defined and blows up.  This means that the 
Radon transformation is numerically unstable.  In addition, it is not robust to the physical case 
that we have only a discrete set of measurements of , and the detection is not perfect. 
 
In the intervening decades since the original experiments in quantum tomography, the 
reconstruction process has been refined with more sophisticated estimation schemes based on 
statistical interference.  This has spurred a line of research in quantum information science 
regarding the question of what is required to reconstruct a quantum state given finite 
measurement resources and noise. 
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− iθ + â†eiθ ) / 2 = X̂ cosθ + P̂sinθ

ρ̂ W (α )
pr(Xθ ), ∀θ{ }

δ (x)δ (y) =
dkxdky
2π( )2

e− ikxx e− ikyy∫

δ (X − ′X )δ (P − ′P ) = 1
2π( )2

k dk
0

∞

∫ dθ e− ik (Xθ − ′Xθ )

0

2π

∫ = 1
2π( )2

k dk
−∞

∞

∫ dθ e− ik (Xθ − ′Xθ )

0

π

∫

W (X,P) = d ′X d ′P δ (X − ′X )δ (P − ′P )W ( ′X , ′P )∫

W (X,P) = dθ
0

π

∫ d ′Xθ pr( ′Xθ )K(Xθ − ′Xθ )
−∞

∞

∫

K(X) = 1
4π 2 dk

−∞

∞

∫ k e− ikX

pr(Xθ ){ }


