
Physics 581, Quantum Optics II 
Problem Set #4 

Due: Friday March 22, 2024 
 
Problem 1: Entanglement and the Jaynes-Cummings Model (30 points)  
One the most fundamental paradigms in quantum optics is the coupling of a two-level atom to a 
single mode of the quantized electromagnetic field.  In the rotating wave approximation, this is 
governed by the Jaynes-Cummings model (JCM), 
 

. 

 
This is a bipartite system with tensor product Hilbert space for the atom and field, 

, where  is the two-dimensional Hilbert space of the two-level atom, and  is 
the infinite dimensional Hilbert space of the harmonic oscillator that describes the mode.  The 
goal of this problem is to understand the entanglement between the atom and mode, generated by 
the JCM. 

 
Last semester, we studied how this leads to collapse and revival of Rabi oscillation that follows 
from an initial product state with the field in a coherent state and the atom in, e.g., the ground 
state .  The probability to find the atom in the excited state oscillates as 

shown (here for ) 
 

 
 
The collapse is due to the variation of the quantum Rabi oscillations with different number; the 
revival is uniquely a quantum effect arising from the discreteness of the quantized field, 
occurring at a time  for large . 
 
(a) Let us consider the case on resonance with . Show that in the interaction picture, the 
state at time t the joint state takes the form 
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where , ,  . 

Note  are not normalized, nor are they orthogonal. 

(b) Show that the marginal state of the atom in the  basis is 
 

. 

 
Write an expression for Bloch vector . 

 
(c) Write the purity of the marginal (a measure of the entanglement between the atom and field), 
in terms of the Bloch vector.  Numerically calculate this and plot as a function of time for 

.  Your graph should look like 
 

 
 
This plots shows a few surprising features.   During the collapse the atom and field become 
highly entangled, as indicated by the rapid degree in the atomic purity.  However, at half the 
revival time, , when the inversion looks to be flat, the purity returns to near unity, 
indicating that the atom and field become separable.  The atom and field then become re-
entangled.  When the Rabi oscillations once again revive, the purity again increases, but nowhere 
near to unity.  Our goal now is to use the Schmidt decomposition to understand this. 
 
(d) Given the initial pure state of the joint system and the unitary evolution according to the 
JCM, we know that at all times we can express the state in terms of Schmidt decomposition. 
 

. 

Note, even though the field mode is infinite dimensional, the maximum Schmidt number is 2.   
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Express the two values of  in terms of the Bloch vector .  Calculate numerically at plot 
as function of time.  Your graphs should look like the following: 
 

 
 
Comment on this and what it means for the entanglement. 
 
(e) We can find the Schmidt vectors by the following procedure.   
- Find the atomic Schmidt vectors  as the eigenvectors of the marginal state  in 

the standard basis .  

- Using , find an expres-

sion for the two Schmidt vectors of the field  in terms of .  

 
(f) We can see the (approximate) separation between atom and field at half the revival time for 
large  as follows.  Show that in this limit, 
 

, where  and  . 
 

Using this, show that 
 . 

 
Thus, we see that the system is separable, with the atom in an equal superposition depending on 
the phase of the coherence state.   
(g) Extra credit (5 points):  More generally show that if  
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This result shows that regardless of the atomic initial state, at half the revival time, the atom goes 
to the same state.  The information about the initial atomic superposition is transferred to the field 
in a kind of “swap gate.”   
For large a , the two field states are macroscopically distinguishable.  This is kind of “Schrödinger 
cat”. 


