
Trap-induced resonances
in controlled atomic collisions

for quantum information processing

by
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iii



Dedication

In memory of my grandmother, Margarethe Müller.

iv



Acknowledgments

I have had many excellent physics teachers since I first started out in physics. I
thank all of them for providing inspiration and support. However, no other teacher
has helped shape me into a scientist as much as my advisor Professor Ivan Deutsch.
He first introduced me to the wonderful fields of quantum optics and quantum infor-
mation, and even managed to convince me to get involved in scattering theory and
atomic physics. It is impossible to express in words my thanks for all his guidance
and his continuing confidence in me. Furthermore, I would like to thank the mem-
bers of my dissertation committee, Professor Paul Alsing, Professor Debi Evans, and
Professor Carl Caves for their support, the many discussions, and all their comments
and suggestions. The members of the theoretical atomic physics group at NIST,
Gaithersburg, Dr. Carl Williams, Dr. Paul Julienne, Dr. Eita Tiesinga, and Dr.
Sanjiv Shresta have taught me much about atomic collisional physics. In particular,
I would like to thank Dr. Eric Bolda for his help in shaping this work and for all the
long telephone discussions. Thanks to Professor Poul Jessen’s experimental group
at the University of Arizona for always keeping this work down to earth.

This process would not have been as enjoyable without all the people in the
quantum information group at UNM. Thanks to John, Gavin, Trace, Dave, Iris and
especially Drew for many helpful discussions. Very special thanks also to Joe, Kiran,
Andrew, Bryan and Steve, who never grew tired of joining for lunch.

I would like to specially thank my parents. Without their encouragement, help,
and support, I would not be the person I am today. Many heartfelt thanks also to
my brother Patrick. I hope I can provide as much support during his Ph.D. as he
did for me. And last but most importantly, I would like to thank my wife Shohini,
for all her love and her never-ending support. Without her many ‘pep’ talks I would
have never been able to make it this far. I would climb rooftops again anytime for
my other half.

v



Trap-induced resonances
in controlled atomic collisions

for quantum information processing

by
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Abstract

Controlled collisions of ultracold atoms in optical lattices provide new avenues for

quantum control and quantum information processing. The ability to precisely vary

lattice parameters and the rich internal structure of trapped atoms allow for novel

state manipulation. In this research, we investigate and develop new methods for

analyzing and designing coherent controlled collisions of ultracold atoms in separated

traps.

In order to describe controlled atomic collisions, we develop a detailed scatter-

ing model, based on a fully generalized multichannel Fermi pseudopotential, which

captures the complete scattering properties and bound states of the true atomic

interaction. We derive a proper generalized version of Fermi’s pseudopotential for

all higher partial waves based on a δ-shell potential in the limit as the shell radius

approaches zero, thereby taking into account the higher multipoles not captured by
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a δ-function at the origin. This pseudopotential corrects long-standing problems in

previous generalizations and opens up new possibilities for studying interacting cold

atomic gases with high accuracy. We show that this energy-dependent δ-shell po-

tential not only captures the scattering behavior of realistic potentials correctly, but

also reproduces the bound-state spectrum when the scattering length is extended to

negative energies.

Our generalized pseudopotential can be applied to study interacting trapped

atoms in harmonic traps. Using the δ-shell approach, we derive analytical equa-

tions for the energy eigenvalues and the eigensolutions. The resulting higher partial

wave solutions are investigated and discussed in detail. By analyzing a spherical step-

well test potential, we evaluate and discuss the breakdown of the pseudopotential

approximation in the regime of strong confinement by the trapping potential.

Of particular interest is the investigation of controlled collisions of atoms in sepa-

rated but close traps. We show that for certain trap separations, resonances between

molecular bound states and trap eigenstates appear. As the separation between the

traps is increased, the energy of the molecular bound state closest to dissociation

increases. Avoided crossings occur in the eigenspectrum when the energy of this

molecular bound state becomes resonant with eigenstates of the trapping potential.

These newly predicted “trap-induced resonances” represent the main result of this

work. They are not accounted for in a perturbation theory approach and can be

easily observed in very tight traps, which are typical, for example, in optical lattices.

The properties of these trap-induced resonances are analyzed and discussed in detail

for isotropic and anisotropic separated traps.

These newly predicted trap-induced resonances could feasibly be experimentally

observed under realistic circumstances. A particularly promising candidate species

is 133Cs. A detailed multichannel scattering calculation, based on realistic interac-

tion potentials of 133Cs including higher partial waves and second order spin-orbit
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coupling, shows an extremely weakly bound state near dissociation. We apply a

multichannel formulation of our generalized pseudopotential to calculate the energy

spectrum for interacting 133Cs atoms as a function of trap separation. The energy

gap in the spectrum provides a signature by which the trap-induced resonance could

be experimentally observed, and we discuss how this could be done in detail. Fur-

thermore, we evaluate the possible implementation of two-qubit logic gates under

realistic conditions in 133Cs using this resonant interaction, and address some of the

limitations to the fidelity of such gates.
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Chapter 1

Introduction

The central goal of this dissertation is the development of a detailed scattering model

for the description of interacting trapped atoms with particular focus on spatially

separated trapped atoms for quantum information processing. Our description of the

interaction between atoms is based on a correctly generalized energy-dependent pseu-

dopotential, which captures the complete higher partial-wave scattering and bound-

state spectrum of the true interaction. We apply this model to trapped atoms with

an emphasis on ultra-cold collisions of separated atoms in optical lattices. We show

that this setting provides new possibilities for controlling collisions via trap-induced

resonances (TIR). These newly predicted resonances between a weakly bound state

of the molecular interaction and trap eigenstates result in a strong coupling of atoms

in separated traps, thus providing new avenues for robust encoding of quantum in-

formation and for controlling the two-qubit interaction for entangling neutral atoms

for quantum computing. We evaluate the feasibility of observing these resonances in

a particular promising species, 133Cs, via a detailed multichannel calculation of the

relevant scattering properties.

The description of atomic interactions by scattering models and more concretely

1



Chapter 1. Introduction

by pseudopotentials, has existed for close to 70 years starting with Fermi’s original

pseudopotential. The application of these scattering models to trapped atoms has

become important due to the huge advances in cooling and trapping of atoms over the

past decade. More recently, trapped neutral atoms have been proposed for quantum

information processing. Here, the interactions between atoms are essential to design

a necessary ingredient for quantum computing, two-qubit entangling gates.

In this introduction, we will attempt to review some of current research in this

field. We will identify crucial unresolved problems and open questions, which we

address in this thesis. Although our primary goal was to address specific questions

regarding entangling atoms for QIP, the general models we developed during the

course of this research are widely applicable to variety of contexts. We present a

short overview of the dissertation at the end of this chapter.

1.1 Coherent control of atoms and quantum infor-

mation processing

The ability to arbitrarily manipulate the quantum state of a many-body ensemble

represents the ultimate control of a physical system. This task has steadily advanced

in atomic-molecular-optical systems starting with developments in coherent radio

frequency, microwave, and laser spectroscopy, and with the tremendous progress

in cooling and trapping technology. This has led to the creation of Bose-Einstein

condensates (BEC) and Fermi degenerate gases, and the explorations of new forms

of matter and mesoscopic quantum states previously accessible only in condensed

matter systems [1]. The addition of engineered traps, such as optical lattices [2] and

other optical [3, 4] and magnetic [5] microtraps provides a new knob with which to

control the quantum state. A dramatic example of many-body control in lattices was

2



Chapter 1. Introduction

demonstrated through the observation of a superfluid to Mott insulator quantum

phase transition [6], the collapse and revival of the mean field coherence [7], and

recently the observation of a 1D Tonks gas of impenetrable bosonic atoms [8].

The standard approach to modeling and designing coherent states of matter has

its foundations in condensed matter theory, where one considers solutions to the

entire many-body Hamiltonian. An alternative viewpoint arises from a fundamental

theorem of quantum information theory [9]. Given a well defined Hilbert space

that is a tensor product of many subsystems (“bodies”), any unitary operator on the

large space can be constructed from a tensor product of well defined operators acting

solely on one subsystem or pairs of subsystems [9]. This theorem about “universal

quantum logic gates” implies that an arbitrary state of a many-body system can

be reached entirely through operations on single bodies and pairwise interactions.

Moreover, one requires only a single two-body interaction (e.g. CPHASE or CNOT

gate) that entangles the “particles” to contribute to a universal set of quantum logic

gates. Thus the control of the two-body interaction is the crucial step in many-body

coherent control problems including all quantum information processing protocols.

In this thesis, we attack the problem of many-body control from a quantum

information perspective. Rather than modeling the entire many-body Hamiltonian,

we will focus on the detailed description of the two-body interaction that can be used

to implement a universal two-body unitary and ultimately to control the complete

many-body system.

1.1.1 Optical traps and optical lattices

The quantum control of neutral atoms is closely linked to the particular trapping and

cooling arrangements used. Neutral atoms generally interact very weakly with the

environment and hence represent one of most coherent physical systems. While this

3



Chapter 1. Introduction

feature is of importance e.g. for the success of neutral atom clocks, this also represent

one of the biggest challenges for neutral atom trapping and control. Whereas ions can

be easily trapped using Coulomb interactions, neutral atom traps are more difficult

to achieve and are generally based on weak interaction of their electric or magnetic

dipole moments with AC and/or DC electromagnetic fields.

In this dissertation, we will focus in particular on atoms trapped in optical lattices.

The idea of optical lattices grew originally out of Doppler cooling experiments where

two red detuned, counter propagating laser beams are used to exert an effective

frictional force on the atoms. Very early, it was realized that the atoms are not

only cooled in this arrangement, but also trapped in a periodic potential created by

the counter propagating laser beams. This realization is also closely linked to the

surprising fact that the inclusion of the complicated internal structure of the atom

leads to more efficient cooling of atoms beyond the Doppler limit (Sisyphus cooling).

A more detailed history of laser cooling and trapping can be found in Ref. [10].

In order to understand the optical lattice system, consider two counter propa-

gating linear polarized laser beams detuned by ∆ from the S1/2 to P3/2 transition of

an alkali atom (e.g. Rb or Cs). Depending on the angle between the linear polar-

izations of these two beams (1-D lin-angle-lin lattice), the resulting light field can

be decomposed into σ+ and σ− standing waves whose nodes are separated by θl/kl,

where kl is the wave number of the applied light field. The corresponding light shift

potential results from the dipole interaction between the atom and the laser field

El = E0el [10],

Û = −1

4
E∗

l · α̂ ·El , (1.1)

where α̂ is the atomic polarizability tensor. For a multilevel atom, the polarizability

tensor depends on the internal states of the atom and can be broken down into its

irreducible components: a scalar, a vector, and a rank-2 tensor term. For a two

level atom (e.g. an alkali atom with a single valence electron with spin-1/2) the

4



Chapter 1. Introduction

polarizability tensor consists of only the scalar term, which is independent of the

atomic state, and a vector term, which is state dependent. This leads to an effective

Zeeman interaction [2, 10],

Û = U0 (z)− µ̂ ·Bfict (z) (1.2)

with µ = −µBσ. Here, µB is the Bohr magneton and σ is the vector consisting of

the Pauli matrices. U0 = 2
3
U1 |el(z)|2 where el(z) is the local laser polarization [10].

The single beam light shift U1 determines the depth of the optical lattice and is

proportional to E2
0/∆. For large detuning ∆, one can still achieve deep optical

lattices while keeping the spontaneous emission rate γ ∝ 1/∆2 low.

In the case of the lin-angle-lin geometry, the state-dependent light-shift potential

for a two level system with spin up (↑) and spin down (↓) is

Û↑↓(z) =
4

3
U1 cos θl cos (2klz)∓

2

3
U1 sin θl sin(2klz) . (1.3)

If we include the hyperfine structure of realistic multilevel alkali atoms with total

angular momentum vector f̂ and quantum number f , the form of the light shift

potential remains the same if the optical trap laser is detuned sufficiently far from

resonance. In that case, the excited state hyperfine splitting is not resolved and the

trap laser only couples to the electron spin, not the nuclear spin. Then the atom

effectively looks like a spin 1/2 system. The atomic magnetic moment in Eq. (1.2)

follows from the Lande projection theorem and is given by

µ̂ = −g µB
f̂

f
, (1.4)

where γ is the gyromagnetic ratio, and the g-factor is −1 (+1) for the lower (upper)

hyperfine manifold. The 1D lin-angle-lin lattice potential for an atom in the magnetic

hyperfine sublevel denoted by mf is then

Ûf,mf
(z) =

4

3
U1 cos θl cos(2klz)−

2

3
U1 sin θl sin(2klz)

g mf

f
. (1.5)
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(b)

θ=π/3

Figure 1.1: (a) Atomic hyperfine levels for Cs with hyperfine ground states f = 3 and
f = 4. The blue levels are primarily trapped in the σ+ standing wave, the red levels
are primarily trapped in the σ− standing wave. (b) Corresponding state-dependent
optical lattice potential for θ = π/3.

Here mf is the quantum number of the projection of f along the quantization axis.

This state-dependent trapping potential is the foundation for designing quantum-

computing protocols. Figure 1.1(a) shows the different magnet hyperfine sublevels

that are primarily trapped by the σ+ (blue levels) vs. the σ− (red colored levels).

The signs of the σ± trapped magnetic sublevels are switched for the excited hyperfine

manifold due to the opposite sign of the g-factor. If we consider two atoms in different

states, which experience different light shifts, we can simply control the separation

between atoms by rotating the polarization angle between the linear polarizations of

6
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the lattice beams as illustrated in Fig. 1.2. Since the interaction between atoms is of

fairly short range, this translates into a precise way for controlling the interatomic

interaction. As an alternative to optical lattices, several other trap arrangements,

which are based on other optical [3, 4] and/or magnetic [5] microtraps, have been

conceived.

θ

y

x

z

Figure 1.2: Schematic of a 3D optical lattice. (a) Two pairs of linearly polarized
beams provide transverse confinement, and the beams along z in the lin-angle-lin
configuration provide longitudinal confinement in σ+ and σ− standing waves. (b)
Potential surfaces for the atom in different magnetic sublevels, described in the text,
shown here as in gray and white, are moved along the z-axis through a rotation of
the angle θ between polarization vectors for controlled collisions.
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1.1.2 Interacting atoms under strong confinement

Atoms in traps have become an important tool for atomic physics, condensed matter

physics, and more recently quantum information physics. For many of these systems,

interactions between atoms play a crucial role. The interaction strength and sign

determines for example the stability of the Bose condensate, and is responsible for

the creation of molecules. Many body collisions close to a scattering resonance have

led to the implosion (“Bosenova”) of a BEC [11]. In addition, the tunability of

the atomic interaction via molecular Feshbach resonances has widely expanded the

controllability of such atomic systems [12]. Feshbach resonances describe in general

the coupling of an energetically accessible state (open channel) to a bound state

of an energetically inaccessible state (closed channel) [13–15] (see Fig. 1.3). At

V r( )

r

bound

state

E

scattering 

state f↓ + f↑

f↓ + f↓

Figure 1.3: Schematic of a Feshbach resonance. Here, an energetically accessible scat-
tering state (open channel) couples to a molecular bound state of an asymptotically
energetically inaccessible state (closed channel) for a higher hyperfine manifold.

the Feshbach resonance, the scattering length a diverges and changes signs. For

energies slightly below the resonance, a→ −∞ and the interaction is attractive; for

energies slightly above, a → +∞ and the interaction is repulsive. The location of

the Feshbach resonant bound state is in general sensitive to magnetic fields. The

8
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interaction is therefore tunable by changes in the applied magnetic field.

The above examples illustrate the importance of the interaction for atoms in

traps. The reverse is true as well. Strong confinement can have a large effect on the

interaction between atoms, even to the degree that an interacting Bosonic system can

effectively behave as gas of Fermions and obey Fermi statistics [16, 17]. Important

examples of such systems are interacting atoms under strong 1D or 2D confinement.

Quasi 1D systems, where the atomic gas is strongly confinement in two directions,

have been studied in great detail by several authors [18–21]. These systems are of

particular interest due to the prediction of a Tonks-Girardeu gas [16–18], which has

recently been observed experimentally in an optical lattice system of tightly confined

1D tubes [8]. Olshanii [18] derived an effective 1D coupling strength that is related

to 3D scattering length a and the confinement in the transverse direction ρ⊥ via

g1D =
2~

2a

µρ2
⊥

1

1− C a
ρ⊥

, (1.6)

where the constant C ≈ 1.4603. For a = ρ⊥/C, a resonance in the coupling strength

occurs, which leads to a 1D chain of impenetrable bosons [18]. Due to the strong

repulsive interactions and the 1D confinement, the exchange of atoms is not pos-

sible and it has been shown that the elementary excitations in this system obey

Fermi statistics [16, 17]. Recently, the origin of the resonance in Eq. (1.6) has been

attributed to a Feshbach like, confinement-induced resonance where the resonance

is caused by a bound state of a closed channel of the transverse mode [20]. This

resonance is of particular importance since it allows the control of the effective 1D

interaction strength and exploration of different regimes of the BEC vs. the Tonks-

gas by simply varying the confinement of atoms in the transverse direction. In this

thesis, we will show another example where the confinement represents an important

knob with which to control the interaction between atoms.

Quasi 2D systems where the gas is only strongly confined in one direction have

been the focus of much research as well [22–24]. Here, the strong confinement of

9
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the atomic system provides a clean condensed matter system to study fractional

anyon statistics and the fractional quantum hall effect [25] or the Kosterlitz-Thouless

transition for interacting bosons in 2D [26].

An example of a 3D many-body system is a BEC loaded into a shallow 3D optical

lattice. It has been shown that this system undergoes a quantum phase transition

if the lattice depth is increased gradually [27]. During this process, the ratio of the

atomic interaction strength to the tunneling rate determines the different regimes for

a superfluid and the Mott insulator state similar to experimental realization of the

Tonks-Girardeau gas described earlier. In the Mott insulator state the Poissonian

number fluctuation of atoms per site is suppressed and only an integer number of

atoms is found at each site. The experimental realization by Greiner et al. [6] rep-

resents one of the most important steps towards a neutral atom quantum computer,

since the Mott insulator state with exactly one atom per site presents the perfect way

of initializing the many-body state that is necessary for quantum computing. Due to

the breakthrough experiments by Greiner et al. this quantum phase transition has

attracted considerable interest over the past few years.

The multitude of the systems discussed here, underlines the importance of con-

finement induced effects on the interaction between atoms and its description. The

modeling of the interactions in trapped environments constitutes an interesting and

important problem, and has rightfully become the main topic of the first few chapters

of this thesis.

1.2 Quantum computation in optical lattices

Confinement induced effects on the interaction between atoms as discussed in the

previous section represent a very new and exciting field. Its importance in applica-

tions where interactions play a central role, cannot be underestimated as we will show

10
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later in this thesis. We are particularly interested in ways that confinement induced

effects will impact the design of two-qubit gates for quantum information processing

and possibly extend existing protocols. In the following section, we briefly describe

the general requirements for quantum computation and discuss protocols for imple-

mentations in optical lattices. We further discuss the experimental progress towards

neutral atom quantum computation that has taken place over the last few years.

1.2.1 Protocols for neutral atom quantum computing

The basic design of a QIP protocol in the standard quantum circuit model involves

a choice of qubit encoding, initialization method, single- and two-qubit gates, and

read-out method. For neutral atoms that only interact weakly at very short dis-

tances, the implementation of two-qubit entangling gates through basic interatomic

interactions poses the biggest challenge. In the following, we will focus on the differ-

ent proposals for entangling atoms that have been developed by several groups. As

an example of a unitary two-qubit gate, we consider the controlled-phase (CPhase)

gate [9] which maps the two-qubit logical basis states |11〉 → − |11〉, and leaves the

others unchanged according to

CPHASE =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1















. (1.7)

The controlled-phase gate can be easily implemented via a simple unitary operation

U =















e−i
E00

~
tint 0 0 0

0 e−i
E01

~
tint 0 0

0 0 e−i
E10

~
tint 0

0 0 0 e−i
E11

~
tint















(1.8)
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that is obtained if the different logical two qubit states are shifted by the interaction

by different energies E00, E01, E10, and E11. Here, the energy shifts must be non-

separable, ∆E = E00 + E01 − (E10 + E11) 6= 0. The interaction time tint is then

determined by

tint =
π~

∆E
. (1.9)

The unitary can then be simply transformed into a CPhase gate by single body

unitaries [9].

The challenge is to design this nonseparable energy or phase shift by a given

two-body interaction. A natural candidate for the entangling gate interaction is the

ground state collisional interaction, as proposed in one of the first neutral atom QIP

protocols by Jaksch et al. [28]. Here, the logical basis is encoded into the internal

state of the atoms by choosing suitable hyperfine states in Fig. 1.1. To implement a

high-fidelity quantum logic gate, the collisions must be state dependent and at the

same time scattering into states outside the computational basis must be suppressed.

For two-body collisions, these couplings are due to spin-changing collisions caused by

the Heisenberg spin-exchange interaction, which preserves only the total magnetic

quantum numbermtotal = mf1
+mf2

, but notmf1
andmf2

of the individual atoms. By

encoding qubits in the stretched states |1〉 = |f+, mf = f+〉 and |0〉 = |f−, mf = f−〉
(see Fig. 1.1), Jaksch et al. designed an interaction that preserves the individual mf

since neither mf1
or mf2

can increase. Examining the state-dependent optical lattice

potential for these states, it can be seen that these states move in opposite directions

in a lattice as discussed in the previous section. Rotating the lattice polarization

angle from θ = 0 to θ = π will then cause an atom in the state |1〉 and moving to

the right to collide with an atom in the state |0〉 which is moving to the left. In this

protocol, the state-dependent interaction is provided naturally by the encoding since

the two qubits interact only if the state is |10〉 and not otherwise.

Several other protocols for two-qubit entangling gates that are based on the
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Figure 1.4: Schematic of a collisional gate as proposed by Jaksch et al. [28]. Here,
the logical states are encoded in the stretched stated as seen in the sketch of the
hyperfine manifold on the left.

ground state collisional interaction have been proposed. For example, Charron et

al. [29] and Eckert et al. [30] considered encoding qubits in the ground and first

excited center-of-mass vibrational states of trapped atoms in a double-well poten-

tial. In these protocols, the state-dependent coupling between qubits is facilitated by

lowering the potential barrier between adjacent sites and correspondingly increasing

the overlap of the two excited state atomic wave packets. This leads to an increased

collisional interaction for both atoms in the first excited state of the center of mass

motion compared to the other logical basis combinations. An alternative interaction

has been considered by Brennen et al. [31–33]. This proposal is based on the elec-

tric dipole-dipole interactions created by an additional off-resonant laser field that

mixes the ground-state manifold with excited electronic states. This interaction has

a longer-range behavior corresponding to −C3/r
3 compared to ground state colli-

sions that are due to the shorter-range van der Waals interaction −C6/r
6. In this

protocol, the atoms remain separated so that the individual atomic quantum num-

bers are preserved. This process that includes the dressing of the ground state by

longer-range excited state potential can also be described in the framework of the

atomic scattering theory and optical Feshbach resonances [34]. Even longer-range

13



Chapter 1. Introduction

interactions that are due to the permanent dipoles of atoms in high-lying Rydberg

states provide yet another strategy to implement quantum logic with neutrals [35].

1.2.2 Experimental Progress

Efforts to implement neutral atom QIP in the laboratory represent a natural but

challenging extension of existing tools to prepare, control, and measure the quantum

state of trapped neutrals. A number of experiments have demonstrated several of

the key components that go into QIP, and very recently some of these have been

combined for the first time to demonstrate control and entanglement in a neutral-

atom many-body system. In this section, we briefly review progress in three main

areas: initialization of the qubit register, implementation of single- and two-qubit

gates, and methods to address individual qubits.

Optical lattices typically confine atoms tightly on the scale of an optical wave-

length, and lend themselves readily to the use of Raman sideband cooling. In a first

demonstration, Hamann et al. initialized 98% of a 106-atom ensemble in a single spin-

and vibrational-ground state of a sparsely filled 2D lattice [36], and subsequent work

has achieved a somewhat lesser degree of state preparation in nearly filled 3D lat-

tices [37,38]. These laser cooling-based approaches work well in any tightly confining

trap geometry, but when used in a lattice, will produce a random pattern of vacant

and occupied sites. Sparse, random filling may suffice for ensemble-based investiga-

tions of quantum logic, but falls short of the requirements of full-scale lattice-based

QIP.

Better filling and initialization can be achieved by loading a 3D lattice from a

high-density Bose-Einstein condensate and driving the atom/lattice through a su-

perfluid to Mott insulator phase transition as described in Section 1.1.2. The group

of Bloch and Hänsch at MPQ in Münich used this approach as a starting point for a
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series of proof of principle experiments to establish the viability of the Jaksch et al.

collisional protocol [28]. As the first step, Greiner et al. successfully demonstrated

the transition to an insulator phase consisting of individual 87Rb atoms localized in

the ground state of separate potential wells [6]. Mandel et al. then explored spin-

dependent coherent transport in the context of interferometry [39]. This was done

by preparing atoms in the logical-|0〉 state, transferring them to an equal superpo-

sition of the states |0〉 and |1〉 with a microwave π/2 pulse, and splitting them into

two wave packets by rotating the laser polarization vectors as described above. The

which way information was then erased with a final pulse π/2 and the atoms re-

leased from the lattice, allowing the separated wave packets of each atom to overlap

and interfere as in a two-slit experiment. As an alternative to this measurement of

the spatial interference pattern, experiments were performed where the atoms were

bought back to their initial site. For these measurements, after a final pulse with

relative phase α compared to the initial pulse, the population in the |1〉 state was

measured and Ramsey interference fringes recorded as a function of α. Inhomo-

geneously acquired phase shifts across the ensemble were partially cancelled using

additional π-pulses in a spin-echo procedure. In this fashion, the experiment achieved

fringe visibilities of 60% for transport across three lattice sites, limited by remain-

ing quantum phase-errors induced by magnetic field noise, vibrational heating and

residual inhomogeneities. Finally, Mandel et al. performed a many-body version of

this experiment in a nearly filled lattice [40], where the majority of atoms underwent

collisional interactions with their neighbors according to the Jaksch et al. protocol.

For appropriate collision-induced phase shifts, this leads to the formation of chains

of entangled atoms, which cannot be disentangled again by local operations such as

the final π/2 pulse. For maximally entangled atoms this results in the complete dis-

appearance of the interference fringes. In the experiment, a periodic disappearance

and reappearance of interferometer fringe visibility was clearly observed as a function

of interaction time and corresponding degree of entanglement. Technical limitations,

15



Chapter 1. Introduction

in particular the inability to perform single qubit measurements, have so far made

it difficult to obtain quantitative estimates for the size and degree of entanglement

of these cluster states, or to extract the fidelity of the underlying CPhase gate.

While the experiments just described allow a detailed investigation and optimiza-

tion of two-qubit gate protocols via ensemble measurements, the next step towards

universal QIP involves the necessary ability to manipulate and read out the state

of individual atomic qubits. In principle, this can be accomplished by performing

single-qubit rotations and readout with focused laser beams rather than microwave

fields. However, the necessary optical resolving power will be nearly impossible to

achieve in current lattices whose sites are separated by roughly 0.5 µm. Possible so-

lutions are longer wavelength lattices with a site spacing of 5 µm, which are formed

by a long wavelength CO2 laser [41]. Other experimentally demonstrated alterna-

tives where atoms remain tightly localized are conventional lattices that are pattern

loaded so that atoms occupy only every nth well [42]. Alternative trapping geome-

tries, such as mentioned earlier, provide different possibilities and are investigated

by several groups [3–5].

The experiments by the Münich group have demonstrated the feasibility of co-

herent spin transport and entanglement via controlled collisions, but also served to

highlight some of the fundamental limitations of the particular protocol employed.

To implement high-fidelity collisional gates, one must achieve a spin-dependent phase

shift, while at the same time restrict the interaction to a single collisional channel so

as to prevent scattering outside the computational basis. Jaksch et al. accomplished

this with their stretched-state encoding, but at the cost of being maximally sensitive

to magnetic field- and trap noise. In the experiments, this resulted in the random

phase acquired by the different qubit states and was one of the main limiting factors.

While problems during the initialization stage such as the limited fidelity of the Mott

insulator state can be corrected a priori by filtering schemes as proposed by Rabl
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et al. [43] or additional cooling techniques, the correction of these limiting phase

fluctuations can only be accomplished by using different, more robust encodings and

correspondingly altered entangling gate protocols. This dissertation will explore al-

ternative protocols to circumvent these limitations. In particular, we will explore

the collisional interaction between atoms in separated traps since in this case the

restrictions for the encoding that was used in the original Jaksch et al. proposal can

be relaxed and inelastic collisions can be suppressed by the state-dependent trapping

potentials in the separated trap case.

1.3 Overview of thesis

The central topic of this dissertation is the study of ultracold collisions of trapped

atoms with particular emphasis on collisions between atoms in separated traps. The

motivation for this research is given mainly by applications in quantum information

processing, but also has impact on more general aspects of confinement induced

effects on the atomic interaction. With respect to QIP, we would like to analyze and

expand existing proposals for quantum computing with neutral atoms that relax

some of the requirements of the original proposal as discussed in Section 1.2.1. In

particular, we choose to approach the problem of interacting atoms in separated

traps from a scattering theory perspective, since this allows a very nice and complete

treatment of the collisional and other short-range interactions.

Chapter 2 is dedicated to a complete and thorough discussion of our scattering

model, based on a correctly generalized pseudopotential approach. After a short re-

view of scattering theory and the basic interaction that dominates atomic collisions

at low energies, we will lay out some of the existing formulations of the pseudopo-

tential approach and discuss problems that have been pointed out in the literature.

We will then develop a generalized pseudopotential formalism that corrects and clar-
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ifies the previous approaches and represents one of the major cornerstones in this

dissertation.

In Chapter 3 we will discuss some of the fundamental issues when one tries to

describe the interactions between trapped atoms by a pseudopotential. We will then

apply our generalized pseudopotential derived in Chapter 2 to atoms in isotropic

harmonic trap. We derive a general analytic eigenvalue equation for these interacting

atoms including all higher partial-wave solutions.

In Chapter 4 we present the main result of this thesis when we analyze collisions in

separated traps. We show that in this setting, trap-induced shape resonances (TIR)

between trap eigenstates and weakly bound states of the molecular interaction can

occur. This effect is similar to the Feshbach-like, confinement induced resonances

of 1D systems that have been of such fundamental importance for the observation

of the Tonks-Girardeau gas as discussed in Section 1.1.2. These newly predicted

resonances result in a strong coupling of atoms in separated traps, thus providing

new avenues for robust encoding of quantum information and for controlling the

two-qubit interaction for entangling neutral atoms for quantum computing. In the

remainder of this chapter we discuss some of the important properties of trap-induced

resonances as well as the more general case of TIR in separated anisotropic traps.

In Chapter 5 we evaluate the feasibility of observing these resonances in 133Cs.

Cesium represents a particularly promising species due to its anomalously large scat-

tering lengths and the resulting strong interatomic interactions [44, 45]. To this end

we extend our scattering model discussed in Chapter 2 to its multichannel formu-

lation. The necessary 133Cs multichannel scattering parameters are then calculated

using codes developed in the Atomic Physics Division at the National Institute of

Standards and Technology, modified and applied to the case of separated atoms and

trap-induced resonances with the help of the developed scattering model.
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We conclude in Chapter 6 with a short summary of the thesis and highlight the

main achievements of this research. We also provide an outlook to future work, and

how it can be efficiently approached.

A large fraction of the research presented in this thesis can be found in published

form as listed in Table 1.1 for each chapter.

Chapter 1 P. S. Jessen, I. H. Deutsch, and R. Stock.
Quantum information processing with trapped neutral atoms.
Quant. Inf. Proc., 3, 1527 (2004).

Chapter 2 R. Stock, A. Silberfarb, I. H. Deutsch, and E. L. Bolda.
and Generalized pseudopotentials for higher partial wave scattering.

Chapter 3 Phys. Rev. Lett., 93, 023202 (2005).

Chapter 4 R. Stock, I. H. Deutsch, and E. L. Bolda.
Quantum state control via trap-induced shape resonance
in ultracold atomic collisions.
Phys. Rev. Lett., 91, 183201 (2003).

Chapter 5 R. Stock and I. H. Deutsch.
Trap-induced resonances in controlled collisions of
Cesium atoms.
In preparation.

Table 1.1: List of chapters in this dissertation and corresponding published articles.
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Chapter 2

Scattering models based on

generalized zero-range

pseudopotentials

2.1 Introduction

Over the past few years atomic many-body systems have attracted considerable in-

terest due to the tremendous progress in laser cooling and trapping of atomic gases,

the creation of atomic Bose-Einstein condensates (BEC) [1], and more recently due

to the experimental observation of quantum phase transitions in interacting many-

body systems [6]. The first step in studying the complex physics of such many-body

systems is modeling the fundamental two-body interactions. It is therefore natural

that this huge progress in experimental cold atomic physics has gone hand in hand

with a more detailed understanding of atomic interactions at low temperatures. As

a result, atomic scattering theory and the study of collisions of neutral atoms at

low temperatures have been the focus of much attention over the past decade (see
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for example reviews of atomic collision physics by Burnett et al. [1], Julienne [46],

and Weiner et al. [47]). For example, atomic collisions are essential for thermal-

ization during evaporative cooling and for determining the properties of a BEC [1].

Furthermore, the collisional interaction plays an important role in quantum phase

transitions as in the case of the superfluid to Mott-insulator transition [27]. It is

also of interest for entangling atoms for quantum information processing, where the

exact control and the proper modeling of the collisional interaction is crucial for the

fidelity of the entangling gate.

An accurate way of modeling atomic interactions is the pseudopotential approach,

which originates from scattering theory and is the focus of this chapter. In the fol-

lowing, we first present a basic review of cold atomic collision physics and a short

introduction to formal scattering theory, followed by a review of the Fermi pseu-

dopotential and its generalization to higher partial waves by Huang and Yang and

observed problems with this generalization. We then present our new derivation

of a generalized higher partial-wave pseudopotential based on a δ-shell potential,

which corrects the long standing fundamental problem in Huang’s pseudopotential

and captures the critical features of both the scattering and bound-state spectrum

of the realistic interaction potential. This derivation is followed by a detailed discus-

sion of the energy-dependent pseudopotential approximation and its relation to the

scattering and bound-state spectrum.

2.2 Background

2.2.1 Born-Oppenheimer potentials for diatomic molecules

The description of the atomic interaction has its origin in two very different physical

fields. On one side, we have the spectroscopic description of diatomic molecules in
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molecular physics, which focuses mainly on the bound-state spectrum. On the other

side we have atomic scattering theory that describes the interaction between unbound

atoms. Before we focus on the scattering description of the atomic interaction, we will

discuss the diatomic Hamiltonian and the interaction from a molecular perspective.

A nice review of the physics of diatomic molecules can be found in Ref. [48]. One

of the most important approximations in the description of a diatomic system is the

Born-Oppenheimer or adiabatic approximation, which we outline here. Consider two

atoms that form a diatomic molecule, consisting of two nuclei A and B, separated

by r, and N electrons located at rel1 , rel2, ...relN with respect to the center of mass

of A and B. Inserting the complete Hamiltonian operator including interactions into

the Schrödinger equation and expanding the total molecular wave function Ψ in

terms of products of the nuclear motion wave functions Fα(r)/r and electron wave

function ψα,

Ψ (r; rel1, rel2, ...relN ) =
∑

α

Fα(r)

r
ψα(rel1, rel2 , ...relN ) , (2.1)

we arrive at a set of coupled equations [49]

∑

α

〈ψα′ | − ~
2

2µ

1

r2

∂

∂r

(

r2 ∂

∂r

)

+
L̂2

r

2µr2
|ψα〉

Fα(r)

r
+ [Eα′(r)− E]

Fα′(r)

r
= 0. (2.2)

Here, µ is the reduced mass of atoms A and B, Lr is the nuclear orbital angular

momentum operator and Eα′ are the energy eigenvalues of the molecule in the elec-

tronic state |ψα′〉. In the Born-Oppenheimer approximation, one uses the fact that

the nuclear motion is much slower than the electronic motion. In this case, the elec-

tronic wave function is independent of the nuclear coordinates r and approximately

commutes with the radial kinetic energy operator. The set of equations (2.2) decou-

ple and we get an equation for the nuclear motion when the electronic system is in

the state α,
[

− ~
2

2µ

1

r2

∂

∂r

(

r2 ∂

∂r

)

+
〈ψα| L̂2

r |ψα〉
2µr2

+ Eα(r)− E
]

.
Fα(r)

r
= 0. (2.3)
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For alkali atoms with a single valence electron, the Born-Oppenheimer (BO) poten-

tials at short range in the Hund’s case (a) result in two different interaction potentials,

the singlet 1Σ+
g (VS) and triplet 3Σ+

u potential (VT ), depending on the total coupled

spin of the valence electrons ~si of the two atoms,

V̂BO =
1

4
V̂S(r) +

3

4
V̂T (r) +

[

V̂T (r)− V̂S(r)
]

~s1 · ~s2 . (2.4)

Figure 2.1 shows an example of the BO potentials for sodium. For very small r,

Figure 2.1: Adiabatic Born-Oppenheimer potential energy curves for the Cs2

molecule. The inset shows the asymptotic connection to the three two-atom hy-
perfine levels. Figure courtesy of Paul S. Julienne.

the interaction is dominated by the Coulomb repulsion between the two nuclei and

the exchange interaction between the electronic distributions. At longer range, the
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interaction is attractive and determined by the van der Waals interaction. The van

der Waals interaction results from the dipole induced in each atom by the other and

behaves as −C6/r
6 [48,49]. The characteristic length scale for a −Cn/r

n interaction

is [50]

βn =
1

2

(

2µCn

~2

)
1

n−2

. (2.5)

Despite the relatively simple one-electron character of the alkali atoms, the Born-

Oppenheimer potentials can be still quite difficult to work with in the description

of the atomic interaction, so that an even “simpler” model for the interaction is

required. For cold atoms, the deBroglie wavelength λdB is usually much longer than

the characteristic length scale of the Born-Oppenheimer potential βn so that the

interaction effectively looks like a δ-function interaction. This is the basis for the

widely used Fermi pseudopotential and its generalizations, which we will discuss in

a later section.

2.2.2 A brief review of scattering theory

In the last section, we briefly reviewed the interaction between two atoms from a

molecular viewpoint. Before we continue with a scattering theory description of the

interaction, it is helpful to review some of the formal aspects of scattering theory.

The S-matrix

When trying to describe the quantum mechanical scattering process of one particle

that interacts with a (fixed) scatterer (which is identical to the two-body problem

in the relative coordinate frame), we start with a free particle wave packet long

before the scattering event and far away from the scatterer. The state then evolves

according to the time-dependent Schrödinger equation (T. D. S. E.) until the final
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wave packet emerges. This leads to the concept of “in” and “out” states in scattering

theory. The “in” state ψin is the free particle state that matches the actual evolving

state ψ at t = −∞. It can therefore be defined by

lim
t→−∞

[

Û(t) |ψ〉 − Û0(t) |ψ〉in
]

= 0 , (2.6)

where the operator Û0(t) describes the free evolution of the state ψin according to the

free Hamiltonian H0 and Û(t) describes the actual evolution of the state ψ including

the interaction V . The out state ψout can be defined analogously for t → +∞.

The “in” and “out” states in quantum mechanics are equivalent to the asymptotic

trajectories to a given particle orbit in classical scattering theory.

The Moller operators Ω̂± are defined to be

Ω̂± ≡ lim
t→∓∞

Û †(t)Û0(t) (2.7)

with

ψ = Ω̂+ψin = Ω̂−ψout . (2.8)

The isometric Moller operators describe the transformation of ψin at t = −∞ to the

actual state ψ at t = 0 to the “out” state ψout at t = +∞ as follows:

ψin
Ω̂+−→ ψ

Ω̂†
−−→ ψout . (2.9)

We can then define the scattering operator or S-matrix as the operator that connects

the free particle “in” states and “out” states via

Ŝ = Ω̂†
−Ω̂+ . (2.10)

The unitary transformation via the S-matrix is given by

ψin
Ŝ−→ ψout . (2.11)

The S-matrix is one of the most important concepts of scattering theory. Although

we have limited ourselves in this discussion to a single input state and a single output
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state (single channel problem), the concept of the S-matrix can be readily generalized

to the multichannel problem with several possible “in” states [51]. The S-matrix then

connects all “in” states to all “out” states of the scattering problem. If the S-matrix

is known for a particular problem, all other important scattering parameters can

easily be derived. For example in the multichannel case, the S-matrix can be used

to calculate the scattering amplitudes f(p′, ξ′ ←− p, ξ) for transitions from a state

|p, ξ〉 to |p′, ξ′〉 via

〈p′, ξ′|S |p, ξ〉 = δ(3)(p′ − p) +
i

2πµ
δ(Ep′ −Ep)f(p′, ξ′ ←− p, ξ) . (2.12)

The quantity p describes the momentum of the particle and the quantum number

ξ describes the internal state of the particle, e.g. the internal spin state. We will

revisit the S-matrix later in order to derive analytical properties of the pseudopo-

tential approximation as well as to describe the multichannel scattering problem for

collisions of 133Cs atoms.

Stationary scattering states and time-independent scattering theory

Another important concept in scattering theory is the one of the stationary scattering

states, which are defined by

|p±〉 ≡ Ω̂± |p〉 , (2.13)

where |p〉 is the plane wave state of a free particle. The stationary scattering states

are (improper [51]) eigenstates of the total Hamiltonian H = H0 +V . If for example,

we consider an orbit with “out” asymptote |χ〉,

|χ〉 =

∫

d3pχ(p) |p〉 , (2.14)

then the state at t = 0 is described by

|χ−〉 =

∫

d3pχ(p) |p−〉 . (2.15)
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Therefore, the stationary states are a convenient basis for the expansion of scattering

states at t = 0. Since the states |p±〉 are eigenstates of the total Hamiltonian H ,

they are solutions to the time independent Schrödinger equation (T. I. S. E.) given

by the Lippmann-Schwinger equation for |p+〉,

〈r|p+〉 r→∞∼ (2π)−
3

2

(

eipr + f
ipr

r

)

. (2.16)

The coefficient f of the outgoing spherical wave is the scattering amplitude mentioned

earlier. The stationary scattering states, which obey the T. I. S. E., bridge the

gap between the time-dependent picture of scattering theory as discussed in the

introduction of the S-matrix and the time-independent scattering theory which we

will use in the following sections and chapters.

Partial waves, threshold behavior, and scattering length

The plane wave basis of the stationary scattering states discussed in the last section

is not the most convenient basis for all problems. For central potentials, a partial-

wave expansion in spherical waves is more appropriate. Expanding the free particle

Hamiltonian in a spherical basis with r, θ, and φ, we write the free particle partial-

wave solutions as

ψE,l,m(r) = Rl(r)Y
m
l (θ, φ) . (2.17)

General solutions to the free radial Schrödinger equation are then combinations of

the spherical Bessel functions

Rl(r) = Aljl(kr) +Blnl(kr) . (2.18)

In 3D, the wave function has to be regular at the origin, that is the reduced radial

wave function rRl(r) has to vanish a the origin. This boundary condition is only ful-

filled by the Bessel jl function which behaves as rl close to the origin. Asymptotically
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far away, the free particle partial waves behave like

Rl(r) = Aljl(kr)
r→∞∼ sin (kr − lπ

2
)

kr
. (2.19)

For interaction potentials that fall of sufficiently fast according to Cn/r
−n with n ≥ 3,

the stationary scattering solutions j
(+)
l (kr) are obtained from the Lippman-Schwinger

equation for partial waves [51]

j
(+)
l (kr)

r→∞∼ jl(kr) +
fl(E)

r
ei(kr−lπ/2) . (2.20)

We see that the interaction leads to an additional outgoing spherical wave (second

term), where the partial-wave scattering amplitudes fl(E) can be calculated from

the S-matrix.

To this end, we expand the S-matrix in the partial-wave basis. Since the S-matrix

commutes with H , it is diagonal in this basis,

〈E ′, l′, m′|S |E, l,m〉 = sl(k)δ(E
′ − E)δl′lδm′m . (2.21)

Because of the unitarity of the S-matrix, the diagonal elements are sl(k) = e2iδl(k),

where δl(k) is the scattering phase shift. The scattering amplitude can be calculated

via sl(k)

fl(E) =
sl(k)− 1

2ik
=

sin δl(E)eiδl(E)

k
. (2.22)

The physical interpretation of the scattering phase shift δl(E) can be seen when fl(E)

is inserted into the scattering solutions,

j
(+)
l (kr)

r→∞∼ jl(kr) +
sin δl(E)ei(kr−lπ/2+δl(E))

kr

r→∞∼ eiδl(E) sin
(

kr − lπ
2

+ δl(E)
)

kr
.

(2.23)

We see that the scattering solutions for r → ∞ are phase shifted relative to the

free case, Eq. (2.19), by δl(E). Usually an attractive potential “pulls” the wave
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function in, resulting in a positive phase shift (δl(E) > 0), whereas a repulsive

potentials “pushes” the wave function out (δl(E) < 0). This is not generally true if

the attractive potential is strong enough to support bound states, in which case the

potential may act repulsive or attractive depending on the location of the last bound

state closest to dissociation (see Fig. 2.2).

Figure 2.2: Graphs of typical s-wave scattering wave functions Ψ(R) as a function
of internuclear separation R. Fig. (a) shows the long-range behavior of the wave
function. Fig. (b) show a blow-up of short-range behavior of Ψ for three different
scattering phase shifts. The phase shift of the long-range wave function is strongly
influenced by the exact behavior of the wave function in the inner region for R < R0.
The extension of the asymptotic wave function to the intersection with the R-axis
indicates the scattering length a = A measured in Bohr radii a0 for the three different
scenarios with A = −100a0, A = 0, and A = +100a0. The scattering length and
scattering phase shift are closely related to the location of the last bound state below
dissociation. Although the potential is generally attractive, the scattering length is
large and positive for a bound state just below dissociation and negative for a quasi-
bound state just above dissociation. Figure courtesy of Burnett [1].

In general, this expansion into partial waves represents a convenient basis for

representing the Hamiltonian and the scattering solutions. For cold collisions, the

partial-wave expansion becomes even more important: near zero temperature s-wave

(i.e. l = 0) scattering typically dominates due to the centrifugal barrier for higher

partial waves. This behavior is quantified in the Wigner threshold law. For small
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energies E = ~
2k2/2m and long deBroglie wavelengths λdB = 2π/k, the scattering

phase shift is proportional to δl(k) ∝ −k2l+1 (see Ref. [51]). For s waves and in

the zero energy limit, it is therefore helpful to define a new constant parameter, the

s-wave scattering length a, via

a = − lim
k→0

tan δl(k)

k
. (2.24)

The physical interpretation of this scattering length is easily seen in Fig. 2.2. In

this picture the scattering length is given by the node closest to the origin if one

extends the asymptotic wave functions (2.23) all the way to intersect with the x-axis.

Since the scattering length is defined through the negative phase shift, it is usually

negative for attractive potentials and positive for repulsive potentials. However,

if an attractive potential is strong enough to support bound states, the sign of the

scattering length is strongly correlated with the position of the last bound state close

to dissociation [52]. If the last bound state is very close to dissociation at energy Eb,

the scattering is positive and large with

a2 =
~

2

2µEb

. (2.25)

On the other hand, the scattering length is negative and large in magnitude if the

interaction potential has a quasi-bound state just above dissociation. If the bound

state is located exactly at zero-energy with respect to dissociation, then the potential

has a zero-energy scattering resonance and a is infinite. The scattering length is of

great importance in the description of ultracold collisions, since it contains the nature

of the interaction (i.e. repulsive vs. attractive and strength, as well as the location of

the last bound state) in a single parameter. For example, in the application to BEC,

the scattering length determines the regions of stability of the condensate [1, 11].

More importantly for us, the scattering length allows us to define an effective

interaction potential with the aim of replacing the complicated realistic atomic in-

teraction potentials. The main idea here is to replace the realistic interaction by
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a pseudopotential that reproduces the exact asymptotic wave function. One pos-

sibility, which is apparent from the interpretation of the scattering length as the

intersection of the extended asymptotic wave function, would be to place a hard wall

(hard sphere) at the intersection point, thus forcing the node of the wave function

to be at a. An alternative way is to match the boundary condition of the asymp-

totic wave function at the origin as it is done in the Fermi-pseudopotential, which is

described in the next section.

2.3 The Fermi pseudopotential and its generaliza-

tions to higher partial waves

2.3.1 Fermi-pseudopotential

The most widely used approximation to the two-body interaction is the Fermi pseu-

dopotential, which is frequently applied in the modeling of complex Bose or Fermi

many-body systems. Enrico Fermi introduced the zero-range pseudopotential in 1936

to model the interaction of electrons with neutrons by replacing the complicated

atomic interaction potential by a much simpler potential that mimics the asymp-

totic stationary scattering wave functions of the realistic potential [53]. Fermi used a

δ function centered at the origin with a strength equal to the scattering length ascatt

[Eq. (2.24)] as effective potential

veff =
2π~

2

µ
aδ3(r) . (2.26)

The singularity at the origin, with correctly chosen strength a0, produces the correct

asymptotic wave functions of the realistic potential. Later a regularized version of

the pseudopotential was introduced to extend the operator domain to wave functions

that may be irregular at the origin. The regularization operator ∂/∂r r acts as a
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projector onto the set of regular functions, allowing irregular functions that diverge

as r−1. The regularized form of the pseudopotential allows one to write down an

eigenvalue equation for the pseudopotential, whose eigensolutions have the correct

asymptotic behavior.

In this form, the pseudopotential has been extremely valuable for recent applica-

tions to ultracold collisions. At ultracold temperatures, s-wave collisions dominate

the interaction. In this regime, the Fermi pseudopotential, which captures only s-

wave contributions, is an excellent approximation and is widely applied to mean

field calculations for Bose-Einstein condensates as well as to ultracold spectroscopy

of the interatomic interaction potentials. Recently, further generalizations of the

pseudopotential that go beyond the constant scattering length approximation have

been proposed. For energies outside the Wigner-threshold regime, the Fermi pseu-

dopotential can be generalized to include an energy-dependent scattering length so

that the mean-field and trap energy-level shifts can be calculated in a self-consistent

manner [54, 55]. Further generalizations of the pseudopotential are necessary if one

considers collisions at higher temperatures, or in anisotropic potentials such as sep-

arated traps and quasi 1-D or 2-D systems, or in the case that s-wave collisions are

prohibited due to symmetry considerations as in the case of identical fermions. Then

higher partial-wave contributions beyond s waves become important. In the follow-

ing we will discuss the generalization of the Fermi-pseudopotential to higher partial

waves as well as the inclusion of an energy-dependent scattering length.

2.3.2 Huang and Yang’s higher partial-wave pseudopotential

The first attempt to derive a generalized pseudopotential was made by K. Huang and

C. N. Yang [56, 57]. Given a central force, the true radial asymptotic wave function
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Rl(r) for each l wave is supposed to follow from a contact potential,

v
(l)
eff (r) =

2π~
2

µ

(l + 1)[(2l − 1)!!]

[(2l)!!]
a2l+1

l

δ3(r)

rl

∂2l+1

∂r2l+1
rl+1 , (2.27)

where al is the scattering length generalized to higher partial waves. In the following,

we will review the original derivation in some more detail, before we discuss the

problems of the pseudopotential that have been found by Roth and Feldmeier [58].

This detailed original derivation will also be instructive for our later derivation of a

correct form of the higher partial-wave pseudopotential.

Schrödinger equation for spherically symmetric potential

The objective is to replace the exact potential V (r) at all energies and for all partial

waves by a zero-range pseudopotential [56]. The general idea for deriving the pseu-

dopotential is to match the boundary condition of the asymptotic solution at the

origin through a zero-range pseudopotential. The Schrödinger equation for a central

potential V (r) in the relative coordinate system is given by

[

− ~
2

2µ
∇2 + V (r)

]

ψ(r) = Ekψ(r) (2.28)

with Ek = ~
2k2/2µ. Defining v(r) = µ/~2 V (r) this can be written in unitless

representation as

1

2

(

∇2 + k2
)

ψ(r) = v(r)ψ(r) . (2.29)

For spherically symmetric potentials we can expand the wave function in partial

waves ψ(r) = Rl(r)Y
m
l (Ω). The Schrödinger equation for the radial solution is

1

2

(

∇2
r −

l(l + 1)

r2
+ k2

)

Rl(r) = v(r)Rl(r) ;

1

2
DlRl(r) = v(r)Rl(r) , (2.30)
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where we have defined the derivative operator Dl and

∇2
r =

1

r

∂2

∂r2
r . (2.31)

As before, we assume that the realistic potential v(r) has finite range R, i.e. for

r > R the potential v(r) is identical to zero. Outside the range R of the potential

v(r), the radial solution is given by

Rl(r) = Al [jl(kr)− tan δl(k)nl(kr)] for r > R, (2.32)

where δl(k) is the l-wave scattering phase shift for the true interaction and jl(kr)

and nl(kr) are the spherical Bessel functions.

Schrödinger equation for zero-range potential

We would now like to extend the solution (2.32) all the way to the origin by replacing

the exact potential by an effective zero-range interaction potential v
(l)
eff (r) for each l.

The radial Schrödinger equation for this zero-range potential is

1

2
DlRl(r) = 0 for r 6= 0,

1

2
DlRl(r) = v

(l)
effRl(r) for r = 0. (2.33)

This Schrödinger equation has the solution Eq. (2.32), defined everywhere except at

r = 0.

Rl(r) = Al [jl(kr)− tan δl(k)nl(kr)] for r > 0. (2.34)

The problem is now reduced to finding a pseudopotential for which the solution

Eq. (2.34) fulfills the Schrödinger equation (2.33).
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Derivatives of Bessel and Neumann functions

In order to solve the Schrödinger equation for the pseudopotential (2.33), we need

the radial solution around the origin. The expansions of the Bessel and Neumann

functions around r = 0 are [59]

jl(kr) →
(kr)l

(2l + 1)!!
,

nl(kr) → −(2l − 1)!!

(kr)l+1
. (2.35)

These expansions are necessary to evaluate the derivative operator acting on the

radial solution. The Bessel function is the solution to the free Schrödinger equation.

Applying the derivative operator Dl on the spherical Bessel function results in

Dljl(kr) = 0 for all r. (2.36)

The Neumann function is not a good solution to the free equation at the origin and

is only a solution for r 6= 0. The derivative of the spherical Neumann function is

Dlnl(kr) = 0 for r 6= 0. (2.37)

What remains is to calculate the derivative of the Neumann function at the origin.

Consider therefore the following integration in a small volume around the origin.

∫

V

d3r rlDlnl(kr) =

∫

V

d3r rl∇2
rnl(kr)−

∫

V

d3r rl l(l + 1)

r2
nl(kr)+

∫

V

d3r rlk2nl(kr) .

(2.38)

Using Green’s theorem,

∫

V

u∇2vdV =

∫

S

u∇vdσ −
∫

V

∇u∇vdV , (2.39)
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and using the expansion of the Neumann function, Eq. (2.35), we can evaluate the

first term in Eq. (2.38) to be

∫

V

d3r rl∇2
rnl(kr) =

∫

S

dσ rl
∇rnl(kr)−

∫

V

d3rlrl−1∇rnl(kr) (2.40)

=

∫

S

dσer r
l (l + 1)(2l− 1)!!

kl+1rl+2
−
∫

V

d3rlrl−1 (l + 1)(2l − 1)!!

kl+1rl+2
.

Here, the first term is given by

∫

S

dσer
(l + 1)(2l − 1)!!

kl+1r2
= 4π

(l + 1)(2l− 1)!!

kl+1
. (2.41)

The second term in Eq. (2.40) is of equal magnitude and opposite sign relative to

the second term (centrifugal term) in Eq. (2.38) and therefore cancels

∫

V

d3r rl l(l + 1)

r2
nl(kr) =

∫

V

d3rl
(l + 1)(2l − 1)!!

kl+1r3
. (2.42)

The last term in Eq. (2.38) vanishes as r → 0 and in summary we can write

Dlnl(kr) =
(l + 1)(2l − 1)!!

kl+1

δ(r)

rl+2
(2.43)

since

∫

V

d3r rlDlnl(kr) = 4π
(l + 1)(2l− 1)!!

kl+1
=

∫

V

d3r
(l + 1)(2l − 1)!!

kl+1

δ(r)

r2
. (2.44)

Pseudopotential

We can now rewrite the left side of the zero-range Schrödinger equation (2.33). Using

Eqs. (2.36) and (2.37) we get

1

2
DlRl(r) = 0 for r 6= 0,

1

2
DlRl(r) = −Al tan δl(k)Dlnl(kr) for r = 0. (2.45)
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Inserting Eq. (2.43), we can evaluate the differential operator applied to the full wave

function,

1

2
DlRl(r) = −1

2
Al(l + 1)(2l − 1)!!

tan δl(k)

kl+1

δ(r)

rl+2
. (2.46)

Comparing this to the Schrödinger equation (2.33), we can write the pseudopotential

as the following operator identity [56]

v
(l)
eff = −1

2
Al(l + 1)(2l − 1)!!

tan δl(k)

kl+1

δ(r)

rl+2
. (2.47)

The normalization constant Al remains to be determined in the next section.

Sometimes, instead of the 1-D δ function in r, the three-dimensional δ(3)(r) func-

tion is used according to

δ3(r) =
δ(r)

4πr2
. (2.48)

However, one has to carefully treat this three-dimensional δ-function in spherical

coordinates, since at the origin the angles θ and φ are not defined. Using the three-

dimensional δ-function the pseudopotential is then written as [60]

v
(l)
eff = −2πAl(l + 1)(2l − 1)!!

tan δl(k)

kl+1

δ(3)(r)

rl
. (2.49)

Normalization of pseudopotential according to Huang

The correct asymptotic wave functions of a realistic potential are determined only by

the correct phase shifts. Instead of matching the phase shifts of the true asymptotic

wave functions by ensuring a node (zero) of the wave function at r = a, the δ function

enforces the matching of the boundary condition at the origin. However, in this case

the amplitude of the wave function has to be well defined by Al. Since scattering

eigenstates states are not normalizable, it is necessary to specify the derivative of
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the wave function at the origin. As stated before, the radial solution Eq. (2.34) can

be expanded around the origin r = 0

Rl(r) = Al

[

(kr)l

(2l + 1)!!
− tan δl(k)

(2l − 1)!!

(kr)l+1

]

for r > 0. (2.50)

The normalization constant can be found by evaluating the (2l + 1)-th derivative of

the rl+1-weighted radial solution at the origin,

[

∂2l+1

∂r2l+1
rl+1Rl(r)

]

r=0

= Al

[

∂2l+1

∂r2l+1

klr2l+1

(2l + 1)!!
− tan δl(k)

∂2l+1

∂r2l+1

(2l − 1)!!

kl+1

]

,

= Al
(2l + 1)!

(2l + 1)!!
kl. (2.51)

The normalization is then given by

Al =
(2l + 1)!!

(2l + 1)!

1

kl

[

∂2l+1

∂r2l+1
rl+1Rl(r)

]

r=0

. (2.52)

Here, the regularization also acts as a projector on the subspace of regular functions.

In this form, the pseudopotential can then be used on the space of all regular and

irregular functions. The pseudopotential can be rewritten as [56, 57]

v
(l)
eff = −1

2

(l + 1)[(2l + 1)!!]2

(2l + 1)(2l + 1)!

tan δl(k)

k2l+1

δ(r)

rl+2

∂2l+1

∂r2l+1
rl+1 ,

≈ 1

2

(l + 1)[(2l − 1)!!]

[(2l)!!]
a2l+1

l

δ(r)

rl+2

∂2l+1

∂r2l+1
rl+1 . (2.53)

Here, the l-wave scattering length is defined as

a2l+1
l = − lim

k→0

tan δl(k)

k2l+1
(2.54)

with units of length. Of course, we could have defined an energy-dependent scattering

length without the zero energy limit and applied the self-consistent method discussed

later in this chapter. Note that this definition of al differs by a factor of [(2l +

1)!!]2/(2l + 1) from other authors [61]. For the particular case of a hard sphere
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potential, the scaled length [(2l + 1)!!]2/(2l + 1)al coincides with the radius of the

hard sphere.

For s waves (l = 0), the potential reduces to the well known energy-dependent

regularized δ-potential,

v
(0)
eff =

1

2
aδ(r)

∂

∂r
r = 2πaδ3(r)

∂

∂r
r , (2.55)

where the s-wave scattering length is defined by

a = al=0 = − lim
k→0

tan δ0(k)

k
. (2.56)

Alternative normalization of pseudopotential

The normalization constant has been determined analogous to Huang et al. [56].

However, the use of the (2l + 1)-th partial derivative is not the only way for deter-

mining Al. For example Al can be also written as

Al =
(2l + 1)!!

(2l + 1)

1

kl

[

1

r2l

∂

∂r
rl+1Rl(r)

]

r=0

. (2.57)

Generally, Al can be determined using any derivative of order one to 2l + 1 so that

the pseudopotential seems to have several different possible definitions for l > 0.

However, only the original operator with the (2l + 1)-th partial derivative acts as a

proper projector on the l-wave radial function subspace. Of course, one can always

use a different order derivative if this is more convenient and add an additional

projector P̂l instead.

2.3.3 Effective contact interaction potential by Roth and

Feldmeier

Recently, Roth and Feldmeier [58] uncovered difficulties with the pseudopotential

derived by Huang and Yang, noting that the perturbative energy shifts of interacting
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atoms in a trap are incorrect by a factor of (l+1)/(2l+1). This can easily be seen if

one solves for the exact energy spectra of two interacting particles in a 3D well with

an infinite wall at the radius Λ. Because of this auxiliary boundary condition, the

asymptotic wave functions (2.32) have to vanish at r = Λ,

Rl(Λ) = Al [jl(kΛ)− tan δl(k)nl(kΛ)] ≡ 0 . (2.58)

This leads to discrete energy levels with energy Enl and discrete momenta k = qnl,

which for the noninteracting case δl(k) = 0 are given by

qnl Λ = π

(

n+
1

2

)

, (2.59)

Enl =
~

2q2
nl

2µ
=

~
2π2

2µΛ

(

n+
1

2

)

. (2.60)

Here, we used the asymptotic expansion of the spherical Bessel function jl(kΛ) for

large Λ. For the interacting case, the momenta q̄nl are given by [58]

q̄nl Λ = −δl q̄nl + π

(

n+ nb
l +

1

2

)

, (2.61)

where δl(k = q̄nl) is the phase shift due to the interaction. The additional phase πnb
l is

the phase due to the number nb
l of bound states according to Levinson’s theorem [51].

The energy shifts due to the interaction are then given by [58, 61]

∆Enl

Enl
= − 2

Λ

δ(qnl)

qnl
≈ 2

Λ
q2l
nla

2l+1
l , (2.62)

where our definition of scattering length a2l+1
l does not include the prefactors

[(2l + 1)!!]2/(2l + 1) used in Ref. [58, 61].

If the energy shifts are calculated in first order perturbation theory using the

higher partial-wave pseudopotentials v
(l)
eff derived by Huang and Yang,

〈n, l,m| v(l)
eff |n, l,m〉 = − 2

Λ

(l + 1)

(2l + 1)
q2l
nla

2l+1
l . (2.63)
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Here, the unperturbed wave functions were given by 〈x|n, l,m〉 = Aljl(qnlr)Y
m
l with

normalization A2
l = 2q2

nl/Λ [58]. Comparing the result to the exact energy shifts,

one finds a discrepancy corresponding to a factor of (l+1)/(2l+1) in v
(l)
eff . Roth and

Feldmeier therefore concluded that the generalized pseudopotential derived by Huang

and Yang is not a proper effective interaction to use in a mean-field description of

dilute quantum gases [58]. Roth and Feldmeier [58] proposed that a distinct effective

contact interaction (ECI) is needed to calculate energy level shifts in perturbation

theory.

The construction of the ECI is quite different from the pseudopotential construc-

tion since it does not try to capture the asymptotic wave function. Instead, their

derivation starts with the requirement that the expectation values of a proper ECI

have to equal the exact energy shifts for interacting particles in Eq. (2.62) so that

〈n, l,m| v(l)
ECI |n, l,m〉 = ∆Enl . (2.64)

Roth and Feldmeier insert the following ansatz for the ECI,

v
(l)
ECI =

←−
∂l

∂rl
γlδ

3(r)

−→
∂l

∂rl
, (2.65)

into Eq. (2.64) and (2.62) and obtain the ECI interaction strength

γl = 2π
(2l + 1)

(l!)2

[(2l + 1)!!]2

(2l + 1)
a2l+1

l . (2.66)

Using this form of the ECI, it is easy to show that the correct energy shifts are

obtained. However, due to the nature of the derivation and the application of the

potential to only matrix elements, it is unclear whether this potential could result in

the correct asymptotic wave function and phase shift. We will show later that the

distinction between the pseudopotential and a mean field ECI is unnecessary. Rather,

the disagreement is due to a fundamental problem in Huang’s original derivation of

the pseudopotential [57].
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2.3.4 Omont’s pseudopotential

Another different formulation of the pseudopotential has been derived by Omont [62].

This higher partial-wave potential has been originally derived to capture the effect

of a neutral perturber on an excited electron in a Rydberg atom and is given by

v
(l)
Omont = 2π(2l + 1)a2l+1

l k2lPl

(←−∇ · −→∇
k2

)

δ3(r) , (2.67)

where the ∇ operator in spherical coordinates r, θ, φ,

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r cos θ

∂

∂φ
eφ , (2.68)

acts to the left or right wave function as designated by the arrow. Here, Pl are the

Legendre polynomials. This zero-range pseudopotential uses the three-dimensional

δ3(r), which cannot be strictly defined in spherical coordinates. Just as in the

Huang potential, the limiting procedure is not clearly given. If, for example, the

3D δ-function is replaced by a radial δ-function according to δ3(r) = δ(r)/4π [see

Eq. (2.48)], then the calculated perturbation energy shifts are incorrect by a factor of

1/3 for l = 1. Our pseudopotential approach, which we will present in the next sec-

tion, corrects this different formulation of the contact interaction as well and clarifies

the limiting procedure for the δ-function.

2.4 Derivation of correct pseudopotential based

on δ shell

2.4.1 Ansatz for δ-shell pseudopotential

In the contact potential construction, as used by Fermi and later by Huang and

Yang, one takes the asymptotic radial wave function associated with a given partial
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wave Rl(r) = Al [jl(kr)− tan δl(k)nl(kr)], valid only outside the range of the true

potential, and extends it to all r (see Section 2.3). The boundary condition at the

origin is set by the zero-range potential, parameterized by the l-wave asymptotic

phase shift δl(k). As before we assume that the realistic potential has a finite range,

valid when it falls off like 1/r3 or faster. The scattering phase shift can be calculated

directly via numerical or analytic solution to the Schrödinger equation or may be

obtained through spectroscopic data. We will now show that the problems with

the pseudopotential that Roth and Feldmeier found [58] are due to a fundamental

problem in Huang’s original derivation of the pseudopotential when dealing with the

δ-function at the origin.

In order to treat the multipole singularity of the δ potential at the origin correctly,

we write the pseudopotential as the limit of a δ shell with its radius approaching zero

(see Fig. 2.3),

v
(l)
shell(r) = lim

s→0
δ(r − s)Ôl(r) , (2.69)

where the operator Ô(r) contains the correct prefactors and regularization. To derive

the correct form of Ô(r) we solve the radial Schrödinger equation,

1

2

(

∇2 + k2
)

Rl(r) = v
(l)
shell(r)Rl(r) ,

1

2

(

1

r

∂2

∂r2
r − l(l + 1)

r2
+ k2

)

Rl(r) = v
(l)
shell(r)Rl(r) . (2.70)
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vshell
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Figure 2.3: Pseudopotential (red vertical line) based on a δ shell with radius s.
The inside R−

l and outside R+
l wave function are shown (solid lines) as well as the

extension of the asymptotic outside wave function to its intersection with the r-axis.
This intersection marks the scattering length a of the interaction.

2.4.2 Radial solutions to the δ-shell potential

The familiar inside and outside solutions expressed in spherical Bessel and Neumann

functions are

R−
l (r) = Bl [jl(kr)] for r < s, (2.71)

R+
l (r) = Al [jl(kr)− tan δl(k)nl(kr)] for r > s. (2.72)

In the spirit of the pseudopotential approximation, the outside solution to the shell

potential coincides with the actual asymptotic wave function of the true potential

for large r. Requiring continuity of the wave function at r = s fixes

Bl

Al
=

[jl(ks)− tan δl(k)nl(ks)]

jl(ks)
,

≈
(ks)l

2l+1)!!
+ tan δl(k)

(2l−1)!!)
(ks)l+1

(ks)l

2l+1)!!

,

≈ 1 + tan δl(k)
(2l + 1)!!(2l − 1)!!)

(ks)2l+1
. (2.73)
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In the second step, we have used the asymptotic forms of the Bessel functions in the

limit ks≪ 1 given by Eq. (2.35). Integrating the radial equation over the δ function

gives us a second boundary condition (take the limit s→ 0 later).

lim
ǫ→0

∫ s+ǫ

s−ǫ

1

2

(

1

r

∂2

∂r2
r − l(l + 1)

r2
+ k2

)

Rl(r)dr = lim
ǫ→0

∫ s+ǫ

s−ǫ

veff(r)Rl(r)dr ,

lim
ǫ→0

∫ s+ǫ

s−ǫ

1

2

1

r

∂2

∂r2
rRl(r)dr =

[

Ô(r)Rl(r)
]

r=s
,

1

2

([

∂

∂r
R+

l (r)

]

r=s

−
[

∂

∂r
R−

l (r)

]

r=s

)

=
[

Ô(r)Rl(r)
]

r=s
, (2.74)

where the integration on the left side was performed as integration by parts. We can

then evaluate the left side of this equation, once again using the expansions of the

Bessel and Neumann functions around the origin, Eq. (2.35).

1

2
Al

(

lklsl−1

(2l + 1)!!
+ tan δl(k)

−(l + 1)(2l− 1)!!

kl+1sl+2
− Bl

Al

lklsl−1

(2l + 1)!!

)

=
[

Ô(r)Rl(r)
]

r=s
.

(2.75)

We insert the ratio Bl/Al [Eq. (2.73)] and obtain

−1

2
Al ((l + 1) + l) tan δl(k)

(2l − 1)!!

kl+1sl+2
= Ôl(s)Rl(s) . (2.76)

The first term in this equation is due to the outside wave function, whereas the

second term is due to the inside part. We can fulfill the above condition by choosing

Ô(r) = −1

2

(2l + 1)!!

(2l)!!

tan δl(k)

k2l+1

1

sl+2

∂2l+1

∂r2l+1
rl+1 . (2.77)

Here, the normalization Al and the regularization operator were chosen analog to

the detailed discussion in Section 2.3.2.

2.4.3 The generalized δ-shell pseudopotential

With the reduced mass µ and ~ scaled to one, the pseudopotential is then

v
(l)
shell(r) = − lim

s→0

1

2

(2l + 1)!!

(2l)!!

tan δl(k)

k2l+1

δ(r − s)
sl+2

∂2l+1

∂r2l+1
rl+1 . (2.78)
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Comparing this to the original Huang and Yang pseudopotential, we see that they

differ by a factor (l+1)/(2l+1). This occurs because the original derivation ignores

the inside wave function contribution of weight +l in Eq. (2.76) when evaluating the

derivative of the Neumann function in Eq. (2.37). In the original derivation Huang

and Yang considered an integration in a small volume around the origin resulting in

Eq. (2.44),

∫

V

d3r rlDlnl(kr) = 4π
(l + 1)(2l− 1)!!

kl+1
. (2.79)

During this volume integration in Section 2.3.2, the inside wave function is ignored,

resulting in the wrong (l+ 1) factor in the term on the right side of Eq. (2.79). The

δ-shell potential approach circumvents the singularity at the origin, allowing one to

correctly capture higher multipoles. Furthermore, the δ-shell potential also enforces

the correct ordering of limits, taking s → 0 as the final step. With this correction,

we reproduce the perturbative mean-field energy level shifts found by Roth and

Feldmeier [58] with a mathematically rigorous contact potential that also yields the

correct asymptotic eigenfunctions. Another advantage of the δ-shell potential is that

its radial solutions Rl are in principle normalizable for finite shell radius whereas the

solutions for s = 0 diverge as rl and cannot be normalized.

2.4.4 Pseudopotential and Hermiticity

In the above form, the δ-shell potential is not Hermitian since the derivative operator

is not. The regularization we choose is necessary in order to extend the domain of

the corresponding Hamiltonian to irregular functions that diverge as 1/rl+1 when

r → 0. Although this does not cause a problem in most applications, in general one

must be cautious. In order to make the potential Hermitian on the whole domain,

including both regular and irregular functions, an additional regularization operator
[

rl/(2l + 1)!
]

(∂2l+1/∂r2l+1 rl+1) can be added that acts to the left (i.e. on the bra) as
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projector onto the regular function subspace. Such dual regularization is cumbersome

and so we generally choose to work with only a single regularization operator.

2.4.5 Note on angular part of pseudopotential and wave

functions

Including the angular part, the zero-range pseudopotential is written in the operator

form

v̂(r) =
∑

l

|l,m〉v(l)
shell(r)〈l,m| . (2.80)

Here, v
(l)
shell(r) is the derived l- wave radial pseudopotential and 〈x|l,m〉 = Yl,m(θ, φ)

are the spherical harmonics. For the calculation of matrix elements, this means that

the angular part of the wave function has to be projected out first. This is trivial

if the wave function is written in the spherical harmonics basis. In general, matrix

elements are calculated as

〈ψ1|v̂(r)|ψ2〉 =
∑

l

〈ψ1|l,m〉v(l)
shell(r)〈l,m|ψ2〉 , (2.81)

=

∫

dΩψ∗
1Yl,m v

(l)
shell(r)

∫

dΩY ∗
l,mψ2 . (2.82)

This is of particular importance for perturbation theory calculations for atoms in

separated traps, where the interaction potential acts on a non-spherically symmetric

wave function (displaced harmonic oscillator). Furthermore, in these cases, it is

important to use the Hermitian form of the operator with a regularization operator

to the left, since ψ1 usually includes a regular and irregular part. The regularization

operator to the left projects ψ1 back onto the l-wave regular function subspace.

47



Chapter 2. Scattering models based on generalized zero-range pseudopotentials

2.5 Energy-dependent scattering length approxi-

mation

2.5.1 Energy-dependent scattering length

Our form of the δ-shell potential depends on the energy-dependent phase shift δl(k),

which can usually be approximated in the Wigner-threshold regime by a constant

scattering length. We find it more useful here, however, to define a fully energy-

dependent l-wave scattering length that captures not only corrections due to the

effective range [56], but all higher order terms,

a2l+1
l (k) = −tan δl(k)

k2l+1
. (2.83)

This introduction of an energy-dependent scattering length into the pseudopotential

approximation has been studied in great detail for the s-wave case [54,55]. Just as in

the s-wave case, the general l-wave δ-shell potential exactly reproduces the correct

energy-dependent scattering phase shift δl(k) that arises from the true potential and

therefore exactly reproduces the correct asymptotic wave functions for all partial

waves at all energies. In fact, using an energy-dependent scattering length for higher

partial-wave scattering has added benefits since the Wigner-threshold law may not

hold for all l, leading to strong energy dependence of the scattering length Eq. (2.83)

near zero energy. For example, for power law potentials of the form Cn/r
n, the

phase shift is not proportional to k2l+1 for l > n/2, but instead behaves as kn [46].

Although the generalized scattering length at low energies is not constant, the full

energy-dependent solution will hold. A general breakdown of the pseudopotential

approximation only occurs in cases where the realistic potential does not have a finite

range and an outside wave function cannot be defined as in Eq. (2.71). In the case of

ground state collisions, the van der Waals interaction potentials behave as −C6/r
6

and an asymptotic regime can always be defined. If the collision includes excited
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state atomic potentials, as for example in the case of a dipole-dipole interaction

where the interaction potentials fall of as −C3/r
3, the asymptotic region is moved

out to larger r and is more difficult to define. For Coulomb potentials which behave

as −C2/r
2, a description using asymptotic scattering theory fails completely [51].

2.5.2 Self-consistent solution

The introduction of an energy-dependent scattering length into the pseudopoten-

tial approximation causes the corresponding Hamiltonian to be energy dependent.

Therefore one must use great care for handling such problems. In particular, the so-

lutions to this Hamiltonian are not orthonormal anymore. For bound solutions, one

can solve for the discrete eigenvalues of the energy-dependent Hamiltonian derived

from an energy-dependent pseudopotential using a self-consistent procedure [54].

To this end, the eigenspectrum of the system is first calculated as a function of a

constant scattering length, giving E(a). Then the effective scattering length is cal-

culated as a function of kinetic energy EK = E − V for the interaction potential

alone, yielding a(E). Simultaneous solutions are then found numerically. Examples

of the self-consistent method can be found in later sections and chapters. The pri-

mary advantage of this two-step procedure is to split up a difficult problem into two

manageable tasks. First is the calculation of the energy spectrum for a δ interaction.

Second is the separate calculation of scattering length, which includes the correct

energy-dependent boundary conditions in a single parameter. This procedure is par-

ticularly important for the accurate calculation of the energy spectra of interacting

trapped atoms when the interaction range and width of the trap wave functions are

orders of magnitude different, as is typically the case.
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2.6 Energy-dependent scattering length approxi-

mation at negative energies

2.6.1 Bound states and poles in the S-matrix

So far, we have only discussed the positive energy scattering spectrum with respect

to the pseudopotential. We will show in the following that the pseudopotential ap-

proximation remains valid even for the bound-state spectrum if the scattering length

is continued to negative energies. For the discussion of the analytic properties of the

pseudopotential at negative energies, it is helpful to use the relationship between the

S-matrix and the bound states of an interaction potential. For bound states, the

radial functions jl and nl both diverge as r → ∞. It is therefore helpful to use the

set of spherical Hankel functions instead

h
(1)
l (kr) = jl(kr) + inl(kr) , (2.84)

h
(2)
l (kr) = jl(kr)− inl(kr) . (2.85)

Rewriting the asymptotic radial solutions of the true potential in terms of Hankel

functions, we get

j
(+)
l (r)

r→∞∼ Al

2

[

Jl(k)h
(2)
l (kr) + Jl(k)

∗h
(1)
l (kr)

]

, (2.86)

where the k-dependent coefficients are the Jost functions Jl(k) and their complex

conjugates Jl(k)
∗. The Jost functions are in general analytic functions of k and can

be analytically continued to negative energies and complex k. The S-matrix element

sl(k) = e2iδl(k) is then related to the Jost functions via [51]

sl(k) = e2iδl(k) =
Jl(k

∗)∗

Jl(k)
=
Jl(−k)
Jl(k)

. (2.87)

Here, the last step is the Schwarz reflection principle for analytic functions.
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For negative energies, the wave vector k is purely imaginary, k = iκ, and the

Hankel functions behave as h
(2)
l (kr)

r→∞∼ e+κr and h
(1)
l (kr)

r→∞∼ e−κr. If we assume a

bound state at Eb = −~
2κ2

b/2m, its wave function has to be exponentially decreasing

so that the Jost function has to be zero at the bound-state energy,

Jl(k) = Jl(iκb) = 0 ⇐⇒ bound state. (2.88)

The S-matrix element sl(k) has a pole for k = iκ,

sl(k) = sl(iκb) = e2iδl(iκ) →∞ ⇐⇒ bound state. (2.89)

This is the important correspondence between the zeros of the Jost function, poles

of the S-matrix and the bound states of the true interaction [51].

2.6.2 Analytic continuation of the scattering length and

bound states

We will show in this section that the self-consistent method discussed earlier can

be applied to the interaction potential itself if the scattering length is analytically

continued to negative energies. For negative energies, k = iκ is purely imaginary

and the scattering length is given by

a2l+1
l (κ) =

tanh [iδl(iκ)]

κ2l+1
. (2.90)

This analytic continuation allows us to capture both the positive energy spectrum

of the interaction as well as the bound states of the true interaction potential itself.

Consider the radial wave function for negative energies,

Rl(r) =
Al

2

[

h
(1)
l (iκr){1 + tanh [iδl(iκ)]}+ h

(2)
l (iκr){1− tanh [iδl(iκ)]}

]

. (2.91)

Strictly speaking these solutions are only allowed for normalizable wave functions,

the true bound states of the δ-shell potential. These occur when tanh [iδl(iκ)] = 1
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since then the coefficient of the exponentially increasing h
(2)
l vanishes. At these

energies, al = 1/κ. The δ-function bound states are thus located at

Eδ = −~
2κ2

2µ
= − ~

2

2µa2
l

, (2.92)

just as in the s-wave case. For constant scattering length this means that the pseu-

dopotential has only a single bound state [63]. For an energy-dependent scatter-

ing length, the pseudopotential can have several bound states as given by the im-

plicit equation Eδ = −~
2/(2µa2

l (Eδ)). The condition for a δ-function bound state,

tanh [iδl(iκ)] = 1, is fulfilled only when the phase shift has a pole on the imaginary

axis, δl(iκ) = −i∞. This occurs at each of the negative energies at which the S-

matrix of the true interaction potential has a pole [Eq. (2.89)], i.e., at the energies

of each of its bound states as discussed in the previous section. The generalized

l-wave pseudopotential with an energy-dependent scattering length thus provides an

accurate description of the entire energy spectrum of the true interaction potential,

bound and scattering.

2.7 Summary

We have derived a generalized zero-range pseudopotential for higher partial-wave

interactions that captures both the scattering solutions and bound-state spectrum

self consistently. By employing a limiting procedure on a finite-radius δ-shell poten-

tial, we have provided a rigorous correction to the long standing error in Huang’s

and Yang’s pseudopotential. We have also shown that the self-consistent solution

together with an analytical continuation of the scattering length to negative energies

make it possible to capture both the scattering and bound state spectrum of the true

interaction, even outside the Wigner threshold regime and for cases where the scat-

tering length is strongly energy dependent. The pseudopotential has applications to

many-body problems as well as for modeling of controlled collisions, which play an
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important role in quantum information processing and will be discussed in a later

chapter.
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Chapter 3

δ-shell potential and application to

trapped atoms

3.1 Collisions of trapped atoms

3.1.1 Introduction

Laser cooling and subsequent trapping of neutral atoms has been a rapidly devel-

oping field over the past decade. Atoms in traps have become the playground for

atomic physics, condensed matter physics, and more recently quantum information

physics [1]. The progress in atom traps has led to the observation of Bose Einstein

condensation (BEC) in several atomic species, the controlled creation of molecules,

degenerate Fermi Gases, trapped atoms in optical lattices [2], the observation of

quantum phase transitions [6], coherent transport of atoms [39], and many-body en-

tanglement of atoms [40]. For many of these systems, interactions between atoms

play a crucial role and the trapping environment can have a large effect on the interac-

tion between atoms. As discussed in Section 1.1.2, the effects of strong confinement
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in one or more dimensions have led to an interesting field of research [18, 20, 24].

As a consequence, scattering models for the description of the interatomic interac-

tion have been adapted and modified to produce accurate results, even under strong

confinement [54, 55, 64–66].

In the following chapter, we will discuss some of the issues of modeling cold

collisions in a trapping environment. In particular, we will apply the δ-shell pseu-

dopotential derived in the previous chapter to two atoms in an isotropic trap. Here

the pseudopotential approach allows us to directly derive analytical solutions and

eigenvalue equations by simply matching boundary conditions across the δ shell.

3.1.2 Length scales and other basic considerations for inter-

acting trapped atoms

The basic Hamiltonian for two interacting trapped atoms is

Ĥ =
p̂2

1

2m1

+
p̂2

2

2m2

+ V̂trap(r1) + V̂trap(r2) + V̂int(r2 − r1) , (3.1)

where V̂trap(ri) describes the trapping potential and V̂int describes the interaction

between atoms. Several length scales play an important role in this system. We

assume atoms are well-localized near a potential minimum and thus, we can ap-

proximate the trapping potential by a harmonic potential V̂trap = miω
2r2

i /2. The

confinement of atoms (see section 1.1.1) is measured by the Lamb-Dicke parameter

η, given by η = klr̄0 =
√

Er/~ω. The width r̄0 of the harmonic oscillator ground

state for a single atom is

r̄0 =
√

~/(2mω) . (3.2)

kl is the wave vector of the trapping laser light, Er = ~
2k2

l /2m is the recoil energy.

If we assume an interaction potential, which behaves at long range as

V̂int = −Cn

rn
, (3.3)
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then the characteristic length for the range of interaction is

βn =
1

2

(

2µCn

~2

)
1

n−2

. (3.4)

The characteristic interaction length scale βn is nicely reviewed in the appendix of

Ref. [67]. βn is approximately the length scale of the breakdown of the semiclassical

WKB approximation for the collisional phase shift [67]. βn is further close to the

mean scattering length for a −Cn

rn potential as defined by Ref. [50]. The other im-

portant parameter that we discussed in detail in the previous chapter is the s-wave

scattering length a, which is mainly determined by the location of the last bound

state of the interaction potential. For alkali atoms, the magnitude of the scattering

length can be anywhere in the range from about 100 Bohr radii in 87Rb to several

1000 Bohr radii in 133Cs .

The interaction length scale βn for ground state collisions is typically on the order

of a few nm and much smaller than typical experimental trap sizes, which can range

from 10− 100 nm (η = 0.1− 1) in optical lattices and strong dipole traps to several

100 nm for magneto-optic traps. On the other hand, the scattering length a can be

many times the size of the trap r̄0 as is naturally the case in 133Cs or for any other

alkali close to a scattering resonance. Since βn ≪ r̄0 we can safely approximate

the interaction through a Fermi pseudopotential or our generalized pseudopotential.

βn ≪ r̄0 replaces the requirement that the deBroglie wavelength βn ≪ λdB in the

free case. The Wigner law is defined only in the energy regime with

k ≪ π

2 |a| , (3.5)

for which δ0 = −ka is a good approximation. For large scattering lengths as in 133Cs ,

the collisional energies 3~ω/2 for tight traps are already outside the Wigner threshold

regime and the constant scattering length approximation breaks down. In this case

an energy-dependent pseudopotential approximation needs to be employed [54, 55].
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3.1.3 Analytic solutions for interacting trapped atoms:

“Busch” solutions

Only very recently, exact analytic solutions have been found for atoms in harmonic

traps that interact through Fermi pseudopotential [64]. The Hamiltonian for two

atoms with the same mass m1 = m2 = m in a harmonic trap of frequency ω is

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+

1

2
mω2r2

1 +
1

2
mω2r2

2 +
4π~

2

m
aδ3(r2 − r1)

∂

∂r
r . (3.6)

Because of the quadratic form of both, the kinetic energy term and the potential

term, we can transform this Hamiltonian to the center of mass (CM) frame with CM

and relative coordinates

R =
m1r1 +m2r2

M
=

r1 + r2

2
,

r = r2 − r1 . (3.7)

The total mass M and the reduced mass µ are

M = m1 +m2 = 2m,

µ =
m1m2

m1 +m2

=
m

2
. (3.8)

The Hamiltonian separates into two parts, one trivial Hamiltonian for the CM mo-

tion and one Hamiltonian for the relative coordinate motion, which includes the

interaction.

ĤCM =
p̂2

R

2M
+

1

2
Mω2R2,

Ĥrel =
p̂2

r

2µ
+

1

2
µω2r2 +

2π~
2

µ
aδ3(r)

∂

∂r
r . (3.9)

From now on we will discuss only the relative coordinate motion (and drop the

subscript). Scaling energies by ~ω and all lengths by the characteristic harmonic
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oscillator length scale r0 =
√

~2/µω = 2r̄0, we get

Ĥ =
p̂2

r

2
+

1

2
r2 + 2πaδ3(r)

∂

∂r
r . (3.10)

Without following the derivation by Busch et al. in detail, one expands the solu-

tions to this Hamiltonian in the well known orthonormal radial Laguerre-Gaussian

harmonic oscillator basis, which diagonalizes the first part of the Hamiltonian with-

out interaction. Inserting this into the Schrödinger equation, one can determine the

expansion coefficients using the generating functions of the Laguerre polynomials

and derive an implicit equation for the shifted energy eigenvalues. (Note: An analo-

gous version of this derivation, using our δ-shell pseudopotential for all higher partial

waves, is given in the Appendix A.) The eigenvalue equation is

2
Γ(−ν)

Γ(−ν − 1/2)
=

1

a
, (3.11)

where the noninteger index ν is related to the energy eigenvalues in harmonic oscil-

lator units via E = 2ν + 3/2. The s-wave eigenfunctions are

ψl(r) = Ae−
r2

2 Γ(−ν)U(−v, 3/2, r2) , (3.12)

where U are the hypergeometric Kummer U functions [59]. The normalization is

determined in Appendix A to be

A2 =
1

∂
∂ν

(

2Γ(−ν)
Γ(−ν−1/2)

) ; (3.13)

or, after some more algebra, expressed in terms of the scattering length

A2 =
−a

2π
sin (2πν)

+ Φ(ν + 1)− Φ(ν + 3/2)
, (3.14)

where Φ(x) = Γ(x)′/Γ(x) is the digamma function. For no interaction and a = 0,

the index ν is integer, ν = n. The hypergeometric U-functions then reduce to the

regular Laguerre polynomials L
l+1/2
n so that the regular spherical harmonic oscillator
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solutions and eigenvalues are obtained. We will discuss the implicit l = 0 eigenvalue

equation for interacting trapped atoms in more detail later when we discuss the

general higher partial-wave equations.

In order to generalize this approach and results to higher partial waves, one

could choose an analogous path for the derivation as presented in the appendix

(see Appendix A). However, in the following section, we will discuss an alternative

approach that is unique to the δ-shell interaction potential formulation.

3.2 Derivation of “Busch” solutions for general l-

wave interactions using the δ-shell potential

Our δ-shell approach offers a direct method for obtaining analytic solutions to a

scattering problem by simply matching boundary conditions across the δ shell. We

will now demonstrate this by employing the energy-dependent δ shell to find all

partial-wave solutions to the Schrödinger equation for two particles in an isotropic

harmonic trap interacting through a central potential. We separate out the center

of mass motion and all distances are scaled to the characteristic harmonic oscillator

length r0 =
√

~/(µω) as discussed in the previous section. The scaled Hamiltonian

in units of ~ω is

Ĥ =
p̂2

r

2
+

1

2
r2 + lim

s→0

1

2

(2l + 1)!!

(2l)!!
a2l+1

l

δ(r − s)
sl+2

∂2l+1

∂r2l+1
rl+1 . (3.15)

We make the Ansatz ψν,l,m = Rν,l(r)Y
m
l (θ, φ) with

R±
ν,l(r) = rlexp(−r2/2)w±

ν,l(r) (3.16)

for the relative coordinate radial wave function inside and outside the shell (see

Fig. 3.1). The Schrödinger equation for the radial wave function,
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v r( )

rsa

Rl

+
Rl

−

Figure 3.1: Pseudopotential approach for trapped atoms based on a δ shell with
radius s (red vertical line). The trapping potential (solid red line) is assumed to be
harmonic. The inside R−

ν,l and outside R+
ν,l wave function are shown (solid lines) as

well as the extension of the asymptotic outside wave function to its intersection with
the r-axis. This intersection marks the scattering length a of the interaction.

1

2

(

−1

r

∂2

∂r2
r +

l(l + 1)

r2
+ r2

)

Rν,l(r) =
(

E − v(l)
shell(r)

)

Rν,l(r) , (3.17)

reduces to the well known Kummer differential equation [59],

zw′′(z) + (b− z)w′(z)− aw(z) = 0 , (3.18)

in the regions where the interaction potential v
(l)
shell is zero.

Independent solutions of this equation are the confluent hypergeometric functions,

U(a, b, z) and M(a, b, z), where z = r2, a = −ν and b = l+3/2 and E = 2ν+ l+3/2.

The inside solution must be proportional to rl exp (−r2/2)M(−ν, l + 3/2, r2), which

behaves regularly as rl around the origin, whereas the outside solution must be

proportional to rlexp(−r2/2)U(−ν, l+ 3/2, r2), which falls of exponentially for large

r. The inside and outside solutions are then

R−
ν,l(r) = Blr

le−
r2

2 M(−ν, l + 3
2
, r2) for r < s, (3.19)

R+
ν,l(r) = Alr

le−
r2

2 U(−ν, l + 3
2
, r2) for r > s. (3.20)
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It will be more convenient to write the U function in terms of M functions, so that

we can rewrite the outside solution as

R+
ν,l(r) = A′

l

[

rle−
r2

2 M(−ν, l + 3/2, r2)

+
e−

r2

2

rl+1

(−1)l

π

[Γ(l + 3/2)]2

l + 1/2

Γ(−ν − l − 1/2)

Γ(ν)
M(−ν − l − 1/2,−l + 1/2, r2)

]

.

(3.21)

In this form, we can very nicely see the analogy to the wave functions in the free case.

The first term is analog to the regular spherical Bessel function jl(kr) and propor-

tional to rl, whereas the second term is analog to the irregular spherical Neumann

functions nl(kr) and proportional to r−(l+1). The ratio between the two functions,

as we will see later, is proportional to tan δl, just as in the free case.

We again require continuity of the wave function at r = s with

Bl

A′
l

= 1− 1

s2l+1

(−1)l

π

[Γ(l + 3/2)]2

l + 1/2

Γ(−ν − l − 1/2)

Γ(ν)

M(−ν − l − 1/2,−l + 1/2, r2

M(−ν, l + 3/2, r2)
,

≈ 1− 1

s2l+1

(−1)l

π

[Γ(l + 3/2)]2

l + 1/2

Γ(−ν − l − 1/2)

Γ(ν)
, (3.22)

where the second line is in the limit ks ≪ 1. Integrating the radial equation over

the δ-function gives us a second boundary condition

1

2

(

∂

∂r
R+

ν,l(r)

∣

∣

∣

∣

r=s

− ∂

∂r
R−

ν,l(r)

∣

∣

∣

∣

r=s

)

= Ô(r)Rν,l(r)
∣

∣

∣

r=s
. (3.23)

Taking s ≪ 1/k and inserting the previous results for Bl/A
′
l of Eq. (3.22), the

derivatives of the outside and inside radial solutions are

1

Al

∂

∂r
R+

ν,l(r)

∣

∣

∣

∣

r=s

≈ lsl−1 + (−1)l

π
[Γ(l+3/2)]2

l+1/2
Γ(−ν−l−1/2)

Γ(ν)
l+1
sl+2 ,

1

Al

∂

∂r
R−

ν,l(r)

∣

∣

∣

∣

r=s

≈ lsl−1 − (−1)l

π
[Γ(l+3/2)]2

l+1/2
Γ(−ν−l−1/2)

Γ(ν)
l

sl+2 . (3.24)
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Note that the first two terms are the same, while the last two differ only by a

multiplicative factor. Applying the operator Ô(r) in Eq. (2.77) to (3.20) for small s,

we can evaluate the right side of the Eq. (3.23) ,

Ô(r)Rν,l(r)
∣

∣

∣

r=s
=

1

2

[(2l + 1)!!]2

sl+2
a2l+1

l A′
l . (3.25)

Inserting Eq. (3.24) and (3.25) into (3.23), we arrive at the implicit eigenvalue equa-

tion,

π

2

(−1)l[(2l + 1)!!]2

(Γ(l + 3/2))2

Γ(−ν)
Γ(−ν − l − 1/2)

=
1

a2l+1
l

. (3.26)

This is the general eigenvalue equation for the l-partial wave interaction that must

be solved self-consistently for the energy-dependent al as described above. For l = 0,

this reduces to the known s-wave eigenvalue equation (3.11) derived by Busch et

al. [64]. The corresponding wave functions are the inside and outside wave functions

noted above where the ratio Bl/A
′
l is fixed by Eq. (3.22). For finite shell radius, these

wave functions are in principle numerically normalizable unlike solutions obtained

with a δ potential at the origin, where the unnormalizable solutions diverge as r−(l+1)

for r → 0.

During the course of our research, we have learned of alternative approaches for

deriving Eq. (3.26). A very nice quantum-defect theory approach for deriving the

general Eq. (3.26) was presented by Peach et al. [68]. In concurrent theoretical work

by Kanjilal and Blume [69], the l = 1 special case of Eq. (3.26) has been derived

using a corrected l = 1 pseudopotential, based on Omont’s pseudopotential [62], and

applied to 1D- and 3D-confined fermions.
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Figure 3.2: Eigenvalues for interacting atoms in traps for l = 0, l = 1, and l = 2
interaction potentials. The solutions to Eq. (3.26) are plotted as a function of the
l-wave scattering length.

3.3 Energy spectra for interacting trapped atoms

Figure 3.2 shows numerical solutions to the derived general eigenvalue equation for

trapped atoms interacting with an l-partial wave pseudopotential. The results for

l = 0 are identical to the ones in Ref. [64]. For no interaction, i.e. a = 0, one recovers
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the unshifted harmonic oscillator energy levels with (2n+3/2)~ω. For infinity positive

and negative scattering lengths, these energy levels are shifted maximally by ±~ω,

respectively. More precisely, the energy level for n that is shifted up by ~ω asymptotes

to the same energy value as the next energy level with n + 1 that is downshifted by

~ω. This behavior just reflects the fact that a→ −∞ and a→∞ describe the same

physical effect, i.e. a phase shift of the asymptotic solution by π/2. The wave function

in both cases has to be the same, even under confinement. For positive scattering

length, one can further identify the δ-function bound state that is originally located

at Eb = −~
2/(2µa2

0) and shifted up by the trapping potential. If this bound state is

extremely close to dissociation in the free case, the scattering length a is large and

positive and the extension of the bound state without trap is measured by a. For

a≫ r0, the size of this bound state will be limited by the trap and consequentially,

the bound state is pushed to positive energies up to a maximum value of ~ω/2.

The energy spectra for l = 1 and l = 2 are similar to the l = 0 case. The

usual harmonic oscillator energy levels with (2n + l + 3/2)~ω can again be shifted

at most by ±~ω. The behavior of the bound state and its link to the trap spectrum

has intriguing features, though. The constant scattering length δ-function potential

has a single bound state for even l in the case of positive scattering length and for

odd l in the case of negative scattering lengths, as seen in the Fig. 3.2 for l = 1

and l = 2. Intuitively we would expect the correspondence between bound states

and the scattering length to be the same for all three cases: a bound state close

to dissociation results in a node of the scattering states for large positive r and a

corresponding large scattering length. Whereas for l = 2, just as for l = 0, this

is indeed the case, for odd l = 1 the δ-function potential has no bound states for

positive scattering length. This property of the δ-potential is therefore in stark

contrast to our intuitive expectations. The resolution of this paradox follows from

considering true potentials with an energy-dependent scattering length, as shown in

the next section. If the δ-shell potential is used self-consistently, we observe the same
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correspondence between the bound states and the scattering length for l = 1 as for

l = 0, just as predicted by our intuitive arguments. We will revisit this paradox in

more detail in Section 3.4.3.

3.4 Breakdown of pseudopotential approximation

for trapped atoms: Test example

3.4.1 Spherically symmetric step potential

In order to verify the accuracy of the higher partial-wave energy spectra, we choose

a spherically symmetric step potential well with range d and depth V0 as a test [see

Fig. 3.3 (a)]. The potential is given by

V̂test = −V0 for r < d,

= 0 for r > d. (3.27)

This step-potential well is particularly convenient because it can be solved analyt-

ically. In the regions of constant potential, we can make the same ansatz for the

radial wave function as in the case of the δ shell. R±
ν,l(r) = rlexp(−r2/2)w±

l (r) for

r < d (-) and r > d (+) so that the radial equation reduces again to the Kum-

mer differential equation Eq. (3.18). The inside solution must be proportional to

rlexp(−r2/2)M(−ν − V0/2, l + 3/2, r2) where the index ν is now shifted by −V0/2,

accounting for the offset in potential energy. The outside solution is the same as

before. The inside and outside solutions are then

R−
ν,l(r) = Blr

le−
r2

2 M(−ν − V0

2
, l + 3

2
, r2) for r < d, (3.28)

R+
ν,l(r) = Alr

le−
r2

2 U(−ν, l + 3
2
, r2) for r > d. (3.29)
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Matching the boundary conditions across d leads to an implicit equation that can

be solved numerically e.g. with Mathematica. Note that, here, a small r expansion

of the inside wave function is not possible, since the wave function may be highly

oscillatory on the inside depending on the depth of the potential. We compare this
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Figure 3.3: (a) Step-well test interaction potential with range d = 0.4z0 and depth
V0 = 34.95~ω in a harmonic trap, l = 1 eigenstates (dotted lines) and corresponding
reduced wave function (solid line). The δ-shell solution in the limit of the shell radius
s→ 0 (dashed line) coincides with the actual eigenstates outside the range d. (b)-(d)
Comparison between exact eigenvalues (solid lines) of the step-well interaction plus
harmonic trap and pseudopotential eigenvalues (crosses) as a function of the range
of the well potential and for l = 0, 1, 2 states. The unshifted interaction bound states
(fixed at Eb = −2) and trap eigenstates are shown as dashed lines.
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exact solution with the δ-shell approximation, where the eigenvalues are found self-

consistently using the energy-dependent scattering length. For l = 0, the s-wave

phase shift is given explicitly by

δ0 (EK , V0) = arctan (k tan(qR)/q)− kR , (3.30)

where q =
√

2µ(EK + V0)/~2 [70]. The energy-dependent scattering length is evalu-

ated using Eq. (2.83) as a function of E. For l = 1 and l = 2, the phase shift and

the scattering length can be solved for analytically as well and has been evaluated

using Mathematica.

Figures 3.3(b)- 3.3(d) show a comparison of the exact eigenspectra and the δ-shell

approximation for wells with different finite range d. In particular, we chose a well

with an l-wave bound state close to dissociation to emphasize the accuracy of the

approximation even in the regime of strongly energy-dependent scattering lengths al

where the Wigner-threshold law does not hold. We find good agreement for relatively

large ranges d of the well test potential as shown in Fig. 3.3.

3.4.2 Breakdown of pseudopotential approximation

The breakdown of the pseudopotential approximation at larger ranges is due to the

modification of the interaction potential over its finite range by the harmonic trap.

As long as the trapping potential is flat across the range d of interaction potential,

the self-consistent pseudopotential solutions are exact. If the trap is not constant

in this region, one can estimate the difference between the energy shift with and

without this modification for the interaction bound states in first order perturbation

theory,

∆E = 〈ψshell|r2/2|ψshell〉 − 〈ψwell|r2/2|ψwell〉 . (3.31)

Here, ψwell is the exact bound state associated with the step-well potential bound

state and ψshell is the bound-state wave function of the δ-function bound state. For
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l = 1 and l = 2, these two wave functions differ more substantially than for s waves,

resulting in a bigger deviation of the pseudopotential approximation as the range

d becomes large [Figs. 3.3 (b)-(d)]. In the case of ultracold collisions, the energy-

dependent pseudopotential will therefore be a good approximation as long as the

characteristic interaction length scale of the van der Waals interaction β6 is much

smaller that the characteristic length scale of the trap r0. This has been analyzed

and tested in detail in Refs. [54, 55].

3.4.3 Odd partial-wave bound state of the spherical step-

potential well

In the previous section, we considered a spherical step-potential well with an l = 1

bound state at Eb = −2. Although the scattering length is positive at zero energy,

the potential has a bound state. This is in contrast to the property of the δ-potential

discussed earlier and the statement made in the literature that an interaction po-

tential with a positive l = 1 scattering length cannot have a bound state close to

dissociation [69, 71]. In fact, as shown by the step-potential and as predicted intu-

itively, exactly the opposite appears to be true. In the higher partial wave case, one

needs to consider the energy-dependent scattering length, as shown for the step-well

example in Figure 3.4. Here, the energy-dependent scattering length changes sign be-

tween the bound state and zero energy. This change in the scattering length seems to

be a general feature for realistic interactions where the close by bound state results,

just like in the s-wave case, in a repulsive positive energy behavior. A more in depth

study of the connection between l = 1 bound states and the positive zero-energy

scattering length, as well as a study of the resonant like character of the scattering

length just below zero energy is planned future investigation.
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Figure 3.4: l = 1 scattering length for the spherical step-well potential (red solid
lines). (a) δ-function bound state as a function of scattering length according to
Eb = − ~

2

2µa2
1

(dotted blue line). The intersection between the two curves (black dot)

shows the self-consistent solution for the l = 1 bound state in the “free” case. (b)
l = 1 “Busch”-eigen values as a function of scattering length (dotted blue line). The
intersection between the two curves (black dots) shows the self-consistent solution
for the l = 1 bound state and the energy shifted trap eigenstates. The obtained
eigenvalues correspond to the ∆z = 0 eigenvalues in Fig, 3.3(c).

3.5 Summary

In Chapter 2 we have derived a generalized zero-range pseudopotential for higher

partial-wave interactions that captures both the scattering solutions and bound-state

spectrum self consistently. Here, we were able to put this pseudopotential to good use

and apply the developed pseudopotential to a system of interacting trapped atoms.

The δ-shell potential offers a direct method to analytically solve the Schrödinger

equation, as demonstrated for the case of interacting trapped atoms, where we de-

rived the higher partial-wave energy spectrum and obtained normalizable eigenfunc-

tions. This is of special interest for degenerate gases of identical fermions where

l = 1 scattering is the primary contribution to the interaction and for Bose systems
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where noncentral forces play an important role. Our accurate modeling of interact-

ing trapped atoms and the analytical calculation of the eigenenergies should provide

new avenues for studying degenerate gases of interacting ultracold atoms in tightly

confining traps [1], such as in optical lattices [6]. Beyond its application to many-

body problems, the accurate modeling of the interaction of trapped atoms plays an

important role in quantum information processing as we will show in later chapters.

Other interesting problems include collisions in non-spherically symmetric trapping

potentials. For example, “confinement induced resonances” have been predicted for

1D and 2D trapped bose gases [18, 20, 23, 24]. Another interesting and important

effect occurs for collisions in separated traps in form of trap-induced resonances. In

the next chapter, we will built on our existing models and discuss these new kind of

resonances.
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Trap-induced shape resonances in

ultracold atomic collisions

4.1 Introduction

The ability to arbitrarily manipulate the quantum state of a many-body ensemble

represents the ultimate control of a physical system. The standard approach to

modeling and designing coherent states of matter has its foundations in condensed

matter theory, where one considers solutions to the entire many-body Hamiltonian.

An alternative viewpoint arises from a fundamental theorem of quantum information

theory [9]: an arbitrary state of a many-body system can be reached entirely through

operations on single bodies and pairwise interactions. This provides a direct approach

to engineering mesoscopic states through the application of a “quantum circuit” [72,

73]. Moreover, one requires only a single two-body interaction (e.g. CPHASE or

CNOT gate) that entangles the “particles” to contribute to a universal set of quantum

logic gates.

In the context of ultracold neutral atoms, whereas manipulating the quantum
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state of an individual atom is a very mature technique, arbitrary unitary mapping

of a two-atom system has not yet been achieved. Neutrals, by their very nature,

do not strongly couple to anything. This may be an advantage for avoiding noise,

but it implies that the two-body interaction will generally require close overlap of

the atomic wave packets. By bringing two atoms within the same well of a tightly

confining microtrap, one can achieve this strong coupling while remaining in the

electronic ground state. Proposals for two-atom control in such a geometry have

been considered using ground state s-wave collisions [28], including Feshbach res-

onances [74] and laser induced Raman transitions [75]. At such close range, the

atoms lose their individual identities and instead must be described as a molecular

dimer, which generally does not respect the atomic symmetries. This constrains the

possible encodings of quantum information such that two-body logic gates can be

performed within a well-defined “logical basis”. This constraint can be overcome by

placing the particles in distinguishable locations where the atomic quantum num-

bers are conserved asymptotically. Under typical conditions, such separated atoms

would generally encounter very weak interactions. The coupling between atoms can

be dramatically increased, however, when a resonance of the two-body system is

excited, resulting in long-range interactions. An example of this is induced electric

dipole-dipole interactions associated with excited electronic states [32, 35].

In this chapter, we describe the physics at the foundation of these protocols by

considering ultracold collisions between trapped but separated atoms. In this setting,

resonances can occur between eigenstates of the trap and molecular bound states,

allowing us to overcome the generally very weak interactions associated with the van

der Waals potential. These “trap-induced resonances” (TIR) can be substantial and

provide a new tool for molecular dimer control (e.g. the production of cold molecules)

and the design of two-atom quantum logic gates.
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4.2 Hamiltonian and pseudopotential interaction

4.2.1 Hamiltonian for interacting atoms in separated traps

Our model system consists of two atoms in separated traps that interact through the

molecular potential V̂int. It is described by a Hamiltonian,

Ĥ =
p̂2

1

2m
+ V̂trap

(

r1 +
∆z

2

)

+
p̂2

2

2m
+ V̂trap

(

r2 −
∆z

2

)

+ V̂int(r1 − r2) , (4.1)

where ∆z is the separation of the traps (chosen in the z-direction). In the case

∆z = 0 this system reduces to the one discussed in the previous chapter. The

trapping potential V̂trap for the two atoms could be, for example, the state-dependent

trap of a three-dimensional optical lattice potential [2]. In this system, ∆z can be

continuously controlled by the angle between the polarization vectors of the counter

propagating laser beams [2,39] (see Section 1.1.1). We again assume atoms are well-

localized near potential minima that are approximated as isotropic and harmonic

with frequency ω. Just as in non-separated case, the Hamiltonian separates because

of the quadratic form of the potential term into one for the center-of-mass moving in

an isotropic harmonic potential, and one for relative coordinate dynamics, described

by (see Appendix B for detailed derivation),

ĤCM =
p̂2

R

2M
+

1

2
Mω2R2,

Ĥrel =
p̂2

rel

2µ
+

1

2
µω2 (r−∆z)2 + V̂int(r) . (4.2)

The reduced mass µ = m/2 moves under the combined effects of a harmonic trap

centered at ∆z and a central interatomic potential (Fig. 4.1). The Hamiltonian can
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be expressed in spherical coordinates with r, θ, and φ as

Ĥrel = − ~
2

2µ

1

r

∂2

∂r2
r− ~

2l(l + 1)

2µr2
+

1

2
µω2r2−µω2∆zr cos θ+

1

2
µω2∆z2+V̂int(r) . (4.3)

∆z

(a)              (b)

∆z=0                   ∆z>>0
V(r) V(r)

r, θ=0r

Figure 4.1: Sum of the harmonic trapping potential and chemical binding potential
(red line) in the relative coordinate r for zero trap separation (a) and larger trap
separation ∆z ≫ r0 (b). For ∆z ≫ r0 the interaction potential is pushed up in
energy by the trapping potential at the origin.

4.2.2 Discussion of pseudopotential approximation for sep-

arated traps

The harmonic trap is characterized by the characteristic scale r0 = (~/µω)1/2, while

the interatomic potential has a much shorter characteristic length scale β. For the

ground state van der Waals interaction V̂int(r) = −C6/r
6, β = β6 = (2µC6/~

2)1/4/2

(see Section 2.2.1). As we have discussed in 3.4.2, the pseudopotential breaks down if

the trapping potential is not constant over the characteristic range of the interaction

β. This distortion of the interaction by the separated trap varies with direction. It is

greatest along the z-axis and is due to the 1
2
µω2∆zr cos θ term in the Hamiltonian 4.3.

This term is comparable to the long-range interaction,
∣

∣

∣

∣

1

2
µω2rdist∆z

∣

∣

∣

∣

=

∣

∣

∣

∣

C6

r6
dist

∣

∣

∣

∣

, (4.4)
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at

rdist =

(

2C6µr
4
0

~2∆z

)
1

7

=

(

(2β6)
4r4

0

∆z

)
1

7

. (4.5)

At rdist, the distortion due to the trap can no longer be neglected. For a useful

pseudopotential approximation, we require rdist ≫ β6. In an optical lattice system,

the largest separation between traps that we need to consider is ∆z = λ/4, where λ is

the wavelength of the applied light field. For this maximum value of the separation,

the pseudopotential approximation holds as long as the confinement parameter η is

larger than

η = klr̄0 = kl
r0
2
>

π

2
√

2

(

β6

λ

)
3

4

. (4.6)

For typical values of β6 = 5nm and λ = 852nm for 133Cs, this requires that η > 0.024,

which is true for all current experimental systems.

Further, we will only consider s-wave scattering, which typically dominates for

ultracold collisions, and discuss the effects of higher partial interactions later. Under

these conditions, the interatomic interaction V̂int(r) can be replaced by the standard

s-wave pseudopotential discussed earlier

V̂eff(r, EK) =
2π~

2

µ
aeff(EK)δ(r)

∂

∂r
r . (4.7)

Here, EK = (~k)2/(2µ) is the kinetic energy of relative motion for two atoms in an

asymptotic scattering state with momentum ~k. As argued in the previous chapter,

the collisional energies 3/2 ~ω for tight traps are outside the Wigner threshold regime

and an energy-dependent scattering length needs to be used

aeff(EK) = −tan δ0(EK)

k
, (4.8)

where δ0(EK) is the s-wave collisional phase shift. The eigenvalues of this trapped

system must thus be solved self-consistently as described in Section 2.5.2. As dis-

cussed in Section 2.6, this method not only accurately reproduces the scattering
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behavior but also the molecular bound-state spectrum. This is particularly impor-

tant for the trap-induced resonance described below. Since we limited ourselves only

to s-wave interactions, only bound states with s-wave symmetry are included in the

description.

4.2.3 Hamiltonian in the “Busch”-basis

Using these approximations, the problem is reduced to solving the Schrödinger equa-

tion for the relative coordinate Hamiltonian in Eq. (4.3) with a δ-function inter-

action. To this end, we represent the Hamiltonian for arbitrary ∆z in the basis

corresponding to the solutions with ∆z = 0 and a fixed scattering length a (i.e. not

the self-consistent solution). This basis set, derived by Busch et al. [64], consists of

3D-harmonic-oscillator-like solutions and has been discussed in detail in Chapter 3.

Since we only include an s-wave pseudopotential we need to consider only the irregu-

lar radial waves for l = 0, which include the pseudopotential bound state at negative

energy. The l ≥ 1 wave functions are the regular 3D-harmonic oscillator wave func-

tions. The first three terms of the Hamiltonian plus the interaction potential are

diagonal in this basis

〈ψν′,l′| −
~

2

2µ

1

r

∂2

∂r2
r +

~
2l(l + 1)

2µr2
+

1

2
µω2r2 + V̂int(r) |ψν,l〉 = Eνlδν′νδl′l (4.9)

with

Eνl = ~ω

(

2ν + l +
3

2

)

. (4.10)

The trap-potential separation term, proportional to r cos θ =
√

4π/3rY10, is axially

symmetric and dipolar, thereby preserving the magnetic quantum number of the

relative motion and coupling the partial waves l,m = 0 to l±1, m = 0. The m = ±1

states vanish at the origin and are therefore not affected by the interaction. Hence,

the m = ±1 energy levels do not shift and can be trivially included at the end of the

calculation.
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A detailed derivation of the separation matrix elements is given in Appendix B.

The regular matrix elements can be calculated using n- and l-ladder operators given

in [24]. Using these ladder operators, the nonvanishing matrix elements are obtained

after some basic operator algebra (see Appendix B).

〈n, l|r cos θ|n, l + 1〉 = (l + 1)

√

(n + l + 3/2)

(2l + 1)(2l + 3)
,

〈n, l|r cos θ|n− 1, l + 1〉 = −(l + 1)

√

n

(2l + 1)(2l + 3)
. (4.11)

For the irregular l = 0 solutions, we only need to evaluate the matrix elements

〈n, 1| r cos θ |ν, 0〉. To this end, we use the expansion of the irregular solutions in

terms of the regular harmonic wave functions |nl〉 as in the original derivation of the

“Busch” solutions (see Appendix A). The sought-after matrix element is then

〈n, 1| r cos θ |ν, 0〉 = aν

√

2Γ(n+ 5
2
)

πΓ(n+ 1)

(

1

n− ν −
1

n+ 1− ν

)

. (4.12)

Including all elements, the Hamiltonian matrix (4.3) is tri-diagonal. The diagonal

elements are determined through Eq. (3.11); the off-diagonal elements are given by

Eq. (4.11) and (4.12). The sparse Hamiltonian matrix is diagonalized in this basis

at each trap separation ∆z using the numerical program discussed in Appendix C.

4.3 Trap-induced resonances

4.3.1 Energy spectra

The resulting energy spectra for two atoms are shown in Fig. 4.2 and 4.3 for both

positive and negative scattering lengths as a function of ∆z. The results of first-

order perturbation theory for a = ±0.5 are also shown for comparison. For ∆z ≫
r0, we recover the expected unperturbed 3D harmonic oscillator eigenenergies. As
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the separation between traps is decreased, perturbation theory predicts a negative

(a < 0) or positive (a > 0) energy shift to the ground state. The expected behavior is

seen for negative a, but an unexpected solution is seen for positive scattering lengths.
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Figure 4.2: Energy spectra as a function of separation ∆z between traps for negative
scattering lengths a = −0.25r0, a = −0.5r0, a = −1r0, and a = −10r0. The results
of perturbation theory are shown as dashed lines for a = −0.5r0.
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Figure 4.3: Energy spectra as a function of separation ∆z between traps for positive
scattering lengths a = 0.25r0, a = 0.5r0, a = 1r0, and a = 10r0. The results of
perturbation theory are shown as dashed lines for a = 0.5r0. For positive scattering
length, one can easily identify the parabolic energy shift of the molecular bound state
due to the harmonic trapping potential and the avoided crossings associated with
the TISR.

4.3.2 Molecular bound states and trap-induced resonances

The results for the positive scattering length are explained as follows. As discussed

in 2.2.2, for large positive a, there is a molecular bound state close to dissociation.

As ∆z is increased, the interatomic potential, located at very small internuclear dis-
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tances, is raised in energy by µω2∆z2/2 due to the parabolic trapping potential in

Eq. (4.3). That is, in order for the separated atoms to collide, they must overcome

the potential barrier created by the trap (see Fig. 4.4). When the molecular bound

(a)              (b)

∆z=0                   ∆z=∆zres

V(r) V(r)

r, θ=0r

Etrap

Eb ∆zres

Figure 4.4: Schematic of trap-induced resonanance. Fig. (a) shows the sum of the
harmonic trapping potential and chemical binding potential (gray line) in the relative
coordinate z for zero trap separation. Fig (b). The molecular bound state at Eb and
trap eigenstate at Etrap can become resonant at a critical separation ∆zres.

state becomes resonant with the lowest trap eigenstate, an avoided crossing occurs

in the energy spectrum(see Fig. 4.3). As the separation is increased even further,

the molecular bound state becomes resonant with higher-lying trap states and more

avoided crossings occur. This is a new “shape resonance” for s-wave collisions, in

which the trap barrier plays the role of the centrifugal barrier in a standard free-

space shape resonance for higher partial waves. Analogous, Feshbach-like, “confine-

ment induced resonances” have recently been predicted for 1D and 2D trapped Bose

gases [18, 20, 23, 24] and for delocalized states in 3D-optical lattices [76]. Note that

the expression “shape resonance” can be quite confusing in this context, since the

trap-induced shape resonance does not necessarily imply higher partial-wave scat-

tering, as this is the case in atomic and molecular physics. In fact, the term “shape”

refers to the sensitivity of this trap-induced resonance to the shape of the trapping

potential and to the fact that the resonance occurs in a single channel as opposed to

Feshbach resonances. In the remainder, we will refer to this new kind of a resonance

as trap-induced resonance (TIR) in order to avoid further confusion.
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4.3.3 Characterization of the trap-induced resonance

The separation at which the lowest resonance occurs, ∆zres, is easily estimated by

equating the sum of the molecular binding energy and trapping potential at the ori-

gin, Eb + µω2∆z2/2, to the vibrational ground state energy of the oscillator, 3~ω/2,

yielding ∆zres/r0 =
√

3 + r2
0/a

2. The location and gap of the avoided crossing de-

pends strongly on the molecular binding energy. For a deeply bound state, but

still positive scattering length, corresponding to 0 < a ≪ r0, the resonance occurs

at much larger separations and with an exponentially small energy gap. This cor-

responds to the small probability for the atoms to tunnel from the trap into the

chemical binding potential. Using a standard variational approach [70] based on
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0
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a
r0

  
E

hω

Figure 4.5: The figure shows the energy gap ∆E for the two lowest energy levels at
resonance as a function of scattering length a calculated from energy spectra at the
different scattering lengths. A variational estimate of the energy gap is shown as the
dashed line.

symmetric and anti-symmetric combinations of the ∆z = 0 bound state [64] and the

trap ground state, we find that for 0 < a < 0.2r0 the gap is smaller than 10−4
~ω.
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For a ≫ r0 the energy gap asymptotes to a large value, ∆Emax = 0.5640~ω (see

Fig. 4.5). The shape resonance can therefore be easily observed for large positive

scattering lengths, where the bound state would be close to dissociation. This can

be achieved in tight traps, where the scattering length is on the order of r0 and

the energy gap approaches a significant fraction of ~ω (see Fig. 4.5). For example,

in an optical lattice of 133Cs atoms the large scattering lengths of the singlet and

triplet Born-Oppenheimer potentials, 280a0 to 2400a0, are comparable to typical

trap sizes in an optical lattice, corresponding to a modest Lamb-Dicke parameter

η = klr̄0 = klr0/2 = 0.2. A substantial TIR will result.

4.4 Trap-induced resonances and self-consistent

energy spectra

To obtain a more accurate spectrum in the case of trapped alkali atoms, we must ac-

count for the energy-dependence of the scattering length in the self-consistent model

described in Section 2.5.2. As a test case, we consider again the simplest possible

interatomic potential – a step-potential of radius R and depth V0 with a single s-

wave bound state. We have previously discussed this potential and its semianalytical

solution for the case of anisotropic traps in 3.4.1. The s-wave phase shift is given

explicitly by

δ0 (EK , V0) = arctan (k tan(qR)/q)− kR , (4.13)

where q =
√

2µ(EK + V0)/~2 [70]. The energy-dependent scattering length is evalu-

ated using Eq. (4.8) as a function of EK . The relative kinetic energy of the colliding

atoms is given by the total energy eigenvalue E minus the trap potential at the

origin given by ∆z2/2. Figure 4.6 shows the self-consistent energy spectrum as a

function of well separation ∆z. These approximate eigenvalues are compared with
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Figure 4.6: Comparison between the energy spectrum of the test step-potential and
that of the pseudopotential approximation. The two lowest energy curves are shown
for the step-potential (solid), the pseudopotential with an energy-dependent scatter-
ing length aeff (circles) and constant a (dashed).

the exact solution for the step-potential (V0 = 36.79~ω and R = 0.2r0) plus har-

monic potential, calculated numerically. We accomplish this by expanding the total

Hamiltonian in isotropic 3D-harmonic oscillator wave functions and diagonalizing

the matrix (see numerical codes in Appendix C. Figure 4.6 also shows a plot of the

constant scattering length approximation, using the zero-energy scattering length

a = aeff(0). As expected, this approximation fails to capture the correct bound-state

energy and therefore the correct location of the shape resonance. In contrast, the

self-consistent solution using the energy-dependent pseudopotential shows excellent

agreement with the exact calculation, even for a well that was chosen to have a fairly

long range, R = 0.2r0. The agreement only breaks down when the range of the

potential becomes on the order of trap size, R > 0.5r0.
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4.5 Higher partial-wave trap-induced resonances

In general, the trap-induced resonance can occur for bound state with any l-wave

symmetry. Since the energy-dependent s-wave pseudopotential only captures s-wave

bound states self-consistently, we need to consider the higher partial-wave pseudopo-

tential based on the δ shell. This case of separated atoms interacting via the higher

partial-wave pseudopotential is left for future work. However, as a proof of principle,

we again consider the spherical step-well potential, this time with an l = 1 bound

state close to zero energy. The energy-dependent scattering length for our example

potential is shown in Fig. 3.4. The energy spectrum as a function of separation is

shown in Fig. 4.7. Just as in the l = 0 case, the l = 1 bound state does cause an

avoided crossing through a trap-induced resonance. Interestingly though, the “res-

onance” in the scattering length just below zero-energy as seen in Fig. 4.7 does not

affect the energy spectrum in this self-consistent approximation [77].

4.6 Collisions in separated anisotropic traps

In the previous sections, we have limited ourselves to the discussion of collisions in

isotropic traps. In general, the trapping potential is not necessarily isotropic. For

example in an optical lattice, there will be a slight anisotropy in the direction of sep-

aration due to the state-dependent trapping potential. Even worse, the anisotropy

usually does not stay constant as the separation between atoms is changed when

rotating the polarization angle between the counter propagating laser beams. Alter-

natively, one could choose less confinement in x-y-directions, since the trap-induced

resonance only requires strong confinement along the direction of separation in the

z-direction. This can be important if experiments are limited in laser power or in

case one needs to reduce the photon scattering rate by detuning further from the
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Figure 4.7: Energy spectra as a function of separation ∆z for spherical step-well
potential with a l = 1 bound state. We again identify the parabolic energy shift of
the molecular bound state due to the harmonic trapping potential and the avoided
crossings associated with the TISR. The inset shows a close-up of the avoided cross-
ing.

excited-state potential.

4.6.1 Hamiltonian

The Hamiltonian for two atoms of the same mass m1 = m2 = m in identical

anisotropic separated traps V̂trap(ri) interacting via V̂int(r) is

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+ V̂ (r1) + V̂ (r2) + V̂int(r2 − r1) . (4.14)

In our model, we approximate the anisotropic trapping potential as harmonic with

frequencies ω⊥ and ωz in the transverse and z-direction. Because of the quadratic

term of both, the kinetic energy term and the potential term, the Hamiltonian can

again be separated into a Hamiltonian for the center of mass (CM) motion and the
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relative coordinate motion as described in Appendix B.1,

ĤCM =
p̂2

R

2M
+

1

2
Mω2

⊥
(

X2 + Y 2
)

+
1

2
Mω2

zZ
2 ,

Ĥrel =
p̂2

r

2µ
+

1

2
µω2

⊥
(

x2 + y2
)

+
1

2
µω2

z (z −∆z)2 + V̂int(r) . (4.15)

Here, X, Y , and Z are the Cartesian CM coordinates, x, y, and z the Cartesian

relative coordinates. The CM Hamiltonian has the usual anisotropic trap solutions.

The relative coordinate Hamiltonian describes an anisotropic trap centered at ∆z

and the interaction potential centered at the origin. We can rewrite the Hamiltonian

for the relative coordinate motion using the spherical harmonics

Y10 =

√

3

4π
cos θ , (4.16)

Y20 =

√

5

16π

(

3 cos θ2 − 1
)

. (4.17)

With z = r cos θ, we can write the Hamiltonian as

Ĥrel =
p̂2

r

2µ
+

1

2
µω2r2

(

1− Λ

√

16π

5
Y20

)

−µω2
z∆zr

√

4π

3
Y10+

1

2
µω2

z∆z
2+V̂int(r) .

(4.18)

Here, we defined the “mean” frequency ω,

ω2 =

(

2

3
ω2
⊥ +

1

3
ω2

z

)

, (4.19)

and the parameter Λ,

Λ =
ω2

z − ω2
⊥

3ω2
=

ω2
z − ω2

⊥
2ω2

⊥ + ω2
z

. (4.20)

The interatomic interaction V̂int(r) is again replaced by the s-wave pseudopotential

V̂eff(r, EK) =
2π~

2

µ
aeff(EK)δ(r)

∂

∂r
r (4.21)

with an energy-dependent scattering length aeff(EK).
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4.6.2 Matrix elements in anisotropic traps

We represent the relative coordinate Hamiltonian in the same basis as in the isotropic

case. This “Busch” basis consists of the irregular l = 0 solutions and the regular

harmonic oscillator solutions for l ≥ 1. The first three terms of the Hamiltonian plus

the interaction potential are diagonal in this basis

〈ψν′,l′| −
~

2

2µ

1

r

∂2

∂r2
r +

~
2l(l + 1)

2µr2
+

1

2
µω2r2 + V̂int(r) |ψν,l〉 = Eνlδν′νδl′l (4.22)

with

Eνl = ~ω

(

2ν + l +
3

2

)

. (4.23)

The remaining important terms are the Λ anisotropic term and the ∆z separation

term. The first one couples partial waves with l−l′ = 0,±2, the second, dipolar term

couples partial waves with l − l′ = 0,±1. The term with ∆z2 only adds a constant

energy. The potential is again cylindrically symmetric, just as in the isotropic case.

The m = ±1 levels are again not affected by the interaction and hence, do not shift.

They can be trivially included at the end of the calculation.

The regular l ≥ 1 non-vanishing matrix elements for the anisotropic term are

given by

〈nl| r2 |n, l + 2〉 =
1

2

√

(2n+ 2l + 3)(2n+ 2l + 5) , (4.24)

〈n + 1, l| r2 |n, l + 2〉 = −
√

2(n+ 1)(2n+ 2l + 5) , (4.25)

〈n + 2, l| r2 |n, l + 2〉 =
√

(n+ 1)(n+ 2) . (4.26)

For the special case of l = 0, we do not need the matrix elements 〈ν, 0| r2 |ν, 0〉 since

the angular part of the integration Il=0,l=0 vanishes (see Appendix B). Only the

matrix elements 〈n, 2| r2 |ν, 0〉 have to evaluated. To this end, we use the expansion

of the irregular solutions in terms of the regular harmonic wave functions |nl〉 (see
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also Appendix A). The nonvanishing irregular matrix elements are given by

〈n, 2| r2 |ν, 0〉 = aν

√

∂νn

∂a

√

2Γ(n+ 7
2
)

πΓ(n+ 1)

(

1

n− νn
− 2

n + 1− νn
+

1

n+ 2− νn

)

.

(4.27)

The separation term results in the matrix elements presented in Section 4.2.3, Eqs.

(4.11) and (4.12). For a given anisotropy A, the sparse Hamiltonian matrix is di-

agonalized in this basis at each trap separation ∆z using the numerical program

discussed in Appendix C.

4.6.3 Energy spectra and discussion

Figure 4.8 shows examples of energy spectra for an anisotropic trap with A = 4 and

different scattering lengths a for the interaction. The anisotropy does not change

the essential character of the trap-induced resonance and the corresponding avoided

crossing in the energy spectrum. Also note that in both, the isotropic as well as the

anisotropic calculations, we neglected the slight additional anisotropy in the optical

lattice potential in the z-direction for separated traps.
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Figure 4.8: Energy spectra as a function of separation ∆z for interacting atoms in
anisotropic traps for (a) a = 0.25z0, (b) a = 0.5z0, (a) a = 1z0, (a) a = 10z0. Here,
the anisotropy A = ωz/ω⊥ = 4. The energy in each graph is scaled by ~ωz, where ωz

is the trap frequency in the z-direction . The scattering length a and the separation
∆z are scaled by the characteristic length in the z-direction z0 =

√

~/(µωz. The
parabolic energy shift of the molecular bound state due to the harmonic trapping
potential and the avoided crossings associated with the TISR can be identified in
each of the graphs.
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4.7 Summary

In this chapter, we have applied the self-consistent pseudopotential model to the case

of interacting atoms in separated traps. Atoms in separated traps are particularly

interesting for use as qubits in quantum computation proposals. The interactions

are then necessary to design two-atom quantum logic gates. The use of ultracold

ground state collisions was initially considered by Jaksch et al. [28] in the non-

resonant case, using perturbation theory. Our analysis shows that in principle, for

positive scattering lengths, resonances will occur at some atomic separation, and

perturbation theory will break down. The resulting avoided crossing in the energy

spectrum must be properly accounted for. This is particularly true for atoms with

very large scattering lengths, such as 133Cs. The TIR opens the door to new protocols

for entangling two-atom logic gates with separated atoms. For example, a 2π Rabi

oscillation between the trapped atoms and an auxiliary molecular bound state leads

to a phase shift of −1 on the two-atom state (see Figure 4.9). If the acquired

+ +

11 − 11ψ
aux

molecule

V

r

molecular bound state

trap eigenstate

V

r

molecular bound state

trap eigenstate

V

r

Figure 4.9: The Figure shows the schematic for a two-qubit quantum gate based on
the trap-induced resonance. Here, 2π Rabi oscillation between the trapped atoms
and an auxiliary molecular bound state leads to a phase shift of −1 on the two-atom
state.
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phase shift occurs only for one logical encoding of the atoms, the resulting unitary

transformation is the so called “CPHASE” two-qubit logic gate [9]. An optimal

regime for operation of this protocol is where r0 ≪ a. In this regime, the energy

gap (Fig.4.5) asymptotes to its maximum value, minimizing the dependence of the

cooperative phase shift on the precise value of the trap characteristic length r0, and

hence reducing errors due to trap-laser intensity fluctuations.

More generally, beyond quantum logic, the TIR provides a new avenue for spec-

troscopy and coherent control of ultracold molecular dimers. Like magnetic Feshbach

resonances, these shape resonances can provide new ultra-high precision spectro-

scopic data on the molecular potential [78], and the production of cold molecules

tunable by the trap parameters. More generally, the TIR and the trap eigenstates

probe the interaction potential at the bound-state energies and at negative energies

in between. For example, a detailed study of the energy spectra of interacting atoms

in separated traps, can give information about the analytic continuation of the scat-

tering length to negative energies aside from the location of the interaction bound

states.

A complete characterization of these protocols requires a generalization of our

model, including the full spin-dependent nature of the collision process via the hy-

perfine and exchange interactions. In the next chapter we derive a multichannel

version of the pseudopotential based on the energy-dependent higher partial-wave

δ-shell potential. We also apply this model to collisions in 133Cs for which the obser-

vation of trap-induced resonances seems the most promising.
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Trap induced resonances in 133Cs

5.1 Theoretical background

5.1.1 Multichannel scattering and channel state representa-

tion

The channel state formalism has been developed initially by F. Mies in [79] as a

unifying theory of atomic scattering theory and molecular bound-state spectroscopy.

It represents a convenient way to include the influence of bound-states on scattering

states as is, for example, the case in Feshbach resonances. Here, the total wave

function is expanded in a particular complete set of electronic-rotational states. This

particular expansion allows for the asymptotic analysis of the radial part of the wave

functions and the calculation of the asymptotic scattering properties in form of the

K and S-scattering matrices.

For a two-atom system, the total Hamiltonian is given in a center of mass frame

with reduced mass µ, electron coordinates rel and interatomic nuclear coordinate r
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as

Ĥ = − ~
2

2µr

∂2

∂r2
r +

~
2L2

r

2µr2
+ ĤA + ĤB + V̂AB(rel, r) . (5.1)

The first term is the radial kinetic energy operator. The relative coordinate angu-

lar momentum Lr = −ir ×∇r dependent term is characterized by the partial-wave

quantum number l. Of the last three terms, the individual atomic electronic Hamilto-

nians ĤA and ĤB are independent of the interatomic distance r while the interaction

potential V̂AB(rel, r) vanishes for large r → ∞. In this asymptotic limit, the total

Hamiltonian Ĥ becomes completely separable.

A very important feature of atomic scattering theory is the degeneracy of states.

At a given positive energy E and for a total angular momentum J with projection M ,

and given parity Π, there are NO degenerate scattering states that are energetically

accessible. These open channels represent independent orthogonal eigensolutions of

the total Hamiltonian

(Ĥ − E)Ψγ(J,M,Π;E) = 0 with γ = 1, NO . (5.2)

In this context, a (scattering-) channel is defined by the distinctive quantum numbers

J , M , Π. At a given energy E it is often necessary to not only include the ener-

getically accessible states (open channels), but also states that are asymptotically

energetically inaccessible (closed channels) in the physical description. This notion of

open and closed channels has been initially developed by H. Feshbach in the context

of nuclear physics in order to describe the coupling between a molecular bound state

to a scattering state [13–15]. This resonance between a molecular bound state that

belongs to a closed channel and a scattering state of a different channel has been

termed Feshbach resonance (see Fig. 1.3 in Section 1.1.2). Later, with the introduc-

tion of general scattering matrices, we will include the closed channels in counting γ.

This is of particular importance, since we are interested in the asymptotic scattering

properties at negative energies, where the channel of interest is closed.
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The solutions to the Schrödinger equation Ψγ(J,M,Π, E) may be expanded using

any complete electronic-rotational states ψα(J,M,Π; rel, r̂) in the following way

Ψγ(J,M,Π, E) =
∑

α

ψα(J,M,Π; rel, r̂)
Fα,γ(E; r)

r
. (5.3)

The ψα(J,M,Π; rel, r̂) are characterized by the rigorously conserved quantum num-

bers J,M,Π,, which will be suppressed in our notation in the following. The func-

tions ψα(rel, r̂) span the space of all electron coordinates rel and further include the

angular part of the wave function in the form of spherical harmonics Yl,m(r̂) with

polar interatomic nuclear coordinates r̂. The Fα,γ(E; r) are reduced radial wave func-

tions that vanish at the origin for a Hermitian interaction potential. The complete

set of electronic-rotational states ψα(J,M,Π; rel, r̂) is predetermined by the Hund’s

coupling scheme, that is most convenient for expressing the interaction potential

V̂AB(rel, r) . Inserting the expansion into the Schrödinger equation, (5.2) we arrive

at a set of coupled equations for the radial functions Fα,γ(E; r)

∑

α

〈ψα| Ĥ −E |ψα′〉 Fα′,γ(E; r)

r
= 0 . (5.4)

If we ignore the implicit r-dependence of the electronic wave function as in the Born-

Oppenheimer approximation described in Section 2.2.1, ψα commutes with the radial

kinetic energy operator. We can then write the coupled equations as

(

~
2

2µ

∂2

∂r2
− l(l + 1)~2

2µr2
+ E

)

Fα,γ(r)−
∑

α′

V̂α,α′(r)Fα′,γ(r) = 0 . (5.5)

Although the Hamiltonian Ĥ becomes separable for large interatomic distances r,

the interaction matrix V̂α,α′ is not necessarily diagonal in the electronic-rotational

basis of choice. We can now define the channel state representation as the particular

electronic-rotational basis that diagonalizes the interaction matrix asymptotically.

This basis is equivalent to the Hund’s case (e) electronic-rotational basis that is

usually neglected in molecular theory [49]. The channel states ψγ(rel, r̂) can be
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obtained from the original basis {ψα} via a simple transformation from the original

Hund’s case representation to Hund’s case (e) according to

ψγ(rel, r) =
∑

α

ψα(rel, r)Mα,γ(∞) . (5.6)

The interaction matrix in the channel state representation is asymptotically diagonal

V̂γ,γ′(r)
r→∞∼ δγ,γ′E∞

γ +O(r−3) . (5.7)

Thus, in the limit r →∞, the channel states represent exact solutions to the molec-

ular Hamiltonian with eigenvalue E∞
γ = E∞

A +E∞
B and angular momentum quantum

number l. For this reason, the channel states are a convenient basis to extract the

asymptotic scattering properties of interest. Using the transformation M(∞) and

rewriting the coupled equations in the channel state representation, we get
(

∂2

∂r2
+ k2

γ′

)

Fγ′,γ(r)−
∑

γ′′

Uγ′,γ′′(r)Fγ′′,γ(r) = 0 (5.8)

with the asymptotic wave number k2
γ = 2µ~

2(E−E∞
γ ) and the symmetric interaction

matrix U,

Uγ′,γ′′ =
2µ

~2

(

V̂γ′,γ′′(r) +
l(l + 1)

r2
δγ′,γ′′ − E∞

γ′ δγ′,γ′′

)

r→∞∼ l(l + 1)

r2
δγ′,γ′′ +O(r−3) .

(5.9)

Following Eq. (5.8), the channel states are only coupled for small internuclear dis-

tance r, i.e. at “close range”. In the asymptotic limit r → ∞, the “close-coupled”

equations (5.8) decouple and we can impose the following boundary conditions on

the asymptotic wave functions
(

∂2

∂r2
+ k2

γ′ − l(l + 1)

r2

)

Fγ′,γ(r)
r→∞∼ 0 . (5.10)

The corresponding asymptotic solutions are linear combinations of the reduced spher-

ical Bessel functions Jγ′(r) and Nγ′(r)

Fγ′,γ(r)
r→∞∼ Jγ′(r)Aγ′,γ +Nγ′(r)Bγ′,γ . (5.11)
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Here, the indices γ and γ′ refer to the different “in” and “out” channels of stationary

scattering theory (see Section 2.2.2) as will become clear in the discussion of the

multichannel S-matrix in the next section.

The reduced radial function Jγ(r) is regular at the origin with Jγ(0) = 0, whereas

Nγ(r) is irregular at the origin where it diverges as r−l. They are related to the

spherical Bessel function jl and nl,

Jγ(r) =
(kγr)

|kγ|
1

2

jl(kγr) (5.12)

r→∞∼ 1

|kγ |
1

2

sin

(

kγr −
πl

2

)

,

Nγ(r) =
(kγr)

|kγ|
1

2

nl(kγr) (5.13)

r→∞∼ − 1

|kγ|
1

2

cos

(

kγr −
πl

2

)

.

Note that our definitions of the reduced radial function Jγ(r) and Nγ(r) differ from

the conventions in Ref. [79] by a phase factor. Our different conventions keep the

”natural” phase of the wave function, making it easier to analytically continue the

different parameters of interest to negative energies. However, we have to keep in

mind that in this phase convention, the wave functions are in general complex for

closed channels and not real as in Ref. [79].

In scattering theory, we are interested in the asymptotic stationary solutions for

large interatomic separation and the appropriate scattering matrices and parame-

ters. Using the asymptotically diagonal channel state basis, the determination of the

asymptotic parameters is reduced to determining the r-independent matrix elements

{Aγ′,γ} and {Bγ′,γ} of Eq. (5.11).
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5.1.2 The multichannel K-matrix and S-matrix

In scattering theory, there are several important scattering matrices that charac-

terize the scattering properties of a particular interaction potential. Next, we will

discuss the scattering K-matrix and S-matrix in the channel state representation.

For simplification, we can write Eq. (5.8) in matrix form,

F′′(r) +
(

k0k0 −U(r)
)

F(r) = 0 . (5.14)

Here, the superscript “0” denotes diagonal matrices. The asymptotic reduced radial

solutions are

F(r)
r→∞∼ J0(r)A + N0(r)B . (5.15)

Using the matrices A and B we can define the K-matrix of scattering theory as

K ≡ −BA−1 . (5.16)

Since the set of radial solutions F(r) is complete, we can always generate a new set

of solutions FK(r) so that

FK(r) = F(r)A−1 r→∞∼ J0(r)−N0(r)K . (5.17)

This form is analogous to the single channel problem discussed earlier where the

asymptotic l-wave radial wave function was given by

Rl(r) = jl(kr)− tan δlnl(kr) . (5.18)

The K-matrix is directly related to the tangents of the scattering phase shift. In the

next chapter, we will use this analogy to define the scattering length that is used in

the pseudopotential approximation with the help of the K-matrix.

Before deriving a multichannel pseudopotential based on the K-matrix, we will

first introduce the scattering S-matrix in the channel state representation for com-

pleteness of our discussion. The S-matrix describes the coupling of “in” channel to
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“out” channels in the scattering process (see review of S-matrix in Section 2.2.2). In

our multichannel notation, the “in” channels are denoted by the index γ, the “out”

channels by γ′. The S-matrix, just as the K-matrix, can be defined to include both

open and closed channels. For closed channels, the reduced radial functions Jγ and

Nγ both diverge as r →∞. It is therefore helpful to introduce the reduced spherical

Hankel functions as defined by

H+
γ (r) = Jγ(r) + iNγ(r) (5.19)

r→∞∼ −i
|kγ |

1

2

exp

[

i

(

kγr −
πl

2

)]

,

H−
γ (r) = Jγ(r)− iNγ(r) (5.20)

r→∞∼ i

|kγ |
1

2

exp

[

−i
(

(kγr −
πl

2

)]

.

Again, note that we use a slightly different convention than in Ref. [79] and instead

define the reduced Hankel functions analogously to the usual definition of the spher-

ical Hankel functions [80]. Writing the reduced spherical Bessel functions in terms

of the reduced Hankel functions,

Jγ(r) =
1

2

[

H+
γ (r) +H−

γ (r)
]

, (5.21)

Nγ(r) =
1

2i

[

H+
γ (r)−H−

γ (r)
]

, (5.22)

we can rewrite the asymptotic reduced radial solutions of Eq. (5.17) as

FK(r)
r→∞∼ 1

2

{

H−0(r)
[

10 − iK
]

−H+0(r)
[

10 + iK
]}

. (5.23)

Choosing another complete set of solution vectors FS(r),

FS(r) = 2FK(r)
[

10 − iK
]−1

(5.24)

r→∞∼ H−0(r)−H+0(r)S , (5.25)
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we can define the scattering S-matrix S for open and closed channels in the usual

way as

S ≡
[

10 + iK
] [

10 − iK
]−1

. (5.26)

If only open channels are present, we can find the scattering phase shifts by a unitary

transform that diagonalizes both the S-matrix and the K-matrix,

SOO = Uei2δ0 Ũ , (5.27)

KOO = U tan δ0Ũ . (5.28)

The scattering phases are determined through the diagonal elements of the K-matrix

or S-matrix.

Note that these relationships between the K-matrix, S-matrix and scattering

phases are only true for the case of only open channels. Since we are interested in

open and closed channels, we can block the K and S-matrix each into four blocks

K (NT ×NT ) =





KOO (NO ×NO) KOC (NO ×NC)

KCO (NC ×NO) KCC (NC ×NC)



 (5.29)

and

S (NT ×NT ) =





SOO (NO ×NO) SOC (NO ×NC)

SCO (NC ×NO) SCC (NC ×NC)



 . (5.30)

Following Ref. [79] and expanding Eq. (5.26) for the elements that include an open

channel SOO term,

(

S10 − iSK
)

=
(

10 + iK
)

,

SOO − iSOOKOO − iSOCKCO = 10 + iKOO ,

SOC − iSOOKOC − iSOCKCC = iKOC ,
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we eliminate SOC from the expressions

SOO

(

10 − iKOO −KOC

(

10 − iKCC

)−1
KCO

)

= 10 + iKOO −KOC

(

10 − iKCC

)−1
KCO . (5.31)

We can find a similar relationship as before for the open channel parts of the S and

K-matrices.

SOO =
[

10 + i
(

KOO + KR
OO

)] [

10 − i
(

KOO + KR
OO

)]−1
, (5.32)

where KR
OO is defined by

KR
OO = iKOC

[

10 + iKCC

]−1
KCO . (5.33)

Note that KCC is anti-Hermitian, and KR
OO has to be Hermitian so that the unitarity

of the open channel S-matrix is preserved. In general, KOC and KCO have both

Hermitian and anti-Hermitian terms. KR
OO reflects the effect of the closed channels

on the open channel part of the S-matrix. For example, this plays an important

role in the case of Feshbach resonances where a scattering state in an open channel

can be resonant with a bound state of a closed channel. Furthermore, we can define

similar relationships for the eigenphases as before,

SOO = Uei2δ0 Ũ , (5.34)
(

KOO + KR
OO

)

= U tan δ0Ũ . (5.35)

Usually one could choose to define the scattering length through the scattering phases

and correspondingly through the S-matrix as this is done in most elementary quan-

tum mechanics textbooks. However, as we will see in the next section it is ad-

vantageous and more appropriate in the pseudopotential approximation to define a

scattering length matrix through the K-matrix.
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5.1.3 Multichannel pseudopotential formalism

In Chapter 2, we have derived a generalized pseudopotential that is based on a δ-shell

potential. Here, we would like to extend this formulism to the multichannel problem.

The complete single channel pseudopotential is given by

V̂ (r) =
∑

l

|l,m〉v̂(l)
shell(r)〈l,m| , (5.36)

where the l-wave pseudopotential is given by

v̂
(l)
shell(r) = − lim

s→0

1

2

(2l + 1)!!

2l!!

tan δl(k)

k2l+1

δ(r − s)
rl+2

∂2l+1

∂r2l+1
rl+1 , (5.37)

v̂
(l)
shell(r) = lim

s→0

1

2

(2l + 1)!!

2l!!
a2l+1

l

δ(r − s)
rl+2

∂2l+1

∂r2l+1
rl+1 . (5.38)

The derivatives on the right acts as a regularization operator, as defined by

P̂l =
rl

(2l + 1)!

∂2l+1

∂r2l+1
rl+1 . (5.39)

This operator acts like an identity operator on a regular wave function. For irregular

functions with l′ ≤ l, P̂l acts as a null operator. We define a multichannel l-wave

scattering length matrix al+l′+1
γ,γ′ using the multichannel K-matrix,

kl+1/2
γ k

l′+1/2
γ′ al+l′+1

γ′,γ = Kγ′,γ . (5.40)

Here, lm and l′m′ are the sets angular momentum quantum numbers of the channels

γ and γ′. We can formulate an ansatz for the multichannel pseudopotential

V̂ (r) =
∑

γ,γ′

|l,m〉 V̂γγ′(r) 〈l′, m′| (5.41)

with

V̂γγ′(r) = ˆ̃Pl

[

lim
s→0

cl,l′a
l+l′+1
γ′,γ

δ(r − s)
rl+l′+2

]

P̂l′ . (5.42)

Here, we have added an additional projection operator that acts to the left. In case

the potential is only acting to the right, the projector on the left can be simply set
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equal to the identity operator. The constant cl,l′ will be determined later. We rewrite

the close-coupled equations for the radial wave functions instead of the reduced wave

functions

(

1

r

∂2

∂r2
r − l′(l′ + 1)

r2
+ k2

γ′

)

F∞
γ′,γ(r)

r
=
∑

γ′′

V̂γ′,γ′′(r)
F∞

γ′′,γ(r)

r
. (5.43)

Here, F∞
γ′′,γ(r)/r is the asymptotic wave function (5.11) extended all the way to the

shell radius according to

F∞
γ′,γ(r) = Jγ′(r)δγ′,γ +Nγ′(r)Kγ′,γ . (5.44)

Inserting the pseudopotential in the closed coupled equations (5.43) and leaving the

limit s→ 0 for later, we need to evaluate the left side as

V̂γ′,γ′′(r)
F∞

γ′′,γ(r)

r
=

[

cl′,l′′a
l′+l′′+1
γ′′,γ′

δ(r − s)
rl′+l′′+2

]

P̂l′′
F∞

γ′′,γ(r)

r
,

=

[

cl′,l′′k
−l′−1/2
γ′ k

−l′′−1/2
γ′′ Kγ′′,γ′

δ(r − s)
rl′+l′′+2

]

P̂l′′
Jγ′′(r)

r
δγ′′,γ ,

=

[

cl′,l′′k
−l′−1/2
γ′ k

−l′′−1/2
γ′′ Kγ′′,γ′

δ(r − s)
rl′+l′′+2

]

[

kγ′′

|kγ′′|
1

2

(kγ′′r)l′′

(2l′′ + 1)!!
δγ′′,γ

]

,

=

[

cl′,l′′k
−l′−1/2
γ′ Kγ′′,γ′

δ(r − s)
rl′+2

] [

δγ′′,γ

(2l′′ + 1)!!

]

. (5.45)

The regular part of the wave function has been expanded at the origin according to

P̂l′′
Jγ′′(r)

r
= P̂l′′

[

1

|kγ′′|
1

2

(kγ′′)
(kr)l′′

(2l′′ + 1)!!

]

=

[

1

|kγ′′|
1

2

(kγ′′)
(kr)l′′

(2l′′ + 1)!!

]

. (5.46)

The derivative operator P̂l′′ acts like the identity on the regular part of the wave

function. Integrating the closed coupled equations around the shell,

lim
ǫ→0

∫ s+ǫ

s−ǫ

(

1

r

∂2

∂r2
r − l′(l′ + 1)

r2
+ k2

γ′

)

F∞
γ′,γ(r)

r
= lim

ǫ→0

∫ s+ǫ

s−ǫ

∑

γ′′

V̂γ′,γ′′(r)
F∞

γ′′,γ(r)

r
,
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we obtain

lim
ǫ→0

([

∂

∂r

F∞
γ′,γ(r)

r

]

r=s+ǫ

−
[

∂

∂r

F∞
γ′,γ(r)

r

]

r=s−ǫ

)

= lim
ǫ→0

∫ s+ǫ

s−ǫ

∑

γ′′

V̂γ′,γ′′(r)
F∞

γ′′,γ(r)

r
. (5.47)

As before in the derivation of the single channel pseudopotential, we expand the

Bessel and Neumann functions around the origin. After some algebra similar to the

single channel case, we evaluate 5.47 to be

Kγ′,γ
(2l′ + 1)(2l′ − 1)!!

k
l′+1/2
γ′ sl′+2

=
∑

γ′′

[

Kγ′′,γ′

cl′,l′′

k
l′+1/2
γ′ sl′+2

δγ′′,γ

(2l′′ + 1)!!

]

,

Kγ′,γ
(2l′ + 1)!!

k
l′+1/2
γ′ sl′+2

= Kγ,γ′

cl′,l′′

k
l′+1/2
γ′ sl′+2

1

(2l′′ + 1)!!
. (5.48)

Since it has been shown in Ref. [79] that the K-matrix is symmetric Kγ′,γ = Kγ,γ′ , the

closed coupled equation set is fulfilled and the constant cl′,l′′ = (2l′ + 1)!!(2l′′ + 1)!!.

The generalized multichannel pseudopotential is given by

V̂ (r) =
∑

γ′,γ′′

|l′, m′〉 V̂γ′γ′′(r) 〈l′′, m′′| (5.49)

with

V̂γ′γ′′(r) = ˆ̃Pl′

[

lim
s→0

(2l′ + 1)!!(2l′′ + 1)!!al′+l′′+1
γ′′,γ′

δ(r − s)
rl′+l′′+2

]

P̂l′′ . (5.50)

Also, note that analog to before we have defined an energy-dependent scattering

length matrix by

al′+l′′+1
γ′′,γ′ = Kγ′′,γ′k

−l′−1/2
γ′ k

−l′′−1/2
γ′′ . (5.51)

Without proving this in detail, the energy-dependent pseudopotential has the same

properties as the single channel pseudopotential in that it should capture the com-

plete scattering and bound-state spectrum of the participating channels. It further

allows us to continue the scattering length matrix element for the channel of interest

to negative energies, which are crucial in the atoms in separated traps case.
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5.2 Calculation of the scattering length in 133Cs

for positive and negative energies

5.2.1 Introduction to close-coupling codes

The Mies-Julienne-Sando close-coupling code has been developed over several decades

by the Atomic Physics Division at the National Institute of Standards and Technol-

ogy (NIST), Gaithersburg. In the past, the codes have been used and continuously

improved to predict more than 60 experimentally observed magnetic Feshbach res-

onances in ultracold collisions of 133Cs [44, 45]. The collisional properties of 133Cs

have been of particular interest in the past due the enormous collision cross sec-

tions in 133Cs and the large clock shifts [81], and due to the difficulty of achieving

a BEC in 133Cs [82]. Additionally, the large nuclear spin and the correspondingly

large manifold of hyperfine states lead to the richest resonance structure of all alkali

atoms, which has been the focus of many experimental and theoretical investiga-

tions [44, 45, 78, 83]. The huge progress in resolving these collisional anomalies of

133Cs over the past years and the prediction of low magnetic field Feshbach reso-

nances have finally lead to the BEC of 133Cs [84].

The NIST close-coupling code solves the close-coupled set of equations (5.8) for

realistic 133Cs interaction potentials in the presence of a magnetic field. A more

detailed description of the codes and our changes made to the code can be found in

Appendix D. The realistic interatomic interaction potential can be constructed in a

choice of different basis set, defined by the various complete sets of quantum numbers.

One convenient choice at close range is the molecular Hund’s case (a) basis set [48,49],

that is defined by the molecular quantum numbers, {|J,M,Π;S,mS, I,mI〉}. A

convenient basis set at long range is the channel state basis {|J,M,Π; l, F, fa, fb〉}
which is equivalent to Hund’s case (e) basis set [79]. Alternatively a user defined basis
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set can be chosen, which in our case is the Hund’s case (m) basis [85], defined by the

two-atom uncoupled basis states {|J,M,Π; l,m, fa, fb, mfa
, mfb
〉}. In the presence

of a magnetic field, the ”dressed” two atom basic states are referred to as dressed

state basis set. Although the potential might not be diagonal at finite range in the

two-atom basis due to the long-range anomalously large spin-spin and higher-order

spin-orbit coupling in 133Cs, the uncoupled two-atom basis allows an easy termination

of the close coupling calculations at some finite long-range right stopping point.

The wave function can be propagated from the left starting point to the right

end point using either a Numerov [86,87] or a Gordon propagation algorithm [88,89].

At the long-range right stopping point, rfinal, the scattering boundary conditions are

determined for both open and closed channels. There, the logarithmic derivative

matrix mγ′,γ(rfinal) is calculated for the reduced wave functions Fγ′,γ(r) according to

mγ′,γ(rfinal) =
∂
∂r
Fγ′,γ(r)|r=rfinal

Fγ′,γ(rfinal)
. (5.52)

Matching the logarithmic derivative to the asymptotic wave function,

F∞
γ′,γ(r)

r→∞∼ Jγ′(r)δγ′,γ +Nγ′(r)Kγ′,γ , (5.53)

we can determine the K-scattering matrix from mγ′,γ(rfinal) according to

Kγ′,γ =
[

Nγ′(rfinal)mγ′,γ(rfinal)−N ′
γ′(rfinal)

]−1 [
Jγ′(rfinal)mγ′,γ(rfinal)− J ′

γ′(rfinal)
]

.

(5.54)

Here, J ′
γ′(rfinal) and N ′

γ′(rfinal) are the derivatives of the reduced spherical Bessel

functions at r = rfinal. The K-matrix then defines the scattering length matrix that

is appropriate for use in the generalized multichannel pseudopotential as discussed

in the previous section.

In the case of separated traps where negative energy scattering becomes impor-

tant and where the scattering channel of interest is closed, we need to extend the
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scattering length matrix and therefore the K-matrix to include closed channels (the

NIST codes includes only open channels in the calculation of the K-matrix). This can

be achieved by simply continuing the reduced spherical Bessel functions J ′
γ′(krfinal)

and N ′
γ′(krfinal) to negative energies by using a purely imaginary wave vector, k = iκ,

and allowing a complex argument of the Bessel functions. This is done via a sepa-

rate Matlab code that uses the logarithmic derivative matrix for all channels obtained

from the NIST codes. The complete K-matrix that includes open and closed chan-

nels is again calculated using Eq. (5.54). Alternatively, it is helpful to rewrite the

asymptotic wave function in terms of reduced Hankel functions Eq. (5.19),

F∞
γ′,γ(r)

r→∞∼ 1

2

{

H−
γ (r) [δγ′,γ − iKγ′,γ]−H+

γ (r) [δγ′,γ + iKγ′,γ]
}

. (5.55)

For reference, the complete Matlab code can be found in Appendix D.

5.2.2 Calculation of the scattering length in 133Cs for the |ap〉
channel

Figure 5.1 shows the hyperfine states and magnetic sub-levels in the 133Cs ground

state labeled with letters from a to p. The scattering channel of interest is the

two atom combination in the stretched states, |ap〉, with a total angular momentum

projection quantum number of mtotal = mf1 +mf2 = 7 . This channel is of particular

interest since in the absence of any spin-motion coupling, conservation of angular

momentum implies conservation of these quantum numbers. For this reason, the

states a and p are the ones originally considered for entangling atoms via ultracold

collisions [28] (see also Section 1.2.1. Also, in the case of 133Cs, this channel has, as

we will see later, a large positive scattering length, which is necessary to observe the

proposed trap-induced resonance for atoms in separated traps. While the scattering

interaction usually preserves the total magnetic quantum number so that the selected

two atom channel |ap〉 does not couple to any other open channels, for interacting
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Figure 5.1: Hyperfine levels of the 6s1/2 ground state of 133Cs . The magnetic
sublevels are labeled with letters from a to p.

133Cs atoms, this desirable property, the conservation ofmtotal, is not completely valid

due to the strong spin-spin and higher-order spin-orbit coupling in 133Cs [44,45]. Due

to this coupling to other channels with higher angular momentum l, there is multitude

of open and closed scattering channels that need to be included in the description (see

Table 5.1). The set of close-coupled equations for the reduced radial wave functions

of the participating channels is integrated from a left starting point rinitial to a right

stopping point rfinal using a standard renormalized Numerov method [86, 87]. An

example of the variable Numerov grid is shown in Table 5.2 where the right stopping

point has been adjusted to rfinal = 10000a0, deep in the asymptotic region.

Note that in this case we determine the scattering boundary conditions at rfinal,

which is much larger than the typical size of the ground state in an optical lattice site.

This might raise doubts about the validity of the pseudopotential approximation in

an optical lattice system, since the range of the interaction, outside which we can

define the asymptotic boundary conditions, seems to be much larger than the trap

size. However, as shown in Ref. [54, 55], it is the characteristic β6 length scale that
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matters in the δ approximation, not the absolute range of the interaction nor the

scattering length a. The pseudopotential approximation only breaks down if the

trapping potential is strong enough to distort the interaction across the β6 length

scale and alter the boundary conditions at rfinal sufficiently. Since β6 = 100a0 in

133Cs , and therefore much smaller than typical trap sizes in tight optical lattices,

we can safely approximate the interaction by our pseudopotential.

A plot of the resulting scattering length for the |ap〉 channel is shown in Fig. 5.2.

The calculated scattering length continues smoothly across zero energy and also takes

a finite value at the bound-state energy as expected.
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Figure 5.2: Calculations of the diagonal scattering length matrix element for the |ap〉
channel as a function of energy.

Figures 5.3(a-f) show calculations of the diagonal scattering length matrix ele-

ment for the |ap〉 channel as a function of the stopping point rfinal for various negative

energies. At negative energies, we expect the codes to converge in the calculation

of a|ap〉 only for a small range of rfinal. The closed-coupled equations need to be

108



Chapter 5. Trap induced resonances in 133Cs

2000 4000 6000 8000 10000
2.4

2.41

2.42

2000 4000 6000 8000 10000
2.19

2.2

2.21

2000 4000 6000 8000 10000
1.97

1.98

1.99

1000 2000 3000 4000 5000
1.4

1.425

1.45

1000 2000 3000 4000 5000
1.05

1.1

1.15

1000 2000 3000 4000 5000
0.65

0.7

0.75

rfinal  (a0) rfinal  (a0)rfinal  (a0)

a
|a

p
>

  
 (

1
0

4
a

0
)  

(d)

(b) (c)(a)

(f)(e)

E=-0.1µK E=-0.5µK

E=-5.0µK E=-10µKE=-3.0µK

E=-1.0µK
a

|a
p

>
  

 (
1

0
4
a

0
)  

Figure 5.3: Calculations of the diagonal scattering length matrix element for the |ap〉
channel as a function of the stopping point rfinal for different negative energies.

integrated far enough into the asymptotic regime where the interaction potential

vanishes. However, for very large r, we expect the wave function to diverge expo-

nentially and the codes to become unstable in the matching of boundary condition.

We expect the region of convergence to decrease for larger negative energies, since

the wave function diverges as exp +κr (see Figures 5.3) As we can see from Fig-

ures 5.3 we can reliably calculate a scattering length for negative energies as low as

−10µK. The calculation errors in the scattering length of Fig. 5.2can be estimated

from Fig. 5.3 to be around 5% at −10µK whereas for smaller negative energies of

around −1µK the error can be estimated to be smaller than 0.5%.

We have further examined the magnetic field dependence of the scattering length

in the linear Zeeman regime. The background scattering length remains large and

constant over a wide range of magnetic fields and shows three small resonances over

the calculated range at 11.6G, 25G, and 28G in Fig. 5.4. An identification of the

different resonances, i.e. the labeling of the resonances by the corresponding bound-
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Figure 5.4: Calculations of the diagonal scattering length matrix element for the |ap〉
channel as a function of magnetic field. Three narrow scattering resonances can be
observed for applied magnetic fields in the range from 0 to 50G.

states, is left for future discussion. Although the resonances are narrow (less than

1G), they might be useful to tune the interaction from large positive scattering

lengths to smaller or even negative scattering lengths.

5.2.3 Complex scattering length in 133Cs for the |ap〉 channel

In the following, we introduce a complex scattering length defined by the S-matrix

that allows us to characterize inelastic collisions. The scattering S-matrix can be

calculated from the K-matrix using Eq. (5.26),

S =
[

10 + iK
] [

10 − iK
]−1

. (5.56)

The S-matrix describes the coupling from the different “in”-channels to the various

“out”-channels and is generally not diagonal in the channel basis. Any scattering-

matrix diagonal element is related to the off-diagonal elements by unitarity of the
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S-matrix and therefore of the form

Sγ,γ = 1−
∑

γ′

Sγ′,γ = exp [2i (λ+ iµ)] = |Sγ,γ | e2iλ (5.57)

with a complex phase shift δ = λ + iµ. This complex phase shift can be used to

define a complex energy-dependent scattering length [34],

ãγ = aγ − iβγ ≡ −
tan (λ+ iµ)

k2l+1
γ

. (5.58)

The imaginary part of the scattering length is a measure of the “loss” from the

scattering channel γ to all other open channels. Note that the imaginary part of

the scattering length not only measures the inelastic collisions but also includes the

coherent couplings to channels in the same hyperfine manifold. Figure 5.5 shows the

real and imaginary part of the complex scattering length that has been calculated

from the real and imaginary part of the S-matrix as a function of energy for positive

energies. For scattering energies far below 4µK, the imaginary part is several orders

smaller than the real part of the scattering length. In this regime, couplings to other

channels that are due to spin-spin or spin-orbit coupling can be neglected and the

total magnetic quantum number mtotal is approximately conserved.

5.3 Trap-induced shape resonances and quantum

information processing in 133Cs

We have shown in Chapter 4 that trap-induced resonances provide new avenues for

entangling atoms via ultracold collisions. However, these resonances occur only for

circumstances when the scattering length is on the order of the size of the trap

ground state. Estimates of the scattering length in 87Rb and 133Cs show that trap-

induced resonances in 87Rb at low magnetic fields are going to be difficult to observe

due the small scattering length and strong localization needed. 133Cs , on the other
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Figure 5.5: S-matrix based calculations of the real and imaginary part of scattering
length for the |ap〉 channel as a function of energy.

hand, with its anomalously large scattering length, provides a natural setting to

study separated trap effects on strongly interacting atoms. We will therefore dis-

cuss the feasibility for observing these newly predicted resonances under realistic

circumstances for 133Cs atoms in 3D-optical lattices.

5.3.1 Optical lattice parameters

We consider a 3D optical lattice, created by three pairs of linearly polarized counter-

propagating laser beams as described in Chapter 1.1.1. We approximate the optical

lattice wells by harmonic oscillator potentials with frequency ω with

~ω = 2
√

VppER . (5.59)

Vpp is the peak-to-peak depth of the optical lattice potential and ER = ~
2k2

l /2m

is the recoil energy of a 133Cs atom of mass m upon absorption of a photon with

wave vector kl = 2π/λ. For 133Cs , the optical lattice is usually generated by laser

beams far detuned from the λ = 852 nm D2 line on the S1/2 → P3/2 transition. The
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Lamb-Dicke parameter, which measures the localization of atoms in the lattices is

η =

√

ER

~ω
. (5.60)

The Lamb-Dicke parameter η is related to the width of the harmonic-oscillator

ground state of a single atom, r̄0 =
√

~/2mω (FWHM), by η = klr̄0. The char-

acteristic harmonic oscillator length r0 =
√

~/µω =
√

2~/mω used in Chapters 3

and 4 is related to the ground state width via r0 = 2r̄0.

For the observation of a trap-induced resonance for the |ap〉-channel, we require

r0 to be on the order of, or much smaller than, the scattering length a|ap〉 ≈ 2500a0 ≈
132 nm. A second requirement for trap-induced resonances is that the trap potential

at the origin, V∆z = 1
2
∆z2, is strong enough to raise the molecular bound-state at Eb

to positive energies so that Eb + V∆z ≥ 3
2
~ω. In an optical lattice with finite depth

Vpp, V∆z is limited by Vpp, resulting in 3
2
~ω < V∆z < Vpp. An optical lattice with

a Lamb-Dicke parameter of η = 0.25, Vpp = 64ER, ~ω = 16ER, and r0 ≈ 34 nm

fulfills all these requirements and still allows a reliable harmonic approximation to

the optical lattice potential. Also, a Lamb-Dicke parameter of η = 0.25 can easily be

achieved experimentally and is used in experiments of our collaborators led by Poul

Jessen at the University of Arizona in Tucson.

5.3.2 Trap-induced resonances

Figure 5.6 shows the calculated energy spectrum for 133Cs atoms in separated har-

monic isotropic traps as a function of trap separation ∆z. Here, we assumed an

optical lattice with a Lamb-Dicke parameter of η = 0.25 as discussed in the previous

section. The energy eigenvalues are calculated self-consistently at each separation

as described in Section 2.5.2 using the energy-dependent scattering length for 133Cs,

which is shown in Fig. 5.6 in harmonic oscillator units. This plot of the scattering
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length nicely illustrates the necessity of the application of an energy-dependent pseu-

dopotential because of the strong energy dependence of the scattering length in the

energy range of interest. A constant scattering length approximation would misesti-

mate the location of the bound-state and therefore the size of the avoided crossing

in the energy spectrum. Fig. 5.6 shows the main signature of the trap-induced res-
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Figure 5.6: (a) Self-consistent energy eigenvalues as a function of trap separation ∆z
calculated using the scattering length for the |ap〉-channel in 133Cs , which is shown
in (b).

onance in the form of the avoided crossing, which in the case of 133Cs results in an

almost maximal energy gap of about ~ω/2. Experimentally, the avoided crossing due

to the trap-induced resonance can be observed in a Ramsey type controlled collision

experiment similar to the experiments by Mandel et al. [39]. These experiments have

been described in detail in Section 1.2.2. Following the proposal by Jaksch et al. [28],

the two states of interest |a〉 and |p〉 travel on different optical lattice potentials. Af-

ter preparing the atoms in the |a〉-state, the atoms are placed in a superposition of

|a〉 and |p〉 via a microwave π/2-pulse and then each atom is split into two wave

packets by rotating the laser-polarization vectors. Instead of bringing the |a〉-wave

packet of one atom and the |p〉-wave packet of the other atom into the same well

as in the original proposal (see Section 1.2.1), one can keep the atoms separated
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and let the atoms acquire a collisonal phase shift using the trap-induced resonance

(see Fig. 5.7). For appropriate phase shifts during the interaction time tint, this re-
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Figure 5.7: Encoding in 133Cs hyperfine structure and schematic of controlled colli-
sions via trap-induced resonances. (a) Hyperfine levels of the 6s1/2 ground state of
133Cs . The logical basis states |0〉 and |1〉 are encoded in the stretched states in
order to avoid inelastic collsions. (b) Following the proposal by Jaksch et al. [28]
atoms travel on different lattice potentials. Unlike in the original proposal, here, the
phase shift is acquired for separated atoms using the trap-induced resonance.

sults in entangled atoms, which cannot be disentangled by another π/2-pulse. In the

case of no entanglement, this final π/2-pulse leads to Ramsey-interference fringes as

the phase between the two π/2-pulses is varied. The disappearing and reappearing

Ramsey-fringes as a function of the interaction time are a measure of the acquired

phase shift and the corresponding energy shift. A strong measured energy shift for

separated traps should be an experimentally observable signature of the trap-induced

resonance.
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5.3.3 Two-qubit gates via trap-induced resonances in 133Cs

The above scheme is also a viable way to achieve the two-qubit gate necessary for

quantum computing. Limits to the fidelity of the gate based on the trap-induced

resonance include the limited lifetime of atoms in the optical lattice, the non-perfect

cooling to the ground state, leakage to states outside the logical basis through the

collisional couplings, loss from the trap due to inelastic collisions, the dephasing of

the qubit during the transport and storage. We address these issues in this section.

The timescale for a collisonal gate is generally limited by tint < π/ω since the

acquired phase shifts are always smaller than ~ω. Furthermore, the adiabatic change

of the trap separation must be slower than ω in order to avoid excitation to higher

vibrational states. The lifetime of atoms in the optical lattice is limited by the

spontaneous emission rate Γ, which should be much smaller than ω. In general, the

light shift potential is inversely proportional to the detuning ∆, whereas Γ ∝ /∆2.

In practice, the spontaneous emission rate can be suppressed to an almost arbitrary

degree using intense trap light tuned very far from atomic resonance [36].

Non-perfect cooling to the ground state or heating results in occupation of higher

excited states in the relative coordinate motion. Heating in the transverse direction

corresponds to excitation to higher excited states with l > 0 and projection quantum

number m 6= 0. Since m 6= 0 states vanish at the origin and are therefore not affected

by the interatomic interaction, these states do not shift at all and will limit the fidelity

of a quantum gate. The effect of heating along the direction of separation, which

corresponds to states with m = 0, can be seen in Figs. 4.3 and 5.6. Atoms in these

states experience trap-induced resonances at different separations (see the energy

gaps in Fig. 4.3) and acquire very different energy and phase shifts as a function of

separation between traps. However, for a high-fidelity entangling gate, only the total

acquired phase shift during the gate time is of importance. The total phase shift is
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acquired at the final trap separation as well as during the slow adiabatic movement of

the atoms on the energy surfaces when the atoms are brought together. In principle,

it should be possible to design a gate that is robust with respect to heating in

the direction of separation. One can vary the two open parameters, the final trap

separation and the velocity of moving the atoms, in such a way that the discrepancy

between the phase shift acquired in the vibrational ground vs. the first two excited

states is minimized. A more detailed discussion of the optimization of two-qubit

gates based on the trap-induced resonances is planned for future investigation.

Leakage to states outside the logical basis and inelastic collisonal loss from the

trap is minimized by using the stretched-state encoding in the states |ap〉. Our

calculation of the imaginary part of the scattering length verifies this and shows that

despite the large spin-spin and spin-orbit coupling in 133Cs , inelastic collisions are

down by one or two orders of magnitude as long as the collisional kinetic energy

E ≈ 3
2
~ω − V∆z is smaller than 4µK. Here, V∆z = 1

2
∆z2 is the trap potential at the

origin, which shifts the resonance in the scattering length at 4µK to higher energies

for separated traps. For the particular trap frequency chosen for Fig. 5.6, the first

two trap levels are well below 4µK so that inelastic collisions can be safely neglected.

Using the above encoding into the stretched-states to avoid inelastic collisions

comes at the cost of being maximally sensitive to magnetic field- and trap noise

due to the opposite sign of the g-factor for the two different states. This was one

of the major limiting factors in the Münich experiments [39], where inhomogeneous

fluctuations in the optical lattice field lead to dephasing of the individual qubits

during transport. An alternative is to use the encoding in the original proposal

by Brennen et al. [31]. Here, we consider two different species with logical basis

states |0+〉 = |i〉, |1+〉 = |a〉 and |0−〉 = |o〉, |1+〉 = |g〉 (see Fig. 5.8). For these

combinations, Zeeman shifts for magnetic fields along the quantization axis and

AC Stark shifts are close to identical. The logical states then move on identical

117



Chapter 5. Trap induced resonances in 133Cs

optical potentials and are never split into separated wave packets. This provides

excellent immunity against noise, but at a cost: in a two-qubit interaction, all four

logical states interact. The challenge then is to engineer a collision to produce a

non-separable phase shift without inelastic scattering. Here, collisions in spatially

separated traps represent a promising approach to strengthen a single elastic channel

and suppress off-resonant inelastic processes. In the case of 133Cs , this would mean

designing a trap-induced resonance for the collisions between the states |1+〉 = |a〉
and |1−〉 = |g〉. Off-diagonal couplings to channels with same total mtotal = 0, such

as |bf〉, |ce〉, |dd〉, etc. (see Fig. 5.1), can then be suppressed via the state-dependent

trapping potentials. These channels experience a weaker light shift than the |a〉 and

|g〉 state and leaving them at higher energies effectively causes these other channels

to be closed(see Fig. 5.8). One major difficulty in this kind of encoding, especially in

(a) (b)

mf = -3  -2    -1   -0   1 2 3

1
+

0
−

f↓

f↑
-4      -3     -2     -1     0      1      2       3       4

-3     -2     -1     0      1      2       3

1
−

0
+

Figure 5.8: Example of robust encoding and schematic of state-dependent trapping
potential for the different magnetic sublevels.

the case of 133Cs with its extremely large scattering lengths, is to keep the interaction

between atoms in the other logical states small. For 133Cs, these channels could show

highly inelastic collision rates, since for the two-qubit combinations, |ao〉, |gi〉, and

|io〉, at least one atom is in the higher-energy hyperfine state.
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5.4 Summary

In this chapter, we have addressed the important question of whether the trap-

induced resonances proposed in Chapter 4 can actually be observed in a realistic

setting for a specific alkali, and whether it can be employed as a new avenue for

quantum information processing. To study the interaction between atoms of a re-

alistic alkali with hyperfine structure, we generalized our δ-shell pseudopotential to

the case of multichannel scattering. In order to match the boundary conditions of

the asymptotic multichannel scattering solutions correctly, one has to employ the

scattering K-matrix in the definition of the scattering length, not the S-matrix as is

usually done in atomic physics.

Using the NIST close-coupling codes, we have calculated the K-matrix for colli-

sions of 133Cs atoms for positive and negative collisional energies and correspondingly

evaluated the scattering length matrix via analytic continuation for positive and neg-

ative energies. We then calculated the energy spectrum for 133Cs atoms in separated

traps self consistently using the scattering length matrix element for the stretched

states scattering channel. The energy gap in the spectrum provides a signature by

which the trap-induced resonance could be experimentally observed. We concluded

with a discussion of the use of the trapped induced resonance in 133Cs for feasibly

performing two-qubit entangling gates and further addressed some of the limitations

to the fidelity of such gates.
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Channel Energy (au) atom A mA atom B mB mA+mB l

1 -0.139712361591D-05 a 3 a 3 6 2

2 -0.139712361591D-05 a 3 b 2 5 2

3 -0.139712361591D-05 a 3 a 3 6 4

4 -0.139712361591D-05 b 2 b 2 4 4

5 -0.139712361591D-05 a 3 b 2 5 4

6 -0.139712361591D-05 a 3 c 1 4 4

7 -0.139712361591D-05 a 3 d 0 3 4

8 -0.139712361591D-05 b 2 c 1 3 4

9 0.000000000000D+00 p 4 a 3 7 0

10 0.000000000000D+00 p 4 a 3 7 2

11 0.000000000000D+00 p 4 b 2 6 2

12 0.000000000000D+00 p 4 c 1 5 2

13 0.000000000000D+00 o 3 a 3 6 2

14 0.000000000000D+00 o 3 b 2 5 2

15 0.000000000000D+00 n 2 a 3 5 2

16 0.000000000000D+00 p 4 a 3 7 4

17 0.000000000000D+00 p 4 b 2 6 4

18 0.000000000000D+00 p 4 c 1 5 4

19 0.000000000000D+00 p 4 d 0 4 4

20 0.000000000000D+00 p 4 e -1 3 4

21 0.000000000000D+00 o 3 a 3 6 4

22 0.000000000000D+00 o 3 b 2 5 4

23 0.000000000000D+00 o 3 c 1 4 4

24 0.000000000000D+00 o 3 d 0 3 4

25 0.000000000000D+00 n 2 a 3 5 4

26 0.000000000000D+00 n 2 b 2 4 4

27 0.000000000000D+00 n 2 c 1 3 4

28 0.000000000000D+00 m 1 a 3 4 4

29 0.000000000000D+00 m 1 b 2 3 4

30 0.000000000000D+00 l 0 a 3 3 4

31 0.139712361591D-05 p 4 o 3 7 0

32 0.139712361591D-05 p 4 p 4 8 2

33 0.139712361591D-05 o 3 o 3 6 2

34 0.139712361591D-05 p 4 o 3 7 2

35 0.139712361591D-05 p 4 n 2 6 2

36 0.139712361591D-05 p 4 m 1 5 2

37 0.139712361591D-05 o 3 n 2 5 2

38 0.139712361591D-05 p 4 p 4 8 4

39 0.139712361591D-05 o 3 o 3 6 4

40 0.139712361591D-05 n 2 n 2 4 4

41 0.139712361591D-05 p 4 o 3 7 4

42 0.139712361591D-05 p 4 n 2 6 4

43 0.139712361591D-05 p 4 m 1 5 4

44 0.139712361591D-05 p 4 l 0 4 4

45 0.139712361591D-05 p 4 k -1 3 4

46 0.139712361591D-05 o 3 n 2 5 4

47 0.139712361591D-05 o 3 m 1 4 4

48 0.139712361591D-05 o 3 l 0 3 4

49 0.139712361591D-05 n 2 m 1 3 4

Table 5.1: Participating channel information. The channel of interest is |ap〉 (channel
9), which defines the zero of energy. The first thirty channels are open, of which the
first eight channels are the ones with both atoms in the lower hyperfine manifold.
Channels 31 to 49 are closed channels with both atoms in the F = 4 manifold.
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Grid No. No. of Steps r (initial) r (final) Step Size

1 10112 2.999 13.111 0.001

2 1328 13.11 15.766 0.002

3 768 15.764 18.836 0.004

4 512 18.832 22.928 0.008

5 360 22.92 28.68 0.016

6 288 28.664 37.88 0.032

*** Final Step has been Adjusted ***

6 311894 28.664 10009.272 0.032

Table 5.2: Variable Numerov grid with six regions with different step size. The initial
and final radius and the step size are given in units of Bohr radii a0. Rfinal can be
readjusted by the user in the input file of the closed coupled codes (in this case to
about rfinal = 10000a0).
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Summary and Outlook

6.1 Summary

This thesis is the culmination of a detailed study of controlled collisions of ultracold

trapped atoms. In the process of this research, we have developed new methods for

modeling and coherently controlling ultracold collisions of atoms in separated traps

with the aim of reevaluating and extending existing proposals for entangling atoms

for quantum computing purposes. In particular, we have focused on building accurate

scattering models for describing cold collisions of trapped atoms to investigate the

effect of the trap potential on the atomic interaction. We have identified new trap-

induced resonances, where the trapping potential of separated atoms provides a new

knob to coherently control atomic interactions.

The modeling of atomic interactions is an old but important problem in atomic

physics. In particular, the generalization of Fermi’s zero-range pseudopotential to

higher partial waves using a δ function at the origin has been quite challenging in

the past. We have derived a correct pseudopotential based on a δ-shell potential

in the limit as the shell radius approaches zero, that takes into account the higher
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multipoles not captured by a δ-function at the origin. Our pseudopotential correctly

reproduces the asymptotic scattering behavior of the true interactions. In the case of

strong energy-dependent scattering behavior outside the Wigner-threshold regime,

we showed that the δ-shell potential could be easily extended to an energy-dependent

pseudopotential if an energy-dependent scattering length was employed. Further-

more, an analytic continuation of the scattering length to negative energies allows

not only the capture of the complete scattering spectrum of the true interaction, but

also includes information about all the bound states as long as the pseudopotential

is applied self consistently.

We have successfully applied the generalized pseudopotential for the description of

interacting atoms in isotropic harmonic traps. Using the δ-shell approach we derived

analytical equations for the energy eigenvalues and the eigensolutions of interacting

atoms in isotropic traps. This extends previous work by Busch et al. [64], in which

the l = 0 solutions have been derived, to all higher partial wave solutions. In a

detailed comparison of the pseudopotential with a spherical step-well test potential,

we show that the pseudopotential captures both the positive and negative energy

spectrum. Our results show that the pseudopotential model only breaks down if the

range of the true interaction is comparable to the size of the trapping potential so

that the true interaction potential is strongly distorted by the trap. Furthermore, we

have demonstrated that for realistic interactions, the self-consistent trap solutions

using an energy-dependent pseudopotential can be quite important, particularly in

the case that a higher partial wave bound state is close to dissociation.

Although our scattering model is applicable to a variety of interesting problems

in many-body atomic physics, our primary motivation for developing this model was

to investigate controlled collisions of atoms in separated but close traps. Like a 1D

system where a confinement induced resonance has a strong effect on the atomic

interaction, atoms in separated traps can show similar effects. Our prediction of a
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new “trap-induced resonance” is the principal result of our research. In very tight

traps, as the separation is increased, the trapping potential can be strong enough

to raise a bound state of the molecular interaction to positive energies. Avoided

crossings occur in the eigenspectrum for certain separations where the energy of this

molecular bound state becomes resonant with the eigenstates of the trap potential.

This is a new “shape resonance” for s-wave collisions, in which the trap barrier of

the separated potential plays the role of the centrifugal barrier in a standard free-

space shape resonance for higher partial waves. We have analyzed the properties of

these trap-induced resonances in detail for isotropic as well as anisotropic separated

traps. We further showed that, in principle, trap-induced resonances can occur due

to higher l-wave bound states, making a complete description in terms of a higher

partial wave pseudopotential necessary. Comparison with a spherical step-well test

potential verified the accuracy of our pseudopotential approximation. Here, the self-

consistent solution, which employs an energy-dependent scattering length, is crucial:

a constant scattering length approximation does not capture the location of the

bound state and the resulting energy gap accurately.

We have studied the feasibility of observing these trap-induced resonances un-

der realistic experimental conditions. Our studies showed that 133Cs is a potentially

promising candidate. Using realistic interaction potentials of 133Cs, a detailed mul-

tichannel analysis that included higher partial waves and second order spin-orbit

coupling, showed an extremely weakly bound state near dissociation. For a com-

plete description of the interaction for a realistic multilevel atom, we extended our

δ-shell pseudopotential to the multichannel problem. We showed that, to correctly

capture the boundary conditions of the multichannel wave function, we needed to de-

fine a scattering length matrix based on the scattering K-matrix. For the particular

calculation of the 133Cs interaction parameters, we extended the K-matrix and the

corresponding scattering length to negative energies through analytic continuation.

We applied the results to calculate the energy spectrum for interacting 133Cs atoms

124



Chapter 6. Summary and Outlook

in the stretched states as a function of the separation between traps. The avoided

crossing at the trap-induced resonance and the resulting energy gap in the spectrum

provides a possible experimental signature of the trap-induced resonance. We have

discussed in detail how this could be done using a Ramsey interference measurement.

Atoms in separated traps are attractive for use as qubits in quantum computa-

tion proposals due to the relative ease of manipulating atoms for performing single

qubit gates. The interactions between atoms provide the foundation for two qubit

entangling gates, which are a necessary ingredient for quantum computation. In this

context, we have investigated the possibility of employing the trap-induced resonance

for implementing entangling gates under realistic conditions for 133Cs atoms in an

optical lattice, and pointed out sources of limitations to the fidelity of such gates.

6.2 Outlook

6.2.1 Further applications of the generalized pseudopoten-

tial

The study of interacting trapped atoms in degenerate quantum gases, condensed

matter physics, and for the purpose of quantum information processing is an ongoing

field of research. The generalized scattering model that we have developed, which is

based on a fully generalized multichannel Fermi pseudopotential, is of great interest in

several fields. It offers a direct method to analytically solve the Schrödinger equation,

as demonstrated for the case of interacting trapped atoms in isotropic traps. The

higher partial wave pseudopotential is applicable to all cases in which higher partial

wave scattering of trapped particles plays an important role.

Important examples are degenerate gases of identical fermions, an area of current
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intense research. In the case of identical Fermions, the s-wave scattering cross section

vanishes [90] and p-wave scattering dominates [58]. Moreover, even for bosons, these

higher l waves can be resonantly coupled to the dominant l = 0 scattering due to

noncentral forces [45] such as the dipolar spin-spin interaction [91], second order

spin-orbit interaction [92], electric and magnetic dipole-dipole interaction, and/or

the forces of an anisotropic trapping potential [24, 69].

We have already seen that anisotropic trapping potentials can be of fundamental

importance in the description of trapped gases. In the limit of a 1D or 2D system,

interesting confinement induced effects on the interaction can be investigated as in

the case of a Tonks-Girardeau gas [18, 20]. In these highly anisotropic settings, the

different partial waves are coupled due to the non-spherical symmetry. Higher partial

wave resonances and bound states should play an important role in this setting, and

the generalized pseudopotential would aid in the general description and study of

such systems. In particular, the higher partial wave δ-shell pseudopotential might

be useful to solve the problem of interacting atoms in anisotropic traps analytically.

Recently, Idziaszek and Calarco [93] presented an analytical solution for s-wave inter-

actions only. The δ-shell pseudopotential should allow for a generalization of these

results.

The generalized pseudopotential is not only of key interest to the atomic physics

community, but is also of broad interest across various fields of physics where long

wavelength scattering plays a central role [94]. Important applications can be found

in nuclear [62], electromagnetic [95], and acoustical physics [96].

6.2.2 Trap-induced resonances

Trap-induced resonances provide new possibilities for the quantum control of ultra-

cold atomic collisions. While we have primarily been interested in applications for
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quantum information processing purposes, the trap-induced resonance has a general

impact on various applications such as, for example, the control of molecular dimers

and the production of cold molecules.

An example is the case of 133Cs atoms in an optical lattice system. The trap-

induced resonance provides the possibility of producing ultracold molecules by adia-

batic change of the separation between traps. A particular nice feature in a sparsely

populated optical lattice is that the expected conversion efficiency of two-atom pairs

would be very high since the interaction is restricted to two atoms and many-body

collisions can be safely neglected. In the case of Feshbach resonances, the trapping

potential provides an additional means to fine tune the interaction via the trapping

potential or to sweep through the resonance by changing the separation between

traps.

Another important example is ultra-high precision spectroscopy. Here, the trap-

induced resonance gives direct access to the negative-energy spectrum of the inter-

action since the energy spectrum of atoms in separated traps directly depends on

the scattering length at negative energies. In addition, the trap-induced resonance

is a direct probe of the location of the bound states. For example, the high lying

bound state in 133Cs that is responsible for the TIR shown in Fig. 5.6 can be exactly

determined by mapping the location of the energy gap.

The most important application of trap-induced resonances remains quantum

information processing. In Section 5.3.3, we have already made a first attempt

to identify sources of error for a two-qubit entangling gate based on trap-induced

resonances. A detailed estimate of the gate fidelity is necessary and planned for future

work. We are also interested in optimizing the two-qubit gate by varying the two open

parameters discussed in Section 5.3.3 in such a way that the discrepancy between

the phase shift acquired in the vibrational ground vs. the first two excited states

is minimized. This robustness is particularly important since the initial imperfect
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cooling to the ground state and subsequent heating during gate operations will result

in population of higher excited states.

While the encoding chosen in Section 5.3.3 allows for a direct observation of the

trap-induced resonance and proof of principle experiments, it is not the best choice

for quantum information processing. The two stretched states are maximally sensi-

tive to fluctuations in the magnetic field or the trap-laser field. An alternative is to

use the encoding proposed in Section 5.3.3. These combinations provide excellent im-

munity against noise, but are not robust with respect to spin-changing collisions. In

Section 5.3.3, we proposed to use the state-dependent trapping potential to suppress

these inelastic collisions and energetically close these channels. With this in mind, it

will be necessary to extend our model of the interaction. Here, the difficulty is that

the state-dependent trapping potential cannot be included in the pseudopotential

approximation, but has to be included a priori in the calculation of the scattering K-

matrix. To this end, the complex NIST close-coupling codes need to be modified to

include the light shift in the molecular interaction potentials. What complicates this

even more, is the fact that the light shift potentials are not well known for molecular

states, since the detuning at close range is different from the separated atom case.

So far, we have only considered collisions between 133Cs atoms due to the large

scattering lengths present. Other atomic species such as other alkali or earth alkali

atoms, might offer distinct advantages. The discussed scattering model and the trap-

induced resonance should provide the method and motivation for further studies

along these lines.
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Alternate derivation of “Busch”

solutions

A.1 Derivation

A.1.1 Hamiltonian and ansatz

Here, we will present an alternative way of deriving the higher partial wave “Busch”

solution presented in Section 3.2. We will follow the derivation of the eigenvalues

and solutions as shown by Busch et al. in Ref. [64] for l = 0. Consider the δ-shell

pseudopotential for higher partial waves Eq. (2.78) in harmonic oscillator length units

of r0 =
√

~/(µω) and energy units of ~ω

v
(l)
shell(r) = lim

s→0

1

2

[(2l + 1)!!]

[(2l)!!]
a2l+1

l

δ(r − s)
sl+2

∂2l+1

∂r2l+1
rl+1 . (A.1)

The total Hamiltonian in scaled unit is given by Eq. (3.15),

Ĥ = Ĥosc +
∑

l

v
(l)
shell(r) , (A.2)
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where

Ĥosc =
p̂2

r

2
+

1

2
r2 (A.3)

in scaled units. Following Ref. [64], we make the following ansatz

ψ(r) =
∑

n,l,m

cnlφnl(r)Y
m
l , (A.4)

where φnl are the harmonic oscillator eigenfunctions with Hoscφnl = Enlφnl. We

insert this ansatz into Eq. (A.2) and obtain

∑

n,l,m

cnl(Enl − E)φnl(r)Y
m
l

+ lim
s→0

∑

l

1

2

[(2l + 1)!!]

[(2l)!!]
a2l+1

l

δ(r − s)
sl+2

∂2l+1

∂r2l+1
rl+1

∑

n′,l′,m′

cn′l′φn′l′(r)Y
m′

l′ = 0 .

(A.5)

Projecting this equation onto φ∗
nlY

m
l , we get separate eigenvalue equations for each

l. The angular part of the integration is only nonzero for m = m′ = 0,

∫

sin θdθ

∫

dφ Y m
l

∗(θ, φ)Y m′

l′ (θ, φ) = δll′δm,m′δm,0. (A.6)

Integrating the radial part and later taking the limit s→ 0, gives

lim
s→0

∫

r2dr
φ∗

nl

sl

δ(r − s)
s2

∂2l+1

∂r2l+1
rl+1

∑

n′

cn′lφn′l(r)

= lim
s→0

[

φ∗
nl

sl

]

r=s

[

∂2l+1

∂r2l+1
rl+1

∑

n′

cn′lφn′l(r)

]

r=s

. (A.7)

In summary, we arrive at the following eigenvalue equation for each l. Note that by

doing the integration in r first, we followed the prescribed order of integration and

limit as described in Section 2.4.

lim
s→0

{

cnl(Enl − E) +
1

2

[(2l + 1)!!]

[(2l)!!]
a2l+1

l

[

φ∗
nl

sl

]

r=s

[

∂2l+1

∂r2l+1
rl+1

∑

n′

cn′lφn′l(r)

]

r=s

}

= 0 .
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(A.8)

The equation for l = 0 is solved analytically in [64]. Analogously to [64], the coeffi-

cients cnl have to take the form,

cnl =
A

Enl −E

(

φ∗
nl(s)

sl

)

. (A.9)

Inserting this into Eq. (A.8) and dividing by A
(

φ∗
nl

(s)

sl

)

, we get

lim
s→0







1

2

[(2l + 1)!!]

[(2l)!!]





∂2l+1

∂r2l+1
rl+1

∑

n

(

φ∗
nl

(s)

sl

)

φnl(r)

Enl − E





r=s







= − 1

a2l+1
l

. (A.10)

A.1.2 Harmonic oscillator solutions

The problem is reduced to solving this implicit equation for E. We insert the well-

known harmonic oscillator solutions

φnl(r) =

√

2Γ(n+ 1)

Γ(n+ l + 3/2)
rle−

r2

2 Ll+1/2
n (r2) (A.11)

with

[

φ∗
nl(s)

sl

]

s≪1

=

√

2Γ(n+ 1)

Γ(n+ l + 3/2)

(

1− s2

2

)

(

Ll+1/2
n (s = 0) +

(

Ll+1/2
n

)′
(s = 0)s2

)

=

√

2Γ(n+ 1)

Γ(n+ l + 3/2)

(

1− s2

2

)

×
(

Γ(n + l + 3/2)

Γ(n+ 1)Γ(l + 3/2)
+

nΓ(n+ l + 3/2)

Γ(n + 1)Γ(l + 5/2)
s2

)

=

√
2

Γ(l + 3/2)

√

Γ(n + l + 3/2)

Γ(n+ 1)
+O(s2) . (A.12)
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For very small s << 1, we only use the zeroth order term in the expansion and we

get the eigenvalue equation

lim
s→0







1

2

(l + 1)[(2l − 1)!!]

[(2l)!!]





∂2l+1

∂r2l+1
rl+1

∑

n

2
Γ(l+3/2)

rle−
r2

2 L
l+1/2
n (r2)

Enl − E





r=s







= lim
s→0

{

1

2

(l + 1)[(2l − 1)!!]

[(2l)!!]

1

Γ(l + 3/2)

[

∂2l+1

∂r2l+1
r2l+1e−

r2

2

∑

n

L
l+1/2
n (r2)

n− νl

]

r=s

}

= − 1

a2l+1
l

, (A.13)

where the energy eigenvalues have been replaced by Enl = (2n + l + 3/2) and E =

(2νl + l + 3/2).

A.1.3 Summation

We need to evaluate the sum (for simplicity we drop the index l here)

∞
∑

n=0

L
l+1/2
n (r2)

n− ν . (A.14)

The integral representation, which was used in [64],

1

n− ν =

∫ ∞

0

dy

(1 + y)2

(

y

1 + y

)n−ν−1

, (A.15)

shifts the n-dependence of the sum from the denominator to the exponent. We

further use the generating functions of the general Laguerre polynomials (see Arfken

p.725, Eq. (13.42) [80]),

∞
∑

n=0

Lk
n(x)zn =

e−xz/(1−z)

(1− z)k+1
. (A.16)

We can now evaluate the summation

∞
∑

n=0

L
l+1/2
n (r2)

n− ν =

∞
∑

n=0

∫ ∞

0

dy

(1 + y)2

(

y

1 + y

)−ν−1

Ll+1/2
n (r2)

(

y

1 + y

)n

(A.17)
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by identifying x = r2, z =
(

y
1+y

)

, y =
(

z
1−z

)

, (1− z) = (1 + y)−1, and k = l + 1/2.

We are left with the integral equation

∞
∑

n=0

L
l+1/2
n (r2)

n− ν =

∫ ∞

0

dy

(1 + y)2

(

y

1 + y

)−ν−1
e−yr2

(1 + y)−l−3/2

=

∫ ∞

0

dy e−yr2

y−ν−1(1 + y)ν+l+1/2 . (A.18)

Comparing this to the integral representation of the Kummer U -functions (see Arfken

p.754, Eq. (13.141) [80]),

U(a, b, x) =
1

Γ(a)

∫ ∞

0

dt e−txta−1(1 + t)b−a−1 , (A.19)

we identify t = y, a = −ν, b = l + 3/2, and x = r2. In summary, we can write

∞
∑

n=0

L
l+1/2
n (r2)

n− ν = Γ(−ν)U(−v, l + 3/2, r2) . (A.20)

A.1.4 Eigenvalue equation

Using Eq. (A.20), the new eigenvalue equation is

lim
s→0

{

1

2

[(2l + 1)!!]

[(2l)!!]

1

Γ(l + 3/2)

[

∂2l+1

∂r2l+1
r2l+1e−

r2

2 Γ(−ν)U(−v, l + 3/2, r2)

]

r=s

}

= − 1

a2l+1
l

. (A.21)

Before we take the derivative in the eigenvalue equation, it is helpful to find the

behavior of the U -function around the origin. To this end, we use the representation

of the U -functions in terms of the Kummer M-functions (see Abramowitz and Stegun
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p.504, Eq. (13.1.3) [59]),

U(−ν, l + 3/2, r2) =
π

sin(π(l + 3/2))

[

M(−ν, l + 3/2, r2)

Γ(−ν − l − 1/2)Γ(l + 3/2)

−
(

r2
)1−l−3/2 M(−ν − l − 1/2,−l + 1/2, r2)

Γ(−ν)Γ(−l + 1/2)

]

= (−1)l+1π

[

M(−ν, l + 3/2, r2)

Γ(−ν − l − 1/2)Γ(l + 3/2)

− 1

r2l+1

M(−ν − l − 1/2,−l + 1/2, r2)

Γ(−ν)Γ(−l + 1/2)

]

. (A.22)

Inserting this into the eigenvalue equation Eq. (A.21), we have to evaluate the fol-

lowing derivatives:

[

∂2l+1

∂r2l+1
r2l+1e−

r2

2 M(−ν, l + 3/2, r2)

]

r=s

=

[

∂2l+1

∂r2l+1
r2l+1

(

1− r2

2
+
r4

8
− ...

)(

1 +
−ν

l + 3/2
r2 +

1

2!

(−ν)2

(l + 3/2)2

r4 + ...

)]

r=s

= (2l + 1)! (A.23)

and

[

∂2l+1

∂r2l+1
e−

r2

2 M(−ν − l − 1/2,−l + 1/2, r2)

]

r=s

=

[

∂2l+1

∂r2l+1
e−

r2

2

(

1 +
−ν − l − 1/2

−l + 1/2
r2 +

1

2!

(−ν − l − 1/2)2

(−l + 1/2)2
r4 + ...

)]

r=s

= 0 , (A.24)

where we have used the Taylor-series expansion of the M-functions (see Abramowitz

and Stegun p.504, Eq. 13.1.2 [59]). (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer

symbol. For each equation, we need to examine the Taylor-series expansion of the

product of functions before taking the derivative. Both, the M-functions and the

exponential, have a series-expansion in even powers of r. After taking the derivative

of order (2l + 1) of the product of functions and after taking the r → 0 limit , only
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the coefficient of the r2l+1-element remains with factor of (2l + 1)!. In Eq. (A.23),

only the first element that is equal to one remains, because of the r2l+1 prefactor. In

Eq. (A.24), the product of functions has an expansion in even orders of r, so that

there is no element of odd order (2l + 1). After taking the limit r → s and then

s→ 0, Eq. (A.24) is equal to zero.

In summary, we have the eigenvalue equation

π

2

(−1)l[(2l + 1)!!]2

(Γ(l + 3/2))2

Γ(−ν)
Γ(−ν − l − 1/2)

=
1

a2l+1
l

. (A.25)

This is the general eigenvalue equation for the l-partial wave interaction derived in

Section 3.2. The eigenenergy is contained in ν = E/2 − l/2 − 3/4. For l = 0 this

reduces to the known eigenvalue equation

2
Γ(−ν)

Γ(−ν − 1/2)
=

1

a
(A.26)

since Γ(3/2) =
√
π/2. Here, a ≡ al=0 .

A.1.5 Eigenfunctions

The radial l-wave eigenfunctions are given by

ψl(r) =
∞
∑

n=0

cnlφnl(r) ,

=
∞
∑

n=0

A

Enl − E

[

φ∗
nl(s)

sl

]

s→0

φnl(r) ,

=
A

Γ(l + 3/2)
rle−

r2

2

∞
∑

n=0

L
l+1/2
n (r2)

n− ν ,

=
A

Γ(l + 3/2)
rle−

r2

2 Γ(−ν)U(−v, l + 3/2, r2) , (A.27)

where A is found by normalizing the eigenfunctions. These eigenfunctions reduce to

the correct harmonic oscillator solutions in the case of zero-interaction and ν = n
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with an integer n. Note that these solutions are equivalent to the outside solutions

to the δ-shell potential in Eq. (3.20). For l ≪ 0 these solutions diverge as r−(l+1)

and are not normalizable. Only the solutions for finite shell radius can be correctly

normalized when the inside wave function is included.

A.2 Normalization of the l = 0 eigenfunctions

The radial l = 0 eigenfunctions can always be normalized, even in the limit of s→ 0.

I =

∫ ∞

0

r2ψ(r)2
l=0dr = A2

∞
∑

n=0,n′=0

∫ ∞

0

r2φn(0)2φn(r)2

(E − En)2
dr ,

= A2
∞
∑

n=0

φn(0)2

(E − En)2
(by orthonormality) ,

= A2

∞
∑

n=0

2Γ(n+ 1)

Γ(n+ 3/2)

(

L
1/2
n (0) +O(s2)

)2

22(ν − n)2
,

=
A2

4

∞
∑

n=0

2Γ(n+ 1)

Γ(n+ 3/2)

2Γ(n+3/2)√
πΓ(n+1)

L
1/2
n (0)

(ν − n)2
,

=
A2

√
π

∞
∑

n=0

L
1/2
n (0)

(ν − n)2
,

=
A2

√
π

[

− ∂

∂ν

∞
∑

n=0

L
1/2
n (0)

(ν − n)

]

,

=
A2

√
π

[

− ∂

∂ν

(

−
√
π

2Γ(−ν)
Γ(−ν − 1/2)

)]

,

= A2 ∂

∂ν

(

2Γ(−ν)
Γ(−ν − 1/2)

)

, (A.28)

where we used

L1/2
n (0) =

2Γ(n+ 3/2)√
πΓ(n+ 1)

(A.29)
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and

∞
∑

n=0

L
1/2
n (r2)

n− ν = Γ(−ν)U(−v, 3/2, r2) = −
√
π

2Γ(−ν)
Γ(−ν − 1/2)

− −
√
π

r
. (A.30)

Note that the diverging 1/r part of the hypergeometric U -function does not depend

on ν. When the partial derivative with respect to ν is evaluated, the diverging term

vanishes. The normalization constant A is

A2 =
1

∂
∂ν

(

2Γ(−ν)
Γ(−ν−1/2)

) , (A.31)

or in terms of the s-wave scattering length a

A2 =
1

∂
∂ν

(

1
a

) ,

A2 = −a
2

∂a
∂ν

. (A.32)

We can rewrite Eq. (A.31) by rewriting the l = 0 eigenvalue equation,

1

a
=

2Γ(−ν)
Γ(−ν − 1/2)

,

=
2 π

sin πν
1

Γ(ν+1)

π
sinπ(ν+1/2)

1
Γ(ν+3/2)

,

= 2
1

tanπν

Γ(ν + 3/2)

Γ(ν + 1)
. (A.33)
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The derivative is evaluated to be

∂a

∂ν
=

∂

∂ν

[

1

2
tan (πν)

Γ(ν + 1)

Γ(ν + 3/2)

]

,

=
π

2
sec (πν)2 Γ(ν + 1)

Γ(ν + 3/2)

+
1

2
tan (πν)

Γ(ν + 1)′Γ(ν + 3/2)− Γ(ν + 1)Γ(ν + 3/2)′

Γ(ν + 3/2)2
,

= πa0
sec (πν)2

tan (πν)
+ a0

(

Γ(ν + 1)′

Γ(ν + 1)
− Γ(ν + 3/2)′

Γ(ν + 3/2)

)

,

= a0

(

π

sin (πν) cos (πν)
+

Γ(ν + 1)′

Γ(ν + 1)
− Γ(ν + 3/2)′

Γ(ν + 3/2)

)

,

= a0

(

2π

sin (2πν)
+ Φ(ν + 1)− Φ(ν + 3/2)

)

, (A.34)

where Φ(x) = Γ(x)′/Γ(x) is the digamma function. The normalization constant A is

then

A2 =
−a

2π
sin (2πν)

+ Φ(ν + 1)− Φ(ν + 3/2)
. (A.35)

Note, this normalization is only possible for the l = 0 eigenfunctions. The l > 0

eigenfunctions are not normalizable due to the strongly diverging r−l behavior around

the origin as we will see in the next section.

A.3 Normalization of the l eigenfunctions

The radial l eigenfunctions are not normalizable in the limit of the shell radius s

approaching zero since the solutions diverge as r−(l+1) around the origin for zero

shell radius (s → 0). We can attempt the normalization in a manner analogous to
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the l = 0 case.

I =

∫ ∞

0

r2ψ(r)2
l=0dr = A2

∞
∑

n=0,n′=0

∫ ∞

0

r2

(

φn(s)
sl

)2

φn(r)2

(E − En)2
dr ,

= A2

∞
∑

n=0

(

φn(s)
sl

)2

(E − En)2
(by orthonormality) ,

= A2
∞
∑

n=0

2Γ(n+ 1)

Γ(n+ l + 3/2)

(

L
l+1/2
n (s = 0) + O(s2)

)2

22(ν − n)2
,

=
A2

4

∞
∑

n=0

2Γ(n+ 1)

Γ(n+ l + 3/2)

Γ(n+l+3/2)
Γ(n+1)Γ(l+3/2)

L
l+1/2
n (0)

(ν − n)2
+O(s2) ,

=
A2

2Γ(l + 3/2)

∞
∑

n=0

L
l+1/2
n (0)

(ν − n)2
,

=
A2

2Γ(l + 3/2)

[

− ∂

∂ν

∞
∑

n=0

L
l+1/2
n (0)

(ν − n)

]

,

=
A2

2Γ(l + 3/2)

[

− ∂

∂ν
(Γ(−ν)U(−ν, l + 3/2, 0))

]

,

=
A2

2Γ(l + 3/2)

[

− ∂

∂ν

(

(−1)l+1πΓ(−ν)
Γ(l + 3/2)Γ(−ν − l − 1/2)

+
(−1)l+1π

Γ(−l + 1/2)

1

s2l+1

+
(−1)l+1π(2ν + 2l + 1)

2Γ(−l + 3/2)

1

s2l−1
+O

(

1

s2l−3

))]

, (A.36)

where we used

Ll+1/2
n (0) =

Γ(n + l + 3/2)

Γ(l + 3/2)Γ(n+ 1)
(A.37)

and

∞
∑

n=0

L
l+1/2
n (r2)

n− ν = Γ(−ν)U(−v, l + 3/2, r2) ,

=
(−1)l+1πΓ(−ν)

Γ(l + 3/2)Γ(−ν − l − 1/2)
+

(−1)l+1π

Γ(−l − 1/2)

1

r2l+1

+
(−1)l+1π(2ν + 2l + 1)

2Γ(−l + 3/2)

1

s2l−1
+O

(

1

r2l−3

)

. (A.38)
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Note in the case of l > 0, the diverging r−(2l+1) part of the hypergeometric U -function

does not depend on ν, however the second term in the expansion that diverges as

r−(2l−1) does depend on ν. This is consistent with our expectation that the radial

functions are not normalizable for l > 0.
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Appendix: Matrix elements in the

“Busch” basis

B.1 Separation of center of mass and relative co-

ordinate motion

The Hamiltonian for two atoms of identical mass m1 = m2 = m in identical

anisotropic separated traps interacting via V̂int(r) is

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+ V̂ (r1) + V̂ (r2) + V̂int(r2 − r1) . (B.1)

The total mass M and the reduced mass µ are

M = m1 +m2 = 2m,

µ =
m1m2

m1 +m2
=
m

2
. (B.2)
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The relative (RC) and center of mass (CM) coordinates are defined as

R =
m1r1 +m2r2

M
=

r1 + r2

2
,

r = r2 − r1 , (B.3)

and

r1 = R− m2

M
r = R− 1

2
r ,

r2 = R +
m1

M
r = R +

1

2
r . (B.4)

For simplicity, we assume the anisotropy and the separation in the z direction. We

further assume that the atoms are well-localized near potential minima. We can

then approximate the trapping potential by harmonic potentials V̂trap = miω
2(ri ±

∆zez)
2/2. Because of the quadratic form of both, the kinetic energy term and

the potential term, we can transform this Hamiltonian to the center of mass (CM)

frame with CM and relative coordinates as follows. The potential term in Cartesian

coordinates in the harmonic approximation is

V̂ =
1

2
mω2

⊥
(

x2
1 + y2

1

)

+
1

2
mω2

z

(

z1 +
∆z

2

)2

+
1

2
mω2

⊥
(

x2
2 + y2

2

)

+
1

2
mω2

z

(

z2 −
∆z

2

)2

+ V̂int(r2 − r1) . (B.5)

With x1 = X − x/2 and x2 = X + x/2 we have

x2
1 + x2

2 = X2 − xX +
x2

4
+X2 + xX +

x2

4
= 2X2 +

x2

2
(B.6)

and analogous for y2
1 + y2

2. For z1,2 we have

(

z1 +
∆z

2

)2

+

(

z2
2 −

∆z

2

)2

= z1 + z1∆z +
∆z2

4
+ z2

2 − z2∆z +
∆z2

4
,

= 2Z2 +
z2

2
− z∆z +

∆z2

2
,

= 2Z2 +
(z −∆z)2

2
. (B.7)
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In summary, we obtain separate Hamiltonians for the CM and RC motion

ĤCM =
p2

R

2M
+

1

2
Mω2

⊥
(

X2 + Y 2
)

+
1

2
Mω2

zZ
2 ,

Ĥrel =
p2

r

2µ
+

1

2
µω2

⊥
(

x2 + y2
)

+
1

2
µω2

z (z −∆z)2 + Vint(r) . (B.8)

The CM part has the trivial anisotropic trap solutions. The relative coordinate part

is an anisotropic trap centered at ∆z and the interaction potential at the origin.

B.2 Relative coordinate Hamiltonian

We can write the RC Hamiltonian as

Ĥrel =
p̂2

r

2µ
+

1

2
µω2

⊥
(

x2 + y2
)

+
1

2
µω2

z (z −∆z)2 + V̂int(r) ,

=
p̂2

r

2µ
+

1

2
µω2

⊥r
2 +

1

2
µ
(

ω2
z − ω2

⊥
)

z2 − µω2
zz∆z +

1

2
µω2

z∆z
2 + V̂int(r) .

(B.9)

Using the spherical harmonics

Y10 =

√

3

4π
cos θ , (B.10)

Y20 =

√

5

16π

(

3 cos θ2 − 1
)

, (B.11)
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and z = r cos θ, we can rewrite this as

Ĥrel =
p̂2

r

2µ
+

1

2
µr2



ω2
⊥ +

(

ω2
z − ω2

⊥
)

√

16π
5
Y20 + 1

3





−µω2
z∆zr

√

4π

3
Y10 +

1

2
µω2

z∆z
2 + V̂int(r) ,

=
p̂2

r

2µ
+

1

2
µω2r2

(

1− Λ

√

16π

5
Y20

)

− µω2
z∆zr

√

4π

3
Y10 +

1

2
µω2

z∆z
2 + V̂int(r) .

(B.12)

Here, the mean frequency ω is

ω =

(

2

3
ω2
⊥ +

1

3
ω2

z

)

. (B.13)

The parameter Λ measures the anisotropy of the trap according to

Λ =
ω2

z − ω2
⊥

3ω
=

ω2
z − ω2

⊥
2ω2

⊥ + ω2
z

. (B.14)

We can write the momentum operator p̂r in spherical coordinates with

p̂2
r

2µ
= − ~

2

2µ

1

r

∂2

∂r2
r +

~
2l(l + 1)

2µr2
. (B.15)

B.2.1 Hamiltonian in the “Busch” basis

We represent the relative coordinate Hamiltonian for arbitrary Λ and ∆z in the basis

corresponding to the solutions with ∆z = 0 and a fixed scattering length a. This basis

set, derived by Busch et al. [64], consists of 3D-harmonic-oscillator-like solutions and

has been discussed in detail in Chapter 3. We only consider s-wave interactions with

an s-wave pseudopotential. Therefore, we only need to consider the irregular radial

waves for l = 0, which includes the pseudopotential bound state at negative energy.

The l ≥ 1 wave functions are the regular 3D-harmonic oscillator wave functions,
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since the pseudopotential affects only s-wave solutions. The first three terms of the

Hamiltonian plus the interaction potential are diagonal in this basis

〈ψν′,l′| −
~

2

2µ

1

r

∂2

∂r2
r +

~
2l(l + 1)

2µr2
+

1

2
µω2r2 + V̂int(r) |ψν,l〉 = Eνlδν′νδl′l (B.16)

with

Eνl = ~ω

(

2ν + l +
3

2

)

. (B.17)

The other important terms are the Λ anisotropic term and the ∆z separation term.

The first one couples partial waves with l − l′ = 0,±2, the second, dipolar term

couples partial waves with l − l′ = 0,±1. The term with ∆z2 only adds a constant

energy.

Regular l > 0 anisotropic matrix elements

We evaluate the matrix elements of the anisotropic potential term in the basis of

partial waves, isotropic harmonic oscillator functions, and the irregular s-wave os-

cillator eigenfunctions. The angle-dependent term of the Hamiltonian is evaluated

using

Ill′ =

√

4π

5

∫ π

0

∫ 2π

0

sin θdθdφ Y ∗
l′0(θ, φ)Y20(θ, φ)Yl0(θ, φ) ,

=

√

2l + 1

2l′ + 1
〈l′0|20; l0〉2 . (B.18)

Evaluating the Clebsch-Gordan coefficient 〈l′0|20; l0〉, we get the quadrupole selec-

tion rules,

Ill =
l(l + 1)

(2l − 1)(2l + 3)
, (B.19)

Il,l+2 = Il+2,l =
3(l + 1)(l + 2)

2(2l + 3)
√

(2l + 1)(2l + 5)
, (B.20)
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while all other angular matrix elements are zero.

For computing the regular l > 0 radial matrix element 〈n′l′| r2 |nl〉 we use the n-

and l-ladder operators given in [24] as

b̂±nl = ±r ∂
∂r
± 1

2
− r2 + 2n + l +

1

2
, (B.21)

L̂+
l =

∂

∂r
+ r − l

r
. (B.22)

The ladder operators can be derived by applying the type C factorization method

described in Ref. [97] to the radial Schrödinger Equation. Acting the ladder operators

on normalized wave functions, yields [24]

b̂−nl |nl〉 =
√

2n(2n+ 2l + 1) |n− 1, l〉 , (B.23)

b̂+nl |n− 1, l〉 =
√

2n(2n+ 2l + 1) |nl〉 , (B.24)

L̂+
l |nl〉 = −2

√
n |n− 1, l + 1〉 . (B.25)

Evaluating
(

b̂+nl + b̂−nl

)

/2 using Eq. (B.21), we can write r2 in terms of the ladder

operators

r2 = 2n+ l +
3

2
− 1

2
b̂+n+1,l −

1

2
b̂−n,l . (B.26)

Using orthonormality, we can now easily compute the regular l = l′ > 0 matrix

elements

〈nl| r2 |nl〉 = 2n+ l +
3

2
, (B.27)

〈n + 1, l| r2 |nl〉 = −1

2

√

2(n+ 1)(2n+ 2l + 3) , (B.28)

〈nl| r2 |n+ 1, l〉 = −1

2

√

2(n+ 1)(2n+ 2l + 3) . (B.29)

The radial operator couples only n to n and n + 1 wave functions while all other

matrix elements vanish.
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For l′ = l±2, we can rewrite the matrix elements first using the l-ladder operator

(B.22) and Eq. (B.25)

〈nl| r2 |n′, l + 2〉 =
〈nl| r2L̂+

l+1L̂+
l |n′ + 2, l〉

4
√

(n′ + 1)(n′ + 2)
. (B.30)

We can express the l-ladder operator (B.22) conveniently in terms of any n-ladder

operator b̂−n′′l′′ (B.21) via

rL̂+
l = −b̂−n′′l′′ + 2n′′ + l′′ − l . (B.31)

We further need the commutator

[

r, L̂+
l

]

= r
d

dr
− d

dr
r = r

d

dr
− r d

dr
− 1 = −1 . (B.32)

Using this, we can rewrite

r2L̂+
l+1L̂+

l = r
([

r, L̂+
l+1

]

+ L̂+
l+1r

)

L̂+
l ,

=
(

−1 + rL̂+
l+1

)

rL̂+
l ,

=
(

−1− b̂−n′′l′′ + 2n′′ + l′′ − l − 1
)(

−b̂−n′′′l′′′ + 2n′′′ + l′′′ − l
)

,

=
(

−b̂−n′′l′′ + 2n′′ + l′′ − l − 2
)(

−b̂−n′′′l′′′ + 2n′′′ + l′′′ − l
)

. (B.33)

We can arbitrarily choose n′′ = n′ + 1, n′′′ = n′ + 2, and l′′′ = l′′ = l so that

r2L̂+
l+1L̂+

l =
(

−b̂−n′+1 + 2(n′ + 1)− 2
)(

−b̂−n′+2 + 2(n′ + 2)
)

,

=
(

−b̂−n′+1 + 2n′
)(

−b̂−n′+2 + 2(n′ + 2)
)

,

= b̂−n′+1b̂
−
n′+2 − 2(n′ + 2)b̂−n′+1 − 2n′b̂−n′+2 + 4n′(n′ + 2) ,

= b̂−n′+1b̂
−
n′+2 − 2(n′ + 2)(b̂−n′+2 − 2)− 2n′b̂−n′+2 + 4n′(n′ + 2) ,

= b̂−n′+1b̂
−
n′+2 − 4(n′ + 1)(b̂−n′+2 − 2) + 4(n′ + 1)(n′ + 2) . (B.34)
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For convenience, we drop the same index l for the b operators. Here, we used the

identity b̂−n′+1 = (b̂−n′+2 − 2). We can now express the matrix element as

〈nl| r2L̂+
l+1L̂+

l |n′ + 2, l〉 = 〈nl| b̂−n′+1b̂
−
n′+2 |n′ + 2, l〉 ,

−〈nl| 4(n′ + 1)(b̂−n′+2 − 2) |n′ + 2, l〉 ,

+ 〈nl| 4(n′ + 1)(n′ + 2) |n′ + 2, l〉 . (B.35)

The non-vanishing matrix elements can then be obtained after some more straight-

forward algebra

〈nl| r2 |n, l + 2〉 =
1

2

√

(2n+ 2l + 3)(2n+ 2l + 5) , (B.36)

〈n + 1, l| r2 |n, l + 2〉 = −
√

2(n+ 1)(2n+ 2l + 5) , (B.37)

〈n + 2, l| r2 |n, l + 2〉 =
√

(n+ 1)(n+ 2) . (B.38)

Irregular l = 0 anisotropic matrix elements

For the special case of l = 0, we do not need the matrix elements 〈ν, 0| r2 |ν, 0〉
since the angular part of the integration Il=0,l=0 vanishes. Only the matrix elements

〈n, 2| r2 |ν, 0〉 have to evaluated. To this end, we use the expansion of the irregular

solutions in terms of the regular harmonic wave functions |nl〉 (see Appendix A and

Ref. [64])

〈n, 2| r2 |ν, 0〉 =

∞
∑

k=0

ck 〈n, 2| r2 |k, 0〉 ,

= cn 〈n, 2| r2 |n, 0〉+ cn+1 〈n, 2| r2 |n + 1, 0〉+ cn+2 〈n, 2| r2 |n+ 2, 0〉 ,

(B.39)

where

ck = A
ψn(0)

En − E
= A

ψn(0)

2~ω(n− ν) (B.40)
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and

ψn(0) = ηn0L
1/2
n (0) =

(

2√
π

)
1

2
√

L
1/2
n (0) =

2√
π

√

2Γ(n+ 3/2)

n!
. (B.41)

The normalization constant A has been determined in Section A.2. Inserting the

regular matrix elements, we get

〈n, 2| r2 |ν, 0〉 =
A

~ω

√

2Γ(n+ 7
2
)

πΓ(n+ 1)

(

1

n− ν −
2

n+ 1− ν +
1

n + 2− ν

)

. (B.42)

Regular l > 0 separation matrix elements

We evaluate the matrix elements of the separation potential term analogously to

the isotropic case. In the case of separated traps, the off-diagonal matrix element

are due to the r cos θ =
√

4π/3rY10 term. As a spherical tensor of rank one, this

term couples partial waves with l′ = l and l′ = l ± 1. Because of the cylindrical

symmetry of the problem, we are only interested in matrix element between states

with magnetic quantum number m = 0. For m = 0, the l′ = l matrix elements are

zero. In detail, we can evaluate the angle-dependent term of the Hamiltonian

Ill′ =

√

4π

3

∫ π

0

∫ 2π

0

sin θdθdφ Y ∗
l′0(θ, φ)Y10(θ, φ)Yl0(θ, φ) ,

=

√

2l + 1

2l′ + 1
〈l′0|10; l0〉2 . (B.43)

Evaluating the Clebsch-Gordan coefficient 〈l′0|10; l0〉 we get the dipole selection rules

Ill = 0 , (B.44)

Il,l+1 = Il+1,l =
(l + 1)

√

(2l + 1)(2l + 3)
, (B.45)

while all other angular matrix elements are zero.
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We further have to compute the regular l > 0 radial matrix element 〈nl| r |n′l + 1〉,
which can be done using n- and l-ladder operators in Eq. (B.21) and (B.22). As a

reminder, the operators are

b̂±nl = ±r ∂
∂r
± 1

2
− r2 + 2n + l +

1

2
, (B.46)

L̂+
l =

∂

∂r
+ r − l

r
(B.47)

with

b̂−nl |nl〉 =
√

2n(2n+ 2l + 1) |n− 1, l〉 , (B.48)

b̂+nl |n− 1, l〉 =
√

2n(2n+ 2l + 1) |nl〉 , (B.49)

L̂+
l |nl〉 = −2

√
n |n− 1, l + 1〉 . (B.50)

For l′ = l ± 1, we can rewrite the matrix elements first using the l-ladder operator

(B.47) and Eq. (B.50)

〈nl| r |n′, l + 1〉 =
〈nl| rL̂+

l |n′ + 1, l〉
−2
√
n′ + 1

. (B.51)

We can express the l-ladder operator (B.47) conveniently in terms of any n-ladder

operator b̂−n′′l′′ (B.46) via

rL̂+
l = −b̂−n′′l′′ + 2n′′ + l′′ − l . (B.52)

Choosing n′′ = n′+1, l′′ = l and inserting this representation into the matrix element,

we get

〈nl| rL̂+
l |n′ + 1, l〉 = 〈nl| − b̂−n′+1,l + 2n+ 2 |n′ + 1, l〉 ,

= 〈nl| − b̂−n′+1,l |n′ + 1, l〉 ,

+ 〈nl| 2n+ 2 |n′ + 1, l〉 . (B.53)
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The nonvanishing matrix elements can then be easily obtained after some more

algebra,

〈n, l|r cos θ|n, l + 1〉 = (l + 1)

√

(n + l + 3/2)

(2l + 1)(2l + 3)
,

〈n, l|r cos θ|n− 1, l + 1〉 = −(l + 1)

√

n

(2l + 1)(2l + 3)
. (B.54)

Irregular l = 0 separation matrix elements

For the irregular l = 0 solutions only the matrix elements 〈n, 1| r cos θ |ν, 0〉 have to

evaluated. To this end, we use again the expansion of the irregular solutions in terms

of the regular harmonic wave functions |nl〉 (see Appendix A and Ref. [64]),

〈n, 1| r cos θ |ν, 0〉 =

∞
∑

k=0

ck 〈n, 2| r2 |k, 0〉 ,

= cn 〈n, 1| r |n, 0〉+ cn+1 〈n, 1| r |n+ 1, 0〉 , (B.55)

where

ck = A
ψn(0)

En − E
= A

ψn(0)

2~ω(n− ν) (B.56)

and

ψn(0) = ηn0L
1/2
n (0) =

(

2√
π

)
1

2
√

L
1/2
n (0) =

2√
π

√

2Γ(n+ 3/2)

n!
. (B.57)

Inserting the regular matrix elements, we obtain

〈n, 1| r cos θ |ν, 0〉 =
A

~ω

√

2Γ(n+ 5
2
)

πΓ(n+ 1)

(

1

n− ν −
1

n + 1− ν

)

. (B.58)
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Appendix C

Numerical calculation of energy

spectra for interacting atoms

C.1 Separated traps with δ interactions

In Section 4.2 the problem of two interacting atoms in separated traps was reduced

to solving the Schrödinger equation for the relative coordinate Hamiltonian,

Ĥrel = − ~
2

2µ

1

r

∂2

∂r2
r − ~

2l(l + 1)

2µr2
+

1

2
µω2r2 − µω2∆zr cos θ +

1

2
µω2∆z2

+
2π~

2

µ
aeff(EK)δ(r)

∂

∂r
r . (C.1)

We have shown in Section 4.2.3 and Appendix B that, if we represent the Hamilto-

nian for arbitrary ∆z in the basis corresponding to the solutions with ∆z = 0 and

scattering length a, the resulting Hamiltonian matrix is tri-diagonal. The diagonal

elements are given by

Eνl = ~ω

(

2ν + l +
3

2

)

. (C.2)
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For l = 0, these matrix elements can be found by numerically solving the implicit

equation, Eq. (3.11), for ν. The l ≤ 1 elements are the standard 3D harmonic

oscillator eigenvalues with integer ν = n. The off-diagonal elements due to the

r cos θ term in Ĥrel are given by Eq. (4.11) and (4.12) as

〈n, l|r cos θ|n, l + 1〉 = (l + 1)

√

(n + l + 3/2)

(2l + 1)(2l + 3)
,

〈n, l|r cos θ|n− 1, l + 1〉 = −(l + 1)

√

n

(2l + 1)(2l + 3)
(C.3)

for l ≤ 1; and

〈n, 1| r cos θ |ν, 0〉 = aν

√

2Γ(n+ 5
2
)

πΓ(n+ 1)

(

1

n− ν −
1

n+ 1− ν

)

(C.4)

for the special case involving the irregular l = 0 functions.

As a result, the Hamiltonian matrix is tri-diagonal in l and n. The matrix is diag-

onalized for each trap separation ∆z using a sparse-matrix diagonalization algorithm

implemented in Matlab, which allows us to determine the lowest energy eigenvalues.

The main program “separd trap delta.m” calculates a list of matrix elements, as-

sembles the corresponding sparse matrix and calculates the lowest eigenvalues of the

sparse matrix. The subroutine “nusolve.m”, which uses “diffatan2a.m” and “dif-

facota2.m”, provides an accurate and stable routine for calculating the “Busch”

eigenvalues for the l = 0 diagonal elements. “scriptA.m”, which uses “digamma.m”

and “psin.m”, fixes the normalizations of the l = 0 wave functions. The main code

further includes a loop over both the scattering length and the trap separation. The

calculated energy spectra (energy vs. trap separation for a list of scattering lengths)

provide a template for the calculation of self-consistent energy spectra. The self-

consistent calculation of the energy spectra is implemented in the main program

“energydep spectrum.m” which is presented in Section C.3.
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C.1.1 Main program

separd trap delta.m

%--------------------------------------------------------------------

% Main Program: separd_trap_delta.m

%--------------------------------------------------------------------

%

% Created by ERIC E. BOLDA and RENE STOCK

% NIST, Gaithersburg and UNM, Albuquerque

%

% original code by ERIC E. BOLDA: May, 2002

%

% significantly modified by RENE STOCK: June - October, 2002

%

% last modified: April, 2005

%

% This is the main program for determining the eigenenergies of

% two atoms interacting through an s-wave pseudopotential in

% SEPARATED ISOTROPIC harmonic traps. The Hamiltonian

% is expressed in the spherical hypergeometric "Busch-basis"

% for l=0 and the regular spherical Laguerre harmonic oscillator

% basis for l>0. The resulting tri-diagonal matrix is then

% diagonalized using the Matlab sparse matrix routine for finding

% the lowest matrix eigenvalues.

%

% The code includes a loop over both the scattering length and the

% trap separation. The calculated energy spectra (energy vs. trap

% separation for a list of scattering lengths) provides a template
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% for the calculation of the self-consistent energy spectra using an

% energy-dependent scattering length, calculated for the realistic

% interaction.

%

% Note: This code only calculates m=0 levels, since only m=0

% levels are affected by the delta interaction.

%

% Note about scaling: In the main diagonalization routine

% energies are scaled to E = hbar omega,

% lengths are scaled to r0 = sqrt(hbar/(mu*omega)).

%--------------------------------------------------------------------

% include the following m-function subroutines

% scriptA.m with diffacota2.m, diffatan2a.m.

% nusolve.m with digamma.m, psin.m.

% gammaratio.m.

clear all;

calctime=cputime; % calculation time for whole code

%====================================================================

% parameters

%====================================================================

%--------------------------------------------------------------------

% trap separation list

dzlist = 0:0.025:5;
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dzlen = length(dzlist)

%--------------------------------------------------------------------

% scattering length list

a0list0 = 0.05:0.05:2; a0list1 = 2.5:0.5:10; a0list2 = 20:10:100;

a0list=-[a0list0 a0list1 a0list2];

a0len = length(a0list)

%--------------------------------------------------------------------

% max. partial wave (actual number of allowed VALUES is Ll+1)

Ll = 180;

% max. radial wave (actual number of allowed VALUES is Nn+1)

Nn = 180;

% max. number of eigenvalues to compute for each a0, dz

max_eig = 8;

%--------------------------------------------------------------------

% allocate memory for matrix elements lists

numeig = zeros(dzlen, a0len, max_eig);

sqerreig = zeros(dzlen, a0len, max_eig);

lenzlist=Ll*(3*Nn+2)+ Nn*(Nn+1) + 1;

nzlist=zeros(5,lenzlist);

%====================================================================

% outer loop over trap separation given in dzlist

%====================================================================

k = 0;
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for dz = dzlist

k = k+1;

col = 0;

%================================================================

% sparse matrix elements

%================================================================

% nzlist: create lists of non-zero elements in the form

% [l; lp; n; np; element].

%

% The matrix is symmetric: We need to calculate only off-diagonal

% elements on one side of the diagonal and symmetrize later.

%

% n_nu is the Busch solution index, which is the "analog" of n,

% such that nu(n_nu+1) -> n, when a0 -> 0-.

% The following calculation of matrix elements is separated into

% two parts, since only the l=0 matrix elements depend on the

% scattering length:

%

% 1) regular l>=1 matrix elements (outside a0-loop)

% 2) irregular l=0 matrix elements (inside a0-loop)

%----------------------------------------------------------------

% regular matrix elements for l>=1

%----------------------------------------------------------------
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% Notation: We use j instead of l in the following:

%

% Note: the vectors jn and nj are of the form with n and j:

% nj=(1_1 ... 1_j ... 1_Ll 2_1 ... 2_Ll ...

% n_1 ... n_j ... n_Ll ... Nn_1 ... Nn_Ll).

%

% Example: Nn=1, Ll=3

%

% jlist = (1 2 3)

% nlist = (0 1)

%

% nj = (0 1 0 1 0 1)

% jn = (1 1 2 2 3 3)

%

% E = 2"n" + "j" + 3/2 = 2.*nj + jn + 3/2

% E = (1 3 2 4 3 5) + 3/2

% simply replace n -> nj and j -> jn in equations

%----------------------------------------------------------------

% diagonal matrix elements (l>=1): SHO solutions

% < n j | n j >

col = (Nn+1)*(Ll); % col: counter for matrix element list

jlist=1:1:Ll;

nlist=0:1:Nn;

jn=reshape((jlist’*ones(1,length(nlist)))’,1,...

length(nlist)*length(jlist));
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nj=reshape(nlist’*ones(1,length(jlist)),1,...

length(nlist)*length(jlist));

nzlist(1,1:col)=jn;

nzlist(2,1:col)=jn;

nzlist(3,1:col)=nj;

nzlist(4,1:col)=nj;

nzlist(5,1:col)=(2*nj + jn + 3/2) + 1/2*dz^2;

col = (Nn+1)*(Ll);

%----------------------------------------------------------------

% off-diagonal matrix elements (l>=1) due to separation

% < n j | n j-1 >

colbefore = col;

col = (Nn+1)*(Ll-1) + colbefore;

jlist=2:1:Ll;

%nlist=0:1:Nn; % not necessary (same definition as before)

jn=reshape((jlist’*ones(1,length(nlist)))’,1,...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1,...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-1;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj;

nzlist(5,colbefore+1:col)=-dz*jn.*sqrt((2*nj+2*jn+1)./...

(2*(2*jn-1).*(2*jn+1)));
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% < n j | n+1 j-1 >

colbefore = col;

col = Nn*(Ll-1) + colbefore;

%jlist=2:1:Ll; % not necessary (same definition as before)

nlist=0:1:Nn-1;

jn=reshape((jlist’*ones(1,length(nlist)))’,1,...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1,...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-1;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj+1;

nzlist(5,colbefore+1:col)=dz*jn.*sqrt((nj+1)./...

((2*jn-1).*(2*jn+1)));

mark_col = col; % value for starting each nzlist in loop below

%================================================================

% inner loop over scattering length

%================================================================

kk = 0;

for a0 = a0list

a0

kk = kk + 1;
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%------------------------------------------------------------

% irregular matrix elements for l=0

%------------------------------------------------------------

% calculate lowest (Nn+1) eigenvalues with n_nu=0:Nn

nu = nusolve(Nn+1, a0);

% normalization coefficient for wave functions

scrA = scriptA(nu, a0);

% counter for nzlist

col = mark_col;

% matrix elements involving l = 0, pseudopotential solutions

for n_nu = 0:Nn

col = col+1;

% diagonal elements

nzlist(:,col) = ...

[0; 0; n_nu; n_nu; 2*nu(n_nu+1) + 3/2+1/2*dz^2];

% off-diagonal

for n = 0:Nn

col = col+1;

if (n<150)

nzlist(:,col) = [0; 1; n_nu; n; ...

sqrt(2/(3*pi))*sign(a0)*dz*scrA(n_nu+1)* ...

sqrt(gamma(n+5/2)/gamma(n+1)).* ...

(1/(n-nu(n_nu+1))-1/(n+1-nu(n_nu+1)))];

else

nzlist(:,col) = [0; 1; n_nu; n; ...
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sqrt(2/(3*pi))*sign(a0)*dz*scrA(n_nu+1)* ...

sqrt(gammaratio(n,5/2,1)).* ...

(1/(n-nu(n_nu+1))-1/(n+1-nu(n_nu+1)))];

end % if

end % n

end % n_nu

%------------------------------------------------------------

% construction of sparse matrix

%------------------------------------------------------------

% convert lists to numerical index notation

nz_len =length(nzlist)

rowS = nzlist(3,:)*(Ll+1) + nzlist(1,:) + 1;

colS = nzlist(4,:)*(Ll+1) + nzlist(2,:) + 1;

elS = nzlist(5,:);

% sparse matrix construction from list

S = sparse(rowS,colS,elS);

% symmetrize (not all off-diagonal elements were calculated)

S = S + S’ - diag(diag(S));

%------------------------------------------------------------

% numerical diagonalization

%------------------------------------------------------------

opts.tol = 1E-6;

try
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[V, E, flag] = eigs(S, max_eig, ’sa’, opts);

catch % in case of numerical errors during symmetrization

thisw=error

S = (S+S’)/2;

[V, E, flag] = eigs(S, max_eig, ’sa’, opts);

end

numeig(k,kk,:) = diag(E)’;

% calculation of errorbars

% disp(’the squared errors in the eigenvalues are’)

sqerreig(k,kk,:) = sum((S*V)’*(S*V))-diag(E^2)’;

% save inside loop in case of catastrophy

save([’energy_N’,num2str(Nn),’_l’,num2str(Ll)], ...

’Ll’,’Nn’, ’dzlist’, ’a0list’, ’numeig’, ’sqerreig’)

end % a0 loop

%====================================================================

% outer loop over trap separation: end of loop

%====================================================================

end % dz loop

%====================================================================

% final saving of data

%====================================================================
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save([’energy_complete’,num2str(Nn),’_l’,num2str(Ll)], ...

’Ll’,’Nn’, ’dzlist’, ’a0list’, ’numeig’, ’sqerreig’)

calctime=cputime-calctime % calculation time output
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C.1.2 Subroutines

nusolve.m

function nu = nusolve(nmax, a0)

% This function defines an accurate function to solve for eigenvalues

% of nu for atoms in an isotropic harmonic trap with pseudopotential

% interaction. In this case, nmax is the number of solutions,

% including the bound state, which exists only for positive a.

% To get all the states, classify searches for zeros:

%

% | a > 0 | a < 0 |

% | (bound state) & | (no bound state)|

%-------+-------------------+-------------------+

% | | |

% |a|>1 | use cot fn. in | use cot fn. in |

% | [0,1],[1,2],.. | [-1,0],[0,1],.. |

% | | |

%-------+-------------------+-------------------+

% | | |

% |a|<1 | use tan fn. in | use tan fn. in |

% | [-1/2, 1/2],.. | [-1/2, 1/2],.. |

%-------+-------------------+-------------------+

fzopts = optimset(’fzero’);

eps = 1E-08;

boundst = 0; % number of bound states; can only be 0 or 1

if a0>0
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boundst = 1;

% find bound state

if abs(a0) < 1

nu(1) = fzero(@diffatan2a, [-2/a0^2 -0.5-eps], fzopts, a0);

else

nu(1) = fzero(@diffacota2, [-1 -0.5/a0^2], fzopts, a0);

end

end

for n = 1:1:nmax-boundst

% Use this as first guess to MATLAB’s zero finder

% Avoid going outside the interval n-1/2: n+1/2

% by using 1/a instead when |a| > 1.

if abs(a0) < 1

nu(n+boundst) = ...

fzero(@diffatan2a, [n-3/2+eps n-1/2-eps], fzopts, a0);

else

nu(n+boundst) = ...

fzero(@diffacota2, [n-2+boundst+eps n-1+boundst-eps], ...

fzopts, a0);

end

end
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diffatan2a.m

function y = diffatan2a(nu,a0)

% This function is needed for the subroutine nusolve.m.

i_asy = find(nu <-160); % use negative asymptotic form

i_neg = find((-160 <= nu) & (nu < 0.5));

i_pos = find((165 >= nu) &( nu >= 0.5));

i_big = find(nu > 165); % use positive asymptotic form

nu_asy = nu(i_asy);

nu_neg = nu(i_neg);

nu_pos = nu(i_pos);

nu_big = nu(i_big);

y(i_asy) = atan(1./sqrt(-nu_asy).*(1 - 3./(8*nu_asy) + ...

75./(384*nu_asy.^2)))- atan(2*a0);

y(i_neg) = atan(gamma(-nu_neg-1/2)./gamma(-nu_neg)) - atan(2*a0);

y(i_pos) = atan(tan(pi*nu_pos).*...

gamma(nu_pos + 1)./gamma(nu_pos + 3/2)) - atan(2*a0);

y(i_big) = atan(nu_big.^(-1/2).*(1 - 3./(8*nu_big) + ...

75./(384*nu_big.^2)).*tan(pi*nu_big)) - atan(2*a0);

% cf. M. Abramowitz and I. A. Stegun, "Handbook of mathematical

% functions", Dover, New York (1972): p. 257, equation 6.1.47
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diffacota2.m

function y = diffacota2(nu,a0)

% This function is needed for the subroutine nusolve.m.

i_neg = find(nu < -0.5);

i_pos = find((165 >=nu) & (nu >= -0.5));

i_big = find(nu > 165); % start asymptotic region (gamma(172) = NaN)

nu_neg = nu(i_neg);

nu_pos = nu(i_pos);

nu_big = nu(i_big);

y(i_pos) = atan(1./tan(pi*nu_pos).*gamma(nu_pos+3/2)./...

gamma(nu_pos + 1))- atan(1/(2*a0));

y(i_neg) = atan(gamma(-nu_neg)./gamma(-nu_neg-1/2)) - atan(1/(2*a0));

y(i_big) = atan(sqrt(nu_big).*(1 + 3./(8*nu_big) - ...

21./(384*nu_big.^2))./tan(pi*nu_big)) - atan(1/(2*a0));

% cf. M. Abramowitz and I. A. Stegun, "Handbook of mathematical

% functions", Dover, New York (1972): p. 257, equation 6.1.47
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scriptA.m

function A = scriptA(nu,a0)

% This function calculates the normalization coefficient of the

% spherical hypergeometric "Busch-basis" l=0 wave functions.

i_neg = find(nu < 0);

i_pos = find(nu >= 0);

if ~isempty(i_pos)

Psi1 = digamma(nu(i_pos)+1);

Psi3_2 = digamma(nu(i_pos) + 1.5);

A(i_pos) = sqrt(a0./((pi./(sin(pi.*nu(i_pos)).* ...

cos(pi.*nu(i_pos)))) + Psi1 - Psi3_2));

end

if ~isempty(i_neg)

Psin = digamma(-nu(i_neg));

Psinm1_2 = digamma(-nu(i_neg) - 0.5);

A(i_neg) = sqrt(a0./(Psin - Psinm1_2));

end
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gammaratio.m

function f = gammaratio(z, a, b);

% This function computes the ratio gamma(nu+a)/gamma(nu+b) for large

% values of z using the asymptotic expansion 6.1.47 of

% Abramowitz & Stegun and further terms (cf. Olver Asymptotics and

% Special functions).

% nu may be a matrix but a & b are numbers. The expansion is good

% when z >> |a|,|b|. The error scales as a-b.

% Error < 10^-8 for a = 1.5, b = 0, z = 100.

d = a-b;

f = z.^d.*(1 + d.*(a+b-1)/2./z + d*(d - 1)*(2+a*(-7+3*a) - ...

5*b+6*a*b+3*b^2)/ 24./z.^2 + ...

d*(d-1)*(d-2)*(a+b-1)*(a^2 + (-1+b)*b+a*(-3+2*b))/48./z.^3);
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digamma.m

function dg = digamma(x)

% This function evaluates the digamma function for

% positive and negative arguments.

indxn=find(x<0);

indxp=find(x>=0);

if ~isempty(indxn)

dgn = psin(x(indxn));

dgp = psi(x(indxp));

dg = [dgn dgp];

else

dg = psi(x);

end

psin.m

function pn = psin(x)

% This function evaluates the "psi" function (digamma function)

% for negative arguments.

pn = psi(1-x) + pi*cot(pi*(1-x));
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C.2 Separated and anisotropic traps with δ inter-

actions

Following Section 4.6, the relative coordinate Hamiltonian in the anisotropic case is

given by

Ĥrel =
p̂2
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Here, the “mean” frequency ω is defined by
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and the anisotropy parameter Λ is

Λ =
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. (C.7)

We represent the relative coordinate Hamiltonian in the same spherical basis as in

the isotropic case. As before, the ∆z separation term couples partial waves with

l− l′ = 0,±1. The Λ anisotropic term couples partial waves with l− l′ = 0,±2. The

additional matrix elements due to the anisotropy are given by Eq. (4.24) and (4.27)

as

〈nl| r2 |n, l + 2〉 =
1

2

√

(2n+ 2l + 3)(2n+ 2l + 5) , (C.8)
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2(n+ 1)(2n+ 2l + 5) , (C.9)
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(n+ 1)(n+ 2) (C.10)

for l ≤ 1; and
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(C.11)
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for the special case involving the irregular l = 0 functions. The main program “sep-

ard aniso trap delta.m” constructs the resulting sparse Hamiltonian matrix, which

is then diagonalized for each trap separation ∆z using the same routines as in the

isotropic case.

C.2.1 Main program

separd aniso trap delta.m

%--------------------------------------------------------------------

% Main Program: separd_aniso_trap_delta.m

%--------------------------------------------------------------------

%

% Created by ERIC E. BOLDA and RENE STOCK

% NIST, Gaithersburg and UNM, Albuquerque

%

% based on codes by ERIC E. BOLDA: May, 2002

%

% created by RENE STOCK: August, 2003

%

% last modified: April, 2005

%

% This is the main program for determining the eigenenergies of

% two atoms interacting through an s-wave pseudopotential in

% SEPARATED ISOTROPIC harmonic traps. The Hamiltonian

% is expressed in the spherical hypergeometric "Busch-basis"

% for l=0 and the regular spherical Laguerre harmonic oscillator

% basis for l>0. The resulting tri-diagonal matrix is then
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% diagonalized using the Matlab sparse matrix routine for finding

% the lowest matrix eigenvalues.

%

% The code includes a loop over both the scattering length and the

% trap separation. The calculated energy spectra (energy vs. trap

% separation for a list of scattering lengths) provides a template

% for the calculation of the self-consistent energy spectra using an

% energy-dependent scattering length, calculated for the realistic

% interaction.

%

% Note: This code only calculates m=0 levels, since only m=0

% levels are affected by the delta interaction.

%

% Note about scaling: In the main diagonalization routine

% energies are scaled to E = hbar omega,

% lengths are scaled to r0 = sqrt(hbar/(mu*omega)).

%

% In the anisotropic case omega means the mean trap frequency omega

% as defined below. Note that even the trap separation and scattering

% length are scaled to r0 defined by the mean trap frequency omega.

%--------------------------------------------------------------------

% include the following m-function subroutines

% scriptA.m with diffacota2.m, diffatan2a.m.

% nusolve.m with digamma.m, psin.m.

% gammaratio.m.

clear all;
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calctime=cputime; % calculation time for whole code

%====================================================================

% parameters

%====================================================================

%--------------------------------------------------------------------

% trap separation list

dzlist = 0:0.025:5; % measured in r_0

dzlen = length(dzlist)

%--------------------------------------------------------------------

% scattering length list

a0list0 = 0.05:0.05:2; a0list1 = 2.5:0.5:10; a0list2 = 20:10:100;

a0list=-[a0list0 a0list1 a0list2]; % measured in r_0

a0len = length(a0list)

%--------------------------------------------------------------------

% trap anisotropy:

% trap frequencies of atoms in the same well

omega_perp = 1;

omega_z_list = 4;

omlen = length(omega_z_list)

%--------------------------------------------------------------------

% max. partial wave (actual number of allowed VALUES is Ll+1)

Ll = 300;
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% max. radial wave (actual number of allowed VALUES is Nn+1)

Nn = 100;

% max. number of eigenvalues to compute for each a0, dz

max_eig = 8;

%--------------------------------------------------------------------

% allocate memory for matrix elements lists

numeig = zeros(dzlen, a0len, omlen, max_eig);

sqerreig = zeros(dzlen, a0len, omlen, max_eig);

lenzlist=Ll*(7*Nn+2)+ Nn*(2*Nn-3) + 2;

nzlist=zeros(5,lenzlist);

%====================================================================

% outer loop over anisotropy given by omega_z_list

%====================================================================

kkk=0;

for omega_z = omega_z_list

omega_z

kkk = kkk+1;

% aspect ratio = omega_z/omega_perp

A = omega_z /omega_perp;

% coefficient of potential anisotropy

C = (A^2 -1) /(A^2 +2);

% actual trap frequencies are related to C

omega = omega_perp/sqrt(1-C);
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%====================================================================

% middle loop over trap separation given in dzlist

%====================================================================

k = 0;

for dz = dzlist

dz

k = k+1;

col = 0;

%================================================================

% sparse matrix elements

%================================================================

% nzlist: create lists of non-zero elements in the form

% [l; lp; n; np; element].

%

% The matrix is symmetric: We need to calculate only off-diagonal

% elements on one side of the diagonal and symmetrize later.

%

% n_nu is the Busch solution index, which is the "analog" of n,

% such that nu(n_nu+1) -> n, when a0 -> 0-.

% The following calculation of matrix elements is separated into

% two parts, since only the l=0 matrix elements depend on the

% scattering length:
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%

% 1) regular l>=1 matrix elements (outside a0-loop)

% 2) irregular l=0 matrix elements (inside a0-loop)

%----------------------------------------------------------------

% regular matrix elements for l>=1

%----------------------------------------------------------------

% Notation: We use j instead of l in the following:

%

% Note: the vectors jn and nj are of the form with n and j:

% nj=(1_1 ... 1_j ... 1_Ll 2_1 ... 2_Ll ...

% n_1 ... n_j ... n_Ll ... Nn_1 ... Nn_Ll).

%

% Example: Nn=1, Ll=3

%

% jlist = (1 2 3)

% nlist = (0 1)

%

% nj = (0 1 0 1 0 1)

% jn = (1 1 2 2 3 3)

%

% E = 2"n" + "j" + 3/2 = 2.*nj + jn + 3/2

% E = (1 3 2 4 3 5) + 3/2

% simply replace n -> nj and j -> jn in equations

%----------------------------------------------------------------

% diagonal matrix elements (l>=1): SHO solutions
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% < n j | n j >

col = (Nn+1)*(Ll); % col: counter for matrix element list

jlist=1:1:Ll;

nlist=0:1:Nn;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,1:col)=jn;

nzlist(2,1:col)=jn;

nzlist(3,1:col)=nj;

nzlist(4,1:col)=nj;

nzlist(5,1:col)=(2*nj + jn + 3/2) + C*jn.*(jn+1)./ ...

((2*jn-1).*(2*jn+3)).*(2*nj+jn+3/2) + ...

1/2*(omega_z/omega)^2*dz^2;

col = (Nn+1)*(Ll);

%----------------------------------------------------------------

% off-diagonal matrix elements (l>=1) due to anisotropy

% < n j | n-1 j >

colbefore = col;

col = Nn*Ll + colbefore;

%jlist=1:1:Ll; % not necessary (same definition as before)

nlist=1:1:Nn;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));
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nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj-1;

nzlist(5,colbefore+1:col)=- C*jn.*(jn+1)./ ...

((2*jn-1).*(2*jn+3)).* sqrt(nj.*(nj+jn+1/2));

% < n j | n j-2 >

colbefore = col;

col = (Nn+1)*(Ll-2) + colbefore;

jlist=3:1:Ll;

nlist=0:1:Nn;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-2;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj;

nzlist(5,colbefore+1:col)=C*3*jn.*(jn-1)./ ...

(2*(2*jn-1).*sqrt((2*jn-3).*(2*jn+1))).* ...

1/2.*sqrt((2*nj+2.*jn-1).*(2*nj+2*jn+1));

% < n j | n+1 j-2 >

colbefore = col;
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col = (Nn)*(Ll-2) + colbefore;

%jlist=3:1:Ll; % not necessary (same definition as before)

nlist=0:1:Nn-1;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-2;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj+1;

nzlist(5,colbefore+1:col)=- C*3*jn.*(jn-1)./(2*(2*jn-1).* ...

sqrt((2*jn-3).*(2*jn+1))).* ...

sqrt(2*(nj+1).*(2*nj+2*jn+1));

% < n j | n+2 j-2 >

colbefore = col;

col = (Nn-1)*(Ll-2) + colbefore;

%jlist=3:1:Ll; % not necessary (same definition as before)

nlist=0:1:Nn-2;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-2;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj+2;
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nzlist(5,colbefore+1:col)=C*3*jn.*(jn-1)./(2*(2*jn-1).* ...

sqrt((2*jn-3).*(2*jn+1))).*sqrt((nj+1).*(nj+2));

%----------------------------------------------------------------

% off-diagonal matrix elements (l>=1) due to separation

% < n j | n j-1 >

colbefore = col;

col = (Nn+1)*(Ll-1) + colbefore;

jlist=2:1:Ll;

nlist=0:1:Nn;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...

length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-1;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj;

nzlist(5,colbefore+1:col)=-(omega_z/omega)^2*dz*jn.* ...

sqrt((2*nj+2*jn+1)./(2*(2*jn-1).*(2*jn+1)));

% < n j | n+1 j-1 >

colbefore = col;

col = Nn*(Ll-1) + colbefore;

%jlist=2:1:Ll; % not necessary (same definition as before)

nlist=0:1:Nn-1;

jn=reshape((jlist’*ones(1,length(nlist)))’,1, ...
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length(nlist)*length(jlist));

nj=reshape(nlist’*ones(1,length(jlist)),1, ...

length(nlist)*length(jlist));

nzlist(1,colbefore+1:col)=jn;

nzlist(2,colbefore+1:col)=jn-1;

nzlist(3,colbefore+1:col)=nj;

nzlist(4,colbefore+1:col)=nj+1;

nzlist(5,colbefore+1:col)=(omega_z/omega)^2*dz*jn.* ...

sqrt((nj+1)./((2*jn-1).*(2*jn+1)));

mark_col = col; % value for starting each nzlist in loop below

%================================================================

% inner loop over scattering length

%================================================================

kk = 0;

for a0 = a0list

a0

kk = kk + 1;

%------------------------------------------------------------

% irregular matrix elements for l=0

%------------------------------------------------------------

% calculate lowest (Nn+1) eigenvalues with n_nu=0:Nn

nu = nusolve(Nn+1, a0);
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% normalization coefficient for wave functions

scrA = scriptA(nu, a0);

% counter for nzlist

col = mark_col;

% matrix elements involving l = 0, pseudopotential solutions

for n_nu = 0:Nn

col = col+1;

% diagonal elements

nzlist(:,col) = [0; 0; n_nu; n_nu; ...

2*nu(n_nu+1) + 3/2 + 1/2*(omega_z/omega)^2*dz^2];

% off-diagonal elements due to separation

for n = 0:Nn

col = col+1;

if (n<150)

nzlist(:,col) = [0; 1; n_nu; n; ...

sqrt(2/(3*pi))*sign(a0)*(omega_z/omega)^2*dz* ...

scrA(n_nu+1)* sqrt(gamma(n+5/2)/gamma(n+1)).* ...

(1/(n-nu(n_nu+1))-1/(n+1-nu(n_nu+1)))];

else

nzlist(:,col) = [0; 1; n_nu; n; ...

sqrt(2/(3*pi))*sign(a0)*(omega_z/omega)^2*dz* ...

scrA(n_nu+1)* sqrt(gammaratio(n,5/2,1)).* ...

(1/(n-nu(n_nu+1))-1/(n+1-nu(n_nu+1)))];

end % if

end % n

% off-diagonal elements due to anisotropy

% matrixelements=10
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for n = 0:Nn

col = col+1;

if (n<150)

nzlist(:,col) = [0; 2; n_nu; n; ...

-sqrt(2/(5*pi))* sign(a0)*C*scrA(n_nu+1)* ...

sqrt(gamma(n+7/2)/gamma(n+1))*(1/(n-nu(n_nu+1)) ...

-2/(n+1-nu(n_nu+1))+ 1/(n+2-nu(n_nu+1)))];

else

nzlist(:,col) = [0; 2; n_nu; n; ...

-sqrt(2/(5*pi))* sign(a0)*C*scrA(n_nu+1)* ...

sqrt(gammaratio(n,7/2,1))*(1/(n-nu(n_nu+1)) ...

- 2/(n+1-nu(n_nu+1))+ 1/(n+2-nu(n_nu+1)))];

end %if

end % n

end % n_nu

%------------------------------------------------------------

% construction of sparse matrix

%------------------------------------------------------------

% convert lists to numerical index notation

nz_len =length(nzlist);

rowS = nzlist(3,:)*(Ll+1) + nzlist(1,:) + 1;

colS = nzlist(4,:)*(Ll+1) + nzlist(2,:) + 1;

elS = nzlist(5,:);

% sparse matrix construction

S = sparse(rowS,colS,elS);
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% symmetrize (not all off-diagonal elements were calculated)

S = S + S’ - diag(diag(S));

S = (S+S’)/2;

%------------------------------------------------------------

% numerical diagonalization

%------------------------------------------------------------

opts.tol = 1E-6;

opts.disp = 0;

try

[V, E, flag] = eigs(S, max_eig, ’sa’, opts);

catch % in case of numerical errors during symmetrization

thisw=error

S = (S+S’)/2;

[V, E, flag] = eigs(S, max_eig, ’sa’, opts);

end

numeig(k,kk,kkk,:) = diag(E)’;

% calculation of errorbars

% disp(’the squared errors in the eigenvalues are’)

sqerreig(k,kk,kkk,:) = sum((S*V)’*(S*V))-diag(E^2)’;

% save inside loop in case of catastrophy

save([’energy_aniso_N’,num2str(Nn),’_L’,num2str(Ll)], ...

’Ll’,’Nn’,’omega_perp’,’omega_z_list’,’dzlist’, ...

’a0list’,’numeig’,’sqerreig’)
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end % a0 loop

%====================================================================

% middle loop over trap separation: end of loop

%====================================================================

end % dz loop

%====================================================================

% outer loop over anisotropy: end of loop

%====================================================================

end % omega_z loop

%====================================================================

% final saving of data

%====================================================================

save([’energy_aniso_complete_N’,num2str(Nn),’_L’,num2str(Ll)], ...

’Ll’,’Nn’,’omega_perp’,’omega_z_list’,’dzlist’,’a0list’, ...

’numeig’,’sqerreig’)

calctime=cputime-calctime % calculation time output
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C.2.2 Subroutines

“separd aniso trap delta.m” uses the subroutines listed in Section C.1.2.
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C.3 Self-consistent calculation of energy spectra

The main programs discussed in Section C.1 and C.2 provide a template, E(a), for

the calculation of the self-consistent energy spectra. The following program, “ener-

gydep spectrum.m”, uses this template and the energy-dependent scattering length,

a(E), that has been calculated for the channel of interest using the multichannel

close coupling codes described in Appendix D. The self-consistent eigenvalues are

then calculated at each separation, ∆z, by finding the intersections of the two curves

a(E) and E(a).

C.3.1 Main program

energydep spectrum.m

%--------------------------------------------------------------------

%

% Created by RENE STOCK: December, 2002

%

% last modified: April, 2005

%

% This code calculates the self-consistent energy spectrum using the

% energy-dependent scattering length calculated for Cs and the

% eigenspectra (energy vs. trap separation) template that has been

% calculated for a range of scattering lengths in the program

% "separd_trap_delta"

% The scattering length and energy as calculated from the NIST close

% coupling codes are scaled in Bohr radii and muK, and need to be
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% converted to harmonic oscillator units. The scattering length is

% loaded into the main program and scaled in the subroutine

% "edependenta.m". Then, at each separation, the intersections of the

% two curves a(E) and E(a), which determine the self-consistent

% eigenvalues, are found.

%

%--------------------------------------------------------------------

% include the following m-function subroutine: edependenta.m.

clear

calctime=cputime;

%--------------------------------------------------------------------

% general parameters

%--------------------------------------------------------------------

% energy scales: recoil energy ER, temp. units in muK

% muK to ER conversion; hbar omega to ER

en_muK=1;

a_bohr=1;

en_ER=0.09915*en_muK;

nm=1./(5.29177249*10^(-2));

% optical lattice parameters (in harmonic approximation)

eta=0.25; % Lamb-Dicke parameter

en_osc=en_ER./(eta.^2); % harmonic oscillator frequency in ER
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z0=eta./(2*pi./(852*nm)); % harmonic oscillator width

% energyscales for scattering length calculation

enscale = en_osc; % harmonic oscillator frequency

z0scale = z0.*2; % characteristic length scale

% max. number of eigenvalues to compute for each a0, dz

max_eig = 2;

%--------------------------------------------------------------------

% precalculated energy spectra for scattering lengths/separation

%--------------------------------------------------------------------

load energy_dz=0_5_a=0_100.mat % load data file

[aminmat,aminindex] = min(a0list); % lowest a calculated

[amaxmat,amaxindex] = max(a0list); % largest a calculated

%--------------------------------------------------------------------

% loop over trap separation dz

%--------------------------------------------------------------------

% shorten dzlist since we are only interested in dz<3

dz3=find(dzlist==3);

dzlist=dzlist(1:dz3);

% allocate memory

eigen=zeros(length(dzlist),max_eig);

% loop
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for dzindex=1:length(dzlist)

dz=dzlist(dzindex)

%----------------------------------------------------------------

% loop over number of eigenvalues to be calculated

%----------------------------------------------------------------

for k=1:max_eig % number of energy eigenvalues calculated

%------------------------------------------------------------

% scattering length evaluated for energy around eigenvalues

% set de

de=0.0001;

% set emin

if dz<2.5

emin=floor(min(numeig(dzindex,:,k))/de)*de-2*de;

if emin<-1

emin=-1;

else

end

else

% emin for larger dz should be bigger than one

emin=floor(min(numeig(dzindex,:,k))/de)*de-2*de;

if emin<1

emin=1;

else
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end

end

% set emax

emax=ceil(max(numeig(dzindex,:,k))/de)*de+10*de;

energy=emin:de:emax;

% scattering length calculation for 133Cs

a = edependenta(energy-(dz^2)/2,enscale,z0scale);

%------------------------------------------------------------

% interpolation of scattering length calculation

% a vector

da=0.0001;

amin=min(ceil(min(a)/da)*da);

amax=floor(max(a)/da)*da;

if amax > amaxmat

error_atoobig=amax

amax = amaxmat;

else

end

avec=amin:da:amax;

% interpolate energy spectra

edata=interp1(a0list,numeig(dzindex,:,k),avec,’linear’);

% interpolate energy dep scattering length

escatt=interp1(a,energy,avec);
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%------------------------------------------------------------

% find root of escatt-edata == 0

equation=escatt-edata;

le=length(equation);

% multiply each value by adjacent value: this multiplication

% is only negative around zero!

eq=equation(1:le-1).*equation(2:le);

eqdiff=abs(equation(1:le-1)-equation(2:le));

% condition for zero’s without singularities

j=find(eq<0 & eqdiff< max(equation));

% root of equation (interpolated)

aroot=-(avec(j+1)-avec(j))./(equation(j+1)-equation(j)).*...

equation(j) + avec(j);

% selfconsistent eigenvalue

eigenval(k)=interp1(avec,edata,aroot,’linear’);

end % k

eigen(dzindex,1:k)=eigenval;

end % dzindex

%--------------------------------------------------------------------

% save and plot

%--------------------------------------------------------------------
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save([’eigenspectrum_Cs133_eta’,num2str(eta),],’dzlist’, ’eigen’)

plot(dzlist,eigen(:,1),’b’,dzlist,eigen(:,2),’b’,’Linewidth’,2)

set(gca,’FontSize’,24)

axis([0 3 -0.1 2.6])

C.3.2 Subroutines

edependenta.m

function a = edependenta(e,enscale,z0scale)

% This function loads the realistic energy-dependent scattering

% length for the scattering channel in question, which has been

% calculated using the NIST close-coupling code. The scattering

% length and energy as calculated from the codes are scaled in

% Bohr radii and muK, and need to be converted to harmonic

% oscillator units as given by the scales "enscale" and "z0scale."

% The energy vector "e" gives the energies for which the

% scattering length has to be calculated (via interpolation).

% load scattering length

load scattlength_all

% convert scattering length and energy to harmonic oscillator units

ascatt=a0./z0scale;

en=energy./enscale;

% interpolate scattering length for energies in question

a=interp1(en,ascatt,e,’linear’);
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Numerical calculation of 133Cs

scattering properties

D.1 Close-coupling codes

The Mies-Julienne-Sando (NIST) close-coupling code has been introduced in Sec-

tion 5.2.1. The code solves the close-coupled set of Eqs. (5.8) for realistic 133Cs

interaction potentials in the presence of a magnetic field. The realistic interatomic

interaction potential can be constructed using a different choice of basis set, as pre-

sented in Sections 5.1.1 and 5.2.1. The wave function is then propagated from the

left starting point to the right end point using either a Numerov [86, 87] or a Gor-

don propagation algorithm [88, 89]. At the long-range right stopping point, rfinal,

the scattering boundary conditions are determined for both open and closed chan-

nels in the form of the logarithmic derivative matrix. The code allows the option

of calculating the scattering K-matrix and the S-matrix for open channels only, the

scattering cross section, and scattering length. The NIST close-coupling code is writ-

ten in a combination of Fortran 77 and Fortran 90, and is controlled by various input
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“cards”. A more detailed description of the codes can be found in the documentation

“couple doc.html”, which accompanies the codes.

As demonstrated in Section 5.2, for a detailed modeling of the atomic interaction

in the context of the pseudopotential method, we need to obtain both the open-

channel as well as the closed-channel part of the scattering K-matrix. Since the

close-coupling code includes only open channels in the calculation of the K-matrix,

we need to extend the calculation of the K-matrix to include closed channels. This

calculation is broken down into two parts: We use the NIST Fortran code to con-

struct the interaction potential, propagate the wave functions for all channels using

the renormalized Numerov method, and calculate the logarithmic derivative matrix

for all channels. A small modification of the codes allows us to save the logarithmic

derivative matrix to the file “logderivative cc.dat”, which is used in a subsequent

Matlab program. The Matlab code extends the calculation of the K-matrix to closed

channels and allows us to calculate the numerical analytic continuation of the scat-

tering length to negative energies for the channel of interest.

In the following, we will first discuss the input file, which controls the NIST

Fortran codes, and the shell script that is necessary to run the Fortran codes for

multiple energies. We will then discuss the extension of the K-matrix to closed

channels and its implementation in the Matlab code “kmat.m”.

D.1.1 Close-coupling codes: Input file

The NIST Fortran codes were compiled on an Apple Power Mac Dual G5 2.5 GHz

processor using the Absoft 9.0 Fortran compiler for Mac OS X. The compiled main

program, “Cs magn.e”, is run in a UNIX terminal via “Cs magn.e < input.txt >

out.txt”. The file “input.txt” includes different cards that call the different subrou-

tines of the main program. The different parameters and calculation results are saved
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to the file “out.txt”. Here, we will discuss the cards and initialization values that

are important for our calculation of the scattering properties. A detailed discussion

of the different cards and input parameters can be found in the code description

“couple doc.html”.

Input card: OUT(IOFLAG(I),I=1,35)

The input card OUT is used to control the print output to the file “out.txt”. Some

flags for I = 1, 35 are operative in both the Gordon and Numerov sections of the

code. In these cases, a value of 1 turns on print in the Gordon sections only, a value

of 2 turns on print in the Numerov sections only, and a value of 3 turns on print in

both Gordon and Numerov sections. The example input file below uses the following

output options: IOFLAG (5) results in printout of the channel opening and clos-

ing information, as well as the output of the logarithmic derivative matrix at rfinal.

IOFLAG (6) and IOFLAG (7) control the output of the K-matrix and S-matrix.

IOFLAG (19) turns on the modified part of the close-coupling codes. If IOFLAG

(19) ≤ 1, then the scattering energy, logarithmic derivative matrix, and other im-

portant parameters are saved to the files “energy cc.dat”, “logderivative cc.dat” and

“parameters cc.dat”, respectively. IOFLAG (20) and IOFLAG (25) control the out-

put of the potential matrix and the output of scattering properties for diagnostic

purposes.

Input card: REP NREP

The flag NREP selects the basis used to represent the output K, S, and T matrices.

If NREP = 0 (default), the channel state basis {ψγ} of the ordered diagonalized

representation is selected. If NREP = 1, the {ψα} basis, in which the potential

matrix is constructed, is selected. If NREP = 2, a user defined basis is chosen, which
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in our case is the Hund’s case (m) basis [85], defined by the two-atom uncoupled

basis states dressed by the magnetic field.

Input card: ROT FJMIN FJMAX FJSTEP

This card reads the range of the total projection angular momentum quantum num-

ber mtotal to loop over, namely from FJ = FJMIN to FJMAX by steps of FJSTEP. In

the case of the |ap〉 channel, the “in” channel projection quantum number is FJMIN

= FJMAX = 7.

Input card: POT ...

This card causes the subroutine POT to be called with the following input param-

eters. The card sets the range of partial waves included in the calculation, e.g.

from l = 0 (LMIN0=0) to l = 4 (LMAX0=4). LDRESS=.TRUE. chooses the two-

atom uncoupled dressed state basis. IDENT=.TRUE. is chosen for identical atoms.

BFIELD=0.0 selects the magnetic field strength in units of Gauss. chA zero=‘a’,

chB zero=‘p’, ezero=0.0d0 choses the zero of energy to be the energy of the |ap〉
channel. The remaining parameters include information for the definition of the Cs

interaction potential.

Input card: NUMEROV RN1 RN2 DRN NDIM ISM KSRC BCN

This card reads the parameters used to control the renormalized Numerov propaga-

tion algorithm. The propagation is done from RN1 to RN2 in steps of DRN. The

remaining parameters are set to their standard values, as chosen by the NIST group.

Note: The starting boundary condition for the propagated renormalized Numerov

RN matrix is independent of representation and is taken to be RN = BCN × UNIT.
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The calculation results are completely insensitive to the magnitude of BCN, since a

different boundary condition only changes the normalization of the wave functions.

Input card: ER E ...

This card causes a close-coupling calculation to be carried out at energy E using

the renormalized Numerov algorithm and the propagation parameters set by the

NUMEROV card.

Input card: END

The END card in the input deck causes the program to stop. This card is normally

the last one, although it can be placed anywhere in the input stream. Cards after

the END card are ignored.

Example file: input.txt

C Input file for NIST Cs_2 Magnetic Field Code

C Numerov propagation only

C

C 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

C 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

OUT 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 4

REP 2

ROT 7 7 1

PARITY 1

POT SSMAG

&magnet
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LMIN0=0 LMAX0=4 LDRESS=.TRUE. IDENT=.TRUE. BFIELD=0.0

chA_zero=’a’ chB_zero=’p’ ezero=0.0d0

/

&Dipolar

A2NDORD_SO = -5.8595500000000005E-002,

B2NDORD_SO = 0.8299999999999999 ,

R_2NDORD_SO = 10.00000000000000 ,

SCALE_SPSP = 1.000000000000000

/

&ADJUST_POT

SHIFT1 = 1.8916058999999999E-004,

SHIFT3 = 2.9065349999999999E-005,

C6 = 6859.278890000000 ,

C8 = 860000.0000000000

/

NUMEROV 3.0 1500 0.001 6 2 0 1.0E6

ER 0.10D0/3.1577325D11

C 1D0/3.1577325D11 is 1 muK

&NML_XSCT_SS_B

File_Label=’2ndSO_max’

File_DIR=’.’

/

END
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D.1.2 Close-coupling codes: Shell script

The NIST close-coupling code can be run multiple times for a range of energies (or

a range of rfinal values) using a shell script via the UNIX-terminal command “sh

run codes.scrp”. An example of a shell script, which runs the compiled main code

(“Cs magn.e”) several times for different energies, is shown in the following. At each

step, the command “sed” modifies the input file “input.txt” inserting a different

value for the energy. If IOFLAG(19) is set in the input card OUT, the results of

the calculation are appended each time to the logarithmic derivative and parameter

files, which then can be used for further calculations.

Example file: run codes.scrp

#! /bin/sh

i=1

while [ $i -lt 501 ]

do

aa=‘echo " -0.01 * $i" | bc‘

echo $aa

sed "s/ER 0.10/ER $aa/" input.txt >input.temp

Cs_magn.e <input.temp >temp.o

i=‘echo "$i + 1" | bc‘

done
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D.2 Numerical code for calculation of the closed-

channel K-matrix and scattering length ma-

trix

The K-matrix can be determined from the logarithmic derivative matrix mγ′,γ(rfinal)

following Eq. (5.54) via

Kγ′,γ =
[

Nγ′(rfinal)mγ′,γ(rfinal)−N ′
γ′(rfinal)

]−1 [
Jγ′(rfinal)mγ′,γ(rfinal)− J ′

γ′(rfinal)
]

.

(D.1)

Here, J ′
γ′(rfinal) and N ′

γ′(rfinal) are the derivatives of the reduced spherical Bessel

functions, Jγ′ and Nγ′ , at r = rfinal. As argued in Section 5.2, we need to extend

the K-matrix to include closed channels, since the NIST code includes only open

channels in the calculation of the K-matrix. This can be achieved by continuing the

reduced spherical Bessel functions J ′
γ′(krfinal) and N ′

γ′(krfinal) to negative energies by

using a purely imaginary wave vector, k = iκ, and allowing a complex argument of

the Bessel functions. The K-matrix then defines the scattering length matrix that is

appropriate for use in the generalized multichannel pseudopotential according to

al′+l′′+1
γ′′,γ′ = Kγ′′,γ′k

−l′−1/2
γ′ k

−l′′−1/2
γ′′ , (D.2)

where kγ are the channel state wave vectors.

The Matlab code, “kmat.m”, uses the logarithmic derivative matrix, which is

obtained from the close-coupling codes, and calculates the K-matrix according to

Eq. (D.1). Furthermore, the code calculates the scattering length matrix element for

the channel of interest using Eq. (D.2).
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D.2.1 Main program

kmat.m

%--------------------------------------------------------------------

% Main Program: kmat.m

%--------------------------------------------------------------------

%

% Created by RENE STOCK, UNM: October, 2004

%

% last modified: April, 2005

%

% This is the main program for calculating the K-matrix and

% scattering length matrix for open and closed channels. The program

% uses the logarithmic derivative matrix calculated in the NIST

% close-coupling codes.

%

% The NIST close-coupling (CC) code propagates the multichannel

% wave function for a given scattering energy E using a Numerov

% method from an inner radius r_initial to a final radius r_final.

% At r_final, the code determines the logarithmic derivative matrix

% for the (asymptotic) wave functions for open and closed channels.

% The CC code has been modified to output the necessary data to

% the following files:

%

% energy_cc.dat: List of scattering energies E, for which the

% CC calculation has been performed.

% logarithmic_cc.dat: Logarithmic derivative matrix calculated at

% r_final for the list of scattering energies.
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% parameters_cc.dat: List of other important parameters

% (rfinal, l quantum numbers, energy E_gamma,

% k-vector k_gamma, Bessel function argument

% for each participating channel, additional

% values for test and diagnostics).

% kmatrix_cc.dat: OPEN CHANNEL part of the K-matrix, calculated

% in the CC code.

%

% Note: This code calculates the K-matrix for open channels (similar

% to the CC code) and closed channels close to dissociation. Lower

% lying closed channels are ignored.

%

%--------------------------------------------------------------------

% include the following m-function subroutines

% sphericalbesselj.m, sphericalbessely.m

% dsphericalbesselj.m, dsphericalbessely.m

clear

calctime=cputime;

%--------------------------------------------------------------------

% NIST close-coupling code calculations

%--------------------------------------------------------------------

% read the nist data from files

load energy_cc.dat
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load logderivative_cc.dat;

load parameters_cc.dat;

load kmatrix_cc.dat;

% read energy list

energy=energy_cc(:,1)/0.3166829362525166D-11; % energy in muK

rf=energy_cc(:,2); % list of rfinal

ntot=energy_cc(:,3); % number of participating channels at each E

a0=energy.*0; % allocate memory for a0

% make sure ntot is the same for all energies

diff=ntot(1)*(ntot./ntot)-ntot;

if max(abs(diff))>0.5

error=’number of participating channels does not match’

else

end

% create index for parameter_cc.dat file

nindex=ntot;

for m=2:length(ntot)

nindex(m)=nindex(m-1)+ntot(m);

end

%--------------------------------------------------------------------

% loop over list of energies (or alternatively rf)

%--------------------------------------------------------------------

% loop over energy or rf
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% for n=1:length(rf) % alternative loop over rfinal

for n=1:length(energy)

%----------------------------------------------------------------

% load remaining NIST parameters

parameters=parameters_cc((nindex(n)-ntot(n)+1):nindex(n),:);

logderivative=logderivative_cc(n,:);

kmatrix=kmatrix_cc(n,:);

% contents of parameter file

rfinal=parameters(:,1); % list of rfinal values

lvec=parameters(:,2); % list of partial wave l values

e0vec=parameters(:,3); % energy of hyperfine states

kvec=parameters(:,4); % k-vector

z=rfinal.*kvec; % Bessel argument (z=kvec*rfinal)

zalt=parameters(:,5); % z calculated in NIST codes

% logderivative file

% The log-derivative matrix of size (ntot x tot) is arranged in

% rows of length ntot^2 in the file logderivative_cc.dat. Each

% row corresponds to E from the energy list. The following

% command reshapes the rows back into matrix form

logder=reshape(logderivative’,ntot(n),ntot(n))’;

%----------------------------------------------------------------

% define open and closed channels
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open=find(e0vec>0);

closed=find(e0vec<=0);

nopen=length(open); % number of open channels

kvec(closed)=i*kvec(closed); % kvec is imag. for neg. energies

z(closed)=i*z(closed); % z is imag. for neg. energies

%----------------------------------------------------------------

% construction of Besselvector at radius rfinal

%----------------------------------------------------------------

% allocate memory for reduced Bessel functions and derivatives

xjl=0.*z;

xyl=0.*z;

dxjl=0.*z;

dxyl=0.*z;

xjl(open)=z(open).*sphericalbesselj(lvec(open),z(open)) ...

./kvec(open);

xyl(open)=-z(open).*sphericalbessely(lvec(open),z(open)) ...

./kvec(open);

dxjl(open)=(sphericalbesselj(lvec(open),z(open)) ...

.*(lvec(open)+1)-z(open) ...

.*sphericalbesselj(lvec(open)+1,z(open)));

dxyl(open)=(-sphericalbessely(lvec(open),z(open)) ...

.*(lvec(open)+1)+z(open) ...

.*sphericalbessely(lvec(open)+1,z(open)));
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xjl(closed)=z(closed) ...

.*real(sphericalbesselj(lvec(closed),z(closed))) ...

./ kvec(closed);

xyl(closed)=-z(closed).*i ...

.*imag(sphericalbessely(lvec(closed),z(closed))) ...

./kvec(closed);

dxjl(closed)=(real(sphericalbesselj(lvec(closed),z(closed))) ...

.*(lvec(closed)+1)-z(closed).*i ...

.*imag(sphericalbesselj(lvec(closed)+1,z(closed))));

dxyl(closed)=(-i ...

.*imag(sphericalbessely(lvec(closed),z(closed)))...

.*(lvec(closed)+1)+z(closed) ...

.*real(sphericalbessely(lvec(closed)+1,z(closed))));

% codes breaks down for very low lying closed channels

% (xjl -> Inf)

reg=find(xjl<Inf);

logder=logder(reg,reg);

xjl=xjl(reg);

xyl=xyl(reg);

dxjl=dxjl(reg);

dxyl=dxyl(reg);

e0vec=e0vec(reg);

open=find(e0vec>0);

closed=find(e0vec<=0);

%----------------------------------------------------------------

211



Appendix D. Numerical calculation of 133Cs scattering properties

% calculation of K-matrix

%----------------------------------------------------------------

dum1=(logder.*(ones(length(reg),1)*transpose(xjl)))-diag(dxjl);

dum2=-(logder.*(ones(length(reg),1)*transpose(xyl)))+diag(dxyl);

dum2=inv(dum2);

% The multichannel K-matrix has four blocks

% kopen, koc, kco, kclosed

kmatrixcalc=dum2*dum1;

kclosed=i*imag(kmatrixcalc(closed,closed));

kopen=real(kmatrixcalc(open,open));

koc=kmatrixcalc(open,max(open)+1:length(kmatrixcalc));

kco=kmatrixcalc(max(open)+1:length(kmatrixcalc),open);

kvecopen=kvec(open);

kvecclosed=kvec(closed);

% scattering length matrix element for channel of interest

a0(n)=-kclosed(1,1)/kvecclosed(1);

end

[energy,I]=sort(energy);

a0=a0(I);

%--------------------------------------------------------------------

% Tests for open part of K-matrix: Compare to NIST code calculation

%--------------------------------------------------------------------
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%test1=xjl-parameters(open,6);

%test2=xyl-parameters(open,7);

%test3=xjl-xjlalt;

%test4=xyl-xylalt;

%test5=xjlalt-parameters(open,6);

%test6=xylalt-parameters(open,7);

%test7=dxjl-parameters(open,8);

%test8=dxyl-parameters(open,9);

%kmatrix=reshape(kmatrix,nopen,nopen)’;

%test9=(kmatrixcalc(open,open)./kmatrix)-1;

%--------------------------------------------------------------------

% Plot and Save

%--------------------------------------------------------------------

% plot(energy,a0,’r’)

save(’scattlength’,’a0’,’energy’)

calctime=cputime-calctime
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Appendix D. Numerical calculation of 133Cs scattering properties

D.2.2 Subroutines

sphericalbesselj.m

function b = sphericalbesselj(nu,z)

% SPERICALBESSELJ(nu,z) spherical bessel function

% (of the first kind)

%

% nu bessel function index

% z (spatial) coordinate

b=sqrt(pi./(2*z)).*besselj(nu+1/2,z);

sphericalbessely.m

function b=sphericalbessely(nu,z)

% SPERICALBESSELY(nu,z) spherical bessel function

% (of the second kind)

%

% nu bessel function index

% z (spatial) coordinate

b=sqrt(pi./(2*z)).*bessely(nu+1/2,z);
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Appendix D. Numerical calculation of 133Cs scattering properties

dsphericalbesselj.m

function d = dsphericalbesselj(nu,z)

% DSPERICALBESSELJ(nu,z) first order derivative of the

% spherical bessel function SPHERICALBESSELJ with respect to z

%

% nu bessel function index

% z (spatial) coordinate

d=1/(2*nu+1)*(nu*sphericalbesselj(nu-1,z) ...

- (nu+1)*sphericalbesselj(nu+1,z));

dsphericalbessely.m

function d = dsphericalbessely(nu,z)

% DSPERICALBESSELY(nu,z) first order derivative of the

% spherical bessel function SPHERICALBESSELY with respect to z

%

% nu bessel function index

% z (spatial) coordinate

d=1/(2*nu+1)*(nu*sphericalbessely(nu-1,z) ...

- (nu+1)*sphericalbessely(nu+1,z));
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Rev. A 62, 051801 (2000).

[42] S. Peil, J. V. Porto, B. L. Tolra, J. M. Obrecht, B. E. King, M. Subbotin, S. L.
Rolston, and W. D. Phillips, Phys. Rev. A 67, 051603(R) (2003).

[43] P. Rabl, A. J. Daley, P. O. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev. A
91, 110403 (2003).

[44] P. J. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 85, 2721 (2000).
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