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Exercises for session 2 (June 12th)

Exercises taken (with modifications) from B. Hall - Lie Groups, Lie Algebras and Representations: An

Elementary Introduction. Springer – Graduate Texts in Mathematics

Exercise 1. Directly verify the following theorem for the case of SU(n)

Theorem: Let G be a matrix Lie group with Lie algebra g. Let X, Y be elements of g and
A an element of G. Then

a. AXA−1 ∈ g

b. sX ∈ g, for all real numbers s

c. X + Y ∈ g

d. [X, Y ] ∈ g

Exercise 2: Adjoint mapping. Let G be a matrix Lie group, with Lie algebra g. Then,
for each A ∈ G, define a linear map AdA : g → g by the formula AdA(X) = AXA−1.
This also implies the existence of an associated real linear map adX(Y ) = [X, Y ].

a. Show by induction that (adX)m(Y ) =
∑m

k=0

(
m
k

)
XkY (−X)m−k. Alternatively, just

convince yourself of the result by direct calculation up to m = 3.

b. Prove that eadX (Y ) = eXY e−X = Adex(Y )

c. Show that adX ([Y, Z]) = [adX(Y ), Z] + [Y, adX(Z)]

Exercise 3: SU(2) and SO(3). In this (longer) exercise we will explore the connection
between the groups SU(2) and SO(3) and the corresponding Lie algebras su(2) and so(3).
In particular we will see that the groups are connected by a homomorphism, while the
algebras are actually isomorphic.

Part A: Lie algebra homomorphisms. Let g and h be matrix Lie algebras. A linear map
φ : g → h is a Lie algebra homomorphism if φ ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g.
If, in addition, φ is also one-to-one, then φ is called a Lie algebra isomorphism.

a. Write down the most general form of the elements of so(3) and su(2) and from them
derive a basis for each of the spaces.

b. Show that su(2) and so(3) are isomorphic. In order to do that, construct the
injective map φ that connects both spaces (since they are linear, we can define φ by
its action on a basis).
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Part B: Lie group homomorphisms. Let G and H be matrix Lie groups. A Lie group
homomorphism is a map Φ : G → H such that Φ(g1g2) = Φ(g1)Φ(g2) for all g1, g2 ∈ G1.
If, in addition, Φ is also one-to-one2, then Φ is called a Lie group isomorphism.

Let G = SU(2) and consider the space V of all 2 × 2 complex matrices which are
hermitian and have zero trace. Of course, the Pauli matrices form a basis of V:

A1 =

(
0 1
1 0

)
A2 =

(
0 −i
i 0

)
A3 =

(
1 0
0 −1

)
(1)

With respect to the Hilbert-Schmidt inner product 〈A,B〉 = 1
2
Tr(AB), the set {A1, A2, A3}

is orthonormal. Since V is a real vector space, we can then identify it with R3:

(x1, x2, x3)→ x1A1 + x2A2 + x3A3 (2)

a. Let U ∈ SU(2) and A ∈ V. Show that UAU−1 ∈ V.

b. Consider the linear map ΦU(A) : V→ V, ΦU(A) = UAU−1.

(a) Show that ΦU1U2 = ΦU1ΦU2 .

(b) Show that ΦU is an element of O(3). Recalling Ex. 2. a. from Session 1,
this can proven by showing that ΦU leaves invariant the inner product defined
above (i.e. that ΦU is an orthogonal transformation of V.)

(c) From this conclude that Φ : SU(2)→ O(3) is a Lie group homomorphism.

c. Remembering Ex. 4 from Session 1, construct the actual map Φ(α, β) that takes an
element U(α, β) of SU(2) to an orthogonal 3× 3 matrix. We can do this by acting
on the basis elements of V with a generic U

d. The kernel of a group homomorphism Φ : G→ H is defined as

ker(Φ) = {g ∈ G : Φ(g) = eH} , (3)

where eH is the identity element of H. Show that ker(Φ) = {−I, I} ' Z2. Note that
since the kernel is not trivial, then Φ is not a Lie group isomorphism.

1... and Φ is continuous
2... and Φ−1 is continuous

https://sites.google.com/view/pablopoggi/summer-2019?authuser=0

