3.4 10 Maximal violation of the CHSH Bell inequality. Consider two qubits, \(P \) and \(Q \). Let \(A = \sigma_P \cdot a \), \(B = \sigma_Q \cdot b \), \(C = \sigma_P \cdot c \), and \(D = \sigma_Q \cdot d \), where \(a \), \(b \), \(c \), and \(d \) are unit vectors in three dimensions. We omit the subscripts \(P \) and \(Q \) on the Pauli operators in the following because ordering in tensor products indicates which system the Pauli operators apply to, but you should feel free to re-introduce these labels whenever it clarifies things. Now let

\[
B = A \otimes B + C \otimes B + C \otimes D - A \otimes D
\]

\[
= \sigma \cdot a \otimes \sigma \cdot (b - d) + \sigma \cdot c \otimes \sigma \cdot (b + d)
\]

\[
= |b - d| \sigma \cdot a \otimes \sigma \cdot f + |b + d| \sigma \cdot c \otimes \sigma \cdot g
\]

be the Bell operator. The quantity we called \(S \) in our discussion of the CHSH inequality is the expectation value of the Bell operator, i.e., \(S = \langle B \rangle \). In the final form of the Bell operator, we introduce unit vectors \(f \) and \(g \), which lie along the directions of \(b - d \) and \(b + d \).

(a) Show that \(|S| = |\langle B \rangle| \leq 2\sqrt{2} \). This result, called T’sirelson’s inequality, determines the maximal violation of the CHSH Bell inequality.

(b) Find the conditions for equality in T’sirelson’s inequality. (Warning: This part is hard, which is probably why it is not included in Nielsen and Chuang’s Problem 2.3, which suggests a less efficient way of proving the T’sirelson bound.)