7.1 Cloning and the isotropic POVM. The isotropic POVM for a D-dimensional Hilbert space has a POVM element, $dE_{|\phi\rangle} = \alpha |\phi\rangle \langle \phi | d\Pi_{|\phi\rangle}$, for every ray $|\phi\rangle$ in projective Hilbert space, where $d\Pi_{|\phi\rangle}$ is the unitarily invariant measure on projective Hilbert space and α is a positive constant, thus implying that all outcomes are equally weighted. The POVM satisfies a completeness relation

$$I = \int dE_{|\phi\rangle} = \alpha \int d\Pi_{|\phi\rangle} |\phi\rangle \langle \phi | .$$

If the system is in state ρ, the probability to get outcome $|\phi\rangle$ in a measurement of the isotropic POVM is

$$dp(|\phi\rangle | \rho) = \text{tr}(\rho dE_{|\phi\rangle}) = \alpha d\Pi_{|\phi\rangle} \langle \phi | \rho | \phi \rangle .$$

To do this problem, we need to be able to do at least one integral over the invariant measure. The unitarily invariant line element on projective Hilbert space, called the Fubini-Studi metric, measures lengths in terms of Hilbert-space angle: the distance $d\gamma$ between a normalized vector $|\phi\rangle$ and a nearby normalized vector $|\phi'\rangle = |\phi\rangle + |d\phi\rangle$ is given by $\cos d\gamma = |\langle \phi | \phi' \rangle| = |1 + \langle \phi | d\phi \rangle|$. Hilbert-space angle is not changed by global phase changes, confirming that we are dealing with rays in projective Hilbert space. The Fubini-Studi line element is given by

$$d\gamma^2 = \sin^2 d\gamma = 1 - \cos^2 d\gamma = -2\text{Re}(\langle \phi | d\phi \rangle) - |\langle \phi | d\phi \rangle|^2 .$$

Normalization of $|\phi'\rangle$ requires that

$$0 = \langle \phi' | \phi' \rangle - 1 = 2\text{Re}(\langle \phi | d\phi \rangle) + \langle d\phi | d\phi \rangle ,$$

which gives

$$d\gamma^2 = \langle d\phi | d\phi \rangle - |\langle \phi | d\phi \rangle|^2 = \langle d\phi | d\phi \rangle - (\text{Im}(\langle \phi | d\phi \rangle))^2 = \langle d\phi_\perp | d\phi_\perp \rangle ,$$

where $|d\phi_\perp\rangle = |d\phi\rangle - |\phi\rangle \langle \phi | d\phi \rangle$ is the projection of the small displacement $|d\phi\rangle$ orthogonal to $|\phi\rangle$.

The normalized vectors in a D-dimensional Hilbert space make up the sphere of unit radius, S_{2D-1}, in $2D$ real dimensions. The contribution $\langle d\phi | d\phi \rangle$ to the Fubini-Studi line element is the standard metric on this unit sphere. The quantity $\langle \phi | d\phi \rangle$ is the component of the small displacement along $|\phi\rangle$: the real part describes changes in normalization, and the imaginary part describes changes in phase. The real part disappears from the line element because of the normalization constraint; the square of the imaginary part is subtracted away to remove the contribution of phase changes, because a global phase change does not change the Hilbert-space angle between two vectors.
Given a particular normalized vector $|\psi\rangle$, any other normalized vector can be written as

$$|\phi\rangle = e^{i\delta}(\cos \theta |\psi\rangle + \sin \theta |\chi\rangle) ,$$

where δ is a global phase, θ is a “polar angle” in the range $0 \leq \theta \leq \pi/2$, and $|\chi\rangle$ is a normalized vector orthogonal to $|\psi\rangle$. We can get rid of the global phase freedom by choosing $\delta = 0$, thus working with rays in projective Hilbert-space. A small change in $|\phi\rangle$ takes the form

$$|d\phi\rangle = d\theta(-\sin \theta |\psi\rangle + \cos \theta |\chi\rangle) + \sin \theta |d\chi\rangle ,$$

which gives

$$\langle \phi |d\phi\rangle = \sin^2 \theta \langle \chi |d\chi\rangle ,$$

$$\langle d\phi |d\phi\rangle = d\theta^2 + \sin^2 \theta \langle d\chi |d\chi\rangle .$$

The resulting line element is

$$d\gamma^2 = d\theta^2 + \sin^2 \theta \left(\langle d\chi |d\chi\rangle - \sin^2 \theta |\langle d\chi |d\chi\rangle|^2\right)$$

$$= d\theta^2 + \sin^2 \theta \left(\langle d\chi_{\perp} |d\chi_{\perp}\rangle + \cos^2 \theta |\langle \chi |d\chi\rangle|^2\right) ,$$

where $d\chi_{\perp} = |d\chi\rangle - |\chi\rangle \langle \chi |d\chi\rangle$ is the projection of $|d\chi\rangle$ orthogonal to $|\chi\rangle$.

The line element $\langle d\chi |d\chi\rangle - \sin^2 \theta |\langle \chi |d\chi\rangle|^2 = \langle d\chi_{\perp} |d\chi_{\perp}\rangle + \cos^2 \theta |\langle \chi |d\chi\rangle|^2$ is the standard metric on the unit sphere, S_{2D-3}, in $2D - 2$ real dimensions, except that along one real dimension, corresponding to phase changes of $|\chi\rangle$, lengths are scaled by a factor $\cos \theta$. The $\sin^2 \theta$ in the line element means that lengths along all $2D - 3$ real dimensions of S_{2D-3} are scaled by a factor of $\sin \theta$. Thus the integration measure that goes with the Fubini-Studi metric is

$$d\Gamma|\phi\rangle = \sin^{2D-3} \theta \cos \theta \ d\theta \ dS_{2D-3} ,$$

where dS_{2D-3} is the standard measure on the unit sphere S_{2D-3}. This form of the integration measure is useful for doing integrals over functions of $|\langle \phi |\psi\rangle| = \cos \theta$.

In doing this problem, you should never have to calculate an explicit form for the area of a sphere. Instead, the area S_{2D-3} of S_{2D-3} can be left as a normalization constant, whose value cancels out of the ultimate answer to part (c).

(a) Using the completeness relation, determine the value of the positive constant α.

(b) Find the value of the integral

$$\int d\Gamma|\phi\rangle |\langle \phi |\psi\rangle|^2 .$$

(c) One strategy for approximate cloning of an arbitrary state $|\psi\rangle$ is to measure the isotropic POVM and then make copies of the result $|\phi\rangle$. Find the average squared fidelity of the copies.