Phys 522: Quantum Mechanics II

Lecture 23 Introduction to perturbation theory: Magnetic Resonance

We have focused this semester on kinematics, the structure of matter as described by the energy levels. We know want to move on dynamics, the time evolution of quantum system. In particular, we are interested in dynamics generated when a system is driven by an external field, e.g. absorption or emission of light by an atom. Of central importance is the phenomenon of resonance, whereby a the external force oscillates at some frequency that is close to a natural oscillation frequency of system oscillated with its binding forces. The amazing thing about resonance is that even when the applied force is tiny compared to the binding force, it can have profound dynamical effect on the system when the applied frequency is close to the binding frequency (think Tacoma bridge). Our goal is to understand resonance in quantum mechanics.

The starting by in time-dependent perturbation theory. The generic form of the Hamiltonian is

$$\hat{H}(t) = \hat{H}_0 + \hat{H}_{int}(t)$$

Where \hat{H}_0 defines the energy levels of system, and $\hat{H}_{int}(t)$ describes its interaction with an externally applied force. The interaction is explicitly time-dependent because it is a functional of a time dependent parameter, e.g. an oscillating electromagnetic field that we treat classically. As in time-independent perturbation theory, $\hat{H}_{int}(t)$ is assumed to be "small" compared to \hat{H}_0. Nonetheless, it can have profound effect on the dynamics due to resonance. In particular, if \hat{H}_0 has two energy levels $|1\rangle$, $|2\rangle$, with Bohr frequency $\omega_{12} = \frac{E_1 - E_2}{\hbar}$ associated with the energy-level difference, then when $\hat{H}_{int}(t)$ oscillates as a frequency ω close to ω_{12}, it have drive resonant absorption and emission between the levels.
Magnetic Resonance

A key paradigm that exemplifies the phenomenon of resonance in quantum mechanics is magnetic resonance.

- Apply a strong magnetic field \mathbf{B}_0 along some axis: Define the "quantization axis" z: $\mathbf{B}_0 = B_{0z} \mathbf{e}_z$

 $$\hat{H}_0 = -\mu \cdot \mathbf{B}_0 = -\hbar \omega_0 \sigma_z \quad \omega_0 = MB_0$$

- "Drive" the system with time dependent interaction, $\mathbf{B}_{\text{int}}(t)$, oscillating near resonance, ω near ω_0, $\hat{H}_{\text{int}} = -\hat{A} \cdot \mathbf{B}_{\text{int}}(t)$

To drive the spin from $|\uparrow_z\rangle \Rightarrow |\uparrow_z\rangle$, the perturbing Hamiltonian must have off-diagonal matrix elements $\Rightarrow \hat{H}_{\text{int}}$ must have term σ_x and/or $\sigma_y \Rightarrow \mathbf{B}_\text{int}(t)$ in x-y plane.

To achieve resonance, consider the following geometry:

In the presence of the static field \mathbf{B}_0, the spin precesses at $\hbar \omega_0 = MB_{0z}$. By applying a transverse field that rotates in the x-y plane, we can achieve perfect resonance, flipping the spin from $|\uparrow_z\rangle$ to $|\downarrow_z\rangle$.
Mathematically, we seek the solution to the time-dependent Schrödinger equation:

\[
\frac{2}{\hbar} \frac{\partial}{\partial t} |\Psi(t)\rangle = -i \frac{\hat{H}(t)}{\hbar} |\Psi(t)\rangle, \quad \hat{H}(t) = \hat{H}_0 + \hat{H}_{\text{int}}(t),
\]

\[
\hat{H}_0 = -\hbar \alpha \hat{B}_1 \cdot \hat{\mathbf{\sigma}} = \frac{\hbar \omega_0}{2} \hat{\sigma}_z, \quad \hat{H}_{\text{int}} = -\mu \cdot \hat{B}_1(t) \hat{\mathbf{\sigma}} = -\frac{\hbar \mu B_x(t)}{2} \hat{\sigma}_x - \frac{\hbar \mu B_y(t)}{2} \hat{\sigma}_y
\]

For the specific case of a rotating transverse field of constant amplitude:

\[
\hat{B}_1(t) = B_{\perp}(\cos(\omega t + \phi) \hat{\mathbf{e}}_x + \sin(\omega t + \phi) \hat{\mathbf{e}}_y) = \hat{\mathbf{B}}_1(t)
\]

\[
\hat{H}_{\text{int}}(t) = -\frac{\hbar \mu B_{\perp}(\cos(\omega t + \phi) \hat{\mathbf{e}}_x + \sin(\omega t + \phi) \hat{\mathbf{e}}_y)}{2} = \frac{\hbar \mu B_{\perp}(\cos(\omega t + \phi) \hat{\mathbf{e}}_x + \sin(\omega t + \phi) \hat{\mathbf{e}}_y)}{2}
\]

\[
= \Omega \text{ the "Rabi frequency" } = \gamma B_1 \text{ (taking } \gamma < 0)
\]

For the geometrical picture, we see that if we go to a rotating frame co-rotating with the rotating field \(\hat{B}_1(t) \), then in that frame, the Hamiltonian is static, and we can trivially integrate the Schrödinger equation.

Going to the rotating frame

We accomplish a frame transformation in quantum mechanics by making a unitary transformation. In the case of magnetic spin resonance, this is a physical rotation; in other cases (as we will see) the frame is abstract, and going to a rotating frame just means shifting the eigenvalues of the Hamiltonian, e.g. the familiar “intermediate picture” in time-dependent perturbation.

Here, we move to rotating frame by rotation about the z-axis by angle \(\omega t \), where \(\omega \) is the frequency of the rotating field \(\hat{B}_1(t) \):

\[
\hat{U}_\text{RF}(t) = e^{-i \frac{\omega t}{2} \hat{\sigma}_z}
\]

Observable in the rotating frame:

\[
\hat{O}_\text{RF}(t) = \hat{U}_\text{RF}(t) \hat{O}(t) \hat{U}_\text{RF}^+(t) \left. \right| \text{Schrödinger Picture}
\]

States in the rotating frame:

\[
|\Psi_\text{RF}(t)\rangle = \hat{U}_\text{RF}(t) |\Psi_S(+)\rangle, \quad \langle \Psi_S(+) | \hat{O}(t) | \Psi_S(+) \rangle = \langle \Psi_\text{RF}(t) | \hat{O}_\text{RF}(t) | \Psi_\text{RF}(t) \rangle
\]
Schrödinger Eqn in the rotating frame:

$$\frac{\hat{H}}{\hbar} \frac{\partial}{\partial t} |\psi(t)\rangle = \frac{\hbar}{2} \left[\left(\hat{U}_R^+ \right)^\dagger \hat{U}_S |\psi(t)\rangle \right] + \left[\frac{\hbar}{2} \frac{\partial}{\partial t} \hat{U}_R^+ \right] |\psi(t)\rangle$$

$$= \frac{\hbar}{2} \frac{\partial}{\partial t} |\psi(t)\rangle = \left[\hat{U}_R^+ \hat{A}_s(t) + \frac{\hbar}{2} \frac{\partial \hat{U}_R^+}{\partial t} \right] |\psi(t)\rangle = \left[\hat{U}_R^+ \hat{A}_s \hat{U}_R + \frac{\hbar}{2} \frac{\partial \hat{U}_R}{\partial t} \right] |\psi(t)\rangle$$

New Hamiltonian in the rotating frame:

$$\hat{H}_R = \hat{U}_R^+ \hat{A}_s \hat{U}_R - \frac{\hbar}{2} \omega \hat{S}_z, \quad \hat{A}_s = \hat{h}_\omega \hat{S}_z + \frac{\hbar}{2} \Omega \left(e^{i(\omega t + \theta)} \hat{\sigma}_+ + e^{-i(\omega t + \theta)} \hat{\sigma}_- \right)$$

$$\Rightarrow \hat{H}_R = -\frac{\hbar}{2} (\omega - \omega_0) \hat{S}_z + \hbar \Omega \left(e^{-i(\omega t + \theta)} \hat{U}_R^+ \hat{\sigma}_+ \hat{U}_R + e^{i(\omega t + \theta)} \hat{U}_R^+ \hat{\sigma}_- \hat{U}_R \right)$$

I leave it to a simple exercise to show: $\hat{U}_R^+ \hat{\sigma}_+ \hat{U}_R = e^{i\omega t} \hat{\sigma}_+$

$$\Rightarrow \hat{H}_R = -\frac{\hbar}{2} \Delta \hat{S}_z + \frac{\hbar}{2} \Omega \left(e^{i\phi} \hat{\sigma}_+ + e^{-i\phi} \hat{\sigma}_- \right) = -\frac{\hbar}{2} \Delta \hat{S}_z + \frac{\hbar}{2} \Omega \left(\cos \phi \hat{S}_x + \sin \phi \hat{S}_y \right)$$

$$\Delta = \omega - \omega_0 \text{ (detuning)}, \quad \Omega = \gamma B_\perp \text{ (Rabi frequency)}$$

$$\hat{H}_R \text{ is time-independent as expected.}$$

$$\hat{A}_R = \frac{\hbar}{2} \Pi_{\text{tot}} \hat{S}_z, \quad \Pi_{\text{tot}} = -\Delta \hat{S}_z + \Omega \hat{S}_\perp \left(\hat{S}_\perp = \hat{S}_x \cos \phi + \hat{S}_y \sin \phi \right)$$

General solution: $|\psi_R(t)\rangle = e^{-i\hat{H}_R t} |\psi_R(0)\rangle = \hat{U}_{\text{Rabi}}(t) |\psi_R(0)\rangle$

$$\hat{U}_{\text{Rabi}} = e^{-i\frac{\Omega}{2} \hat{S}_x} : \text{Rotation on the Bloch sphere}$$

Generalized Rabi frequency:

$$\hat{S}_{\text{tot}} = |\Pi_{\text{tot}}| = \sqrt{\Omega^2 + \Delta^2}$$

Axis of rotation:

$$\vec{e}_a = \frac{\vec{\Pi}_{\text{tot}}}{|\Pi_{\text{tot}}|} = -\Delta \vec{e}_z + \Omega \vec{e}_\perp$$

"Generalized Rabi frequency"
Consider the case $\Delta = 0$ (on resonance)

\[
\hat{H}_{RF} = \frac{\hbar \Omega}{2} \hat{e}_z(t) \cdot \hat{\sigma} = \frac{\hbar \Omega}{2} \left(\cos \phi \hat{\sigma}_x + \sin \phi \hat{\sigma}_y \right)
\]

$\phi = 0$

$|\phi_0\rangle$

Rabi rotations on Bloch sphere.

On resonance, the Bloch vector precesses from north to south pole about an axis depending on ϕ

Written in terms of the quantum evolution in the rotating frame: $|\psi_{RF}(t)\rangle = \hat{U}_{Rabi} |\phi_0\rangle$

\[
\hat{U}_{Rabi} = e^{-i \frac{\hbar \Omega}{2} t} = \cos \left(\frac{\hbar \Omega t}{2} \right) \hat{1} - i \sin \left(\frac{\hbar \Omega t}{2} \right) \hat{\sigma}_z \cdot \hat{\sigma}
\]

\[
= \cos \left(\frac{\hbar \Omega t}{2} \right) \hat{1} - i \sin \left(\frac{\hbar \Omega t}{2} \right) \left[-\frac{\hbar \Omega t}{2} \hat{\sigma}_z + \frac{\hbar \Omega t}{2} (e^{i \phi} \hat{\sigma}_+ + e^{-i \phi} \hat{\sigma}_-) \right]
\]

On resonance, $|\psi_{RF}(t)\rangle = \hat{U}_{Rabi} |\phi_0\rangle = \cos \left(\frac{\hbar \Omega t}{2} \right) |\phi_0\rangle - i e^{i \phi} \sin \left(\frac{\hbar \Omega t}{2} \right) |\phi_0\rangle$

\[
P_\phi(t) = |\langle \phi_0 | \psi_{RF}(t) \rangle|^2 = \sin^2 \left(\frac{\hbar \Omega t}{2} \right) = \frac{1 - \cos(\hbar \Omega t)}{2}
\]

Rabi flopping ϕ

Population oscillates from $|\phi_0\rangle$ to $|\phi_0\rangle$.

Ex. "π-pulse", $\Omega t = \pi$ \Rightarrow $|\psi_{RF}(\pi)\rangle = -i e^{i \phi} |\phi_0\rangle \equiv |\phi_0\rangle$
A π pulse flips spin-down to spin-up. It represents “perfect absorption.”

But this is not the full story. For suppose we stopped the pulse half-way, i.e. \(\Omega t = \frac{\pi}{2} \).

Ex. “π/2-pulse,” \(\Omega t = \frac{\pi}{2} \) \(\Rightarrow \) \(| \Psi_{\text{RF}} (\frac{\pi}{2N}) \rangle = \frac{1}{\sqrt{2}} (| \z^+ \rangle - i e^{i \phi} | \z^- \rangle) = e^{i \frac{\phi}{2}} | \z^+ \rangle + i e^{i \phi} | \z^- \rangle \)

=) A π/2-pulse of magnetic energy acting on \(| \z^+ \rangle \) creates a 50-50 super-position of \(| \z^+ \rangle \) and \(| \z^- \rangle \) while a phase between them that depends on the phase of the applied oscillator.

An important point is that the evolution is coherent. That is, at all stages of the evolution, the spin is in a coherent super-position of \(| \z^+ \rangle \) and \(| \z^- \rangle \). Stopping the coherent evolution half-way from spin-up to spin-down leaves the system in a 50-50 super-position.

Note. For a 2π-pulse, \(| \Psi (\frac{2\pi}{N}) \rangle = -| \z^+ \rangle \). The accumulation of the phase -1 has no physical effect on a spin-1/2 system. But it reflects the difference between SU(2) rotations and SO(3) rotations in Euclidean 3D space.

General Rabi Solution \(| \Psi_{\text{RF}} (t) \rangle = \hat{\Omega}_{\text{Rabi}} | \Psi (0) \rangle \), with \(| \Psi (0) \rangle = | \z^+ \rangle \)

\[| \Psi_{\text{RF}} (t) \rangle = \left[\cos \left(\frac{\Omega t}{2} \right) + i \frac{\Delta}{\Omega t} \sin \left(\frac{\Omega t}{2} \right) \right] | \z^+ \rangle + \left[-i e^{i \phi} \frac{\Delta}{\Omega t} \sin \left(\frac{\Omega t}{2} \right) \right] | \z^- \rangle \]

\[P_{\z^+} (t) = \left| \langle \z^+ | \Psi_{\text{RF}} (t) \rangle \right|^2 = \frac{\Omega^2}{\Omega^2 + \Delta^2} \sin^2 \left(\frac{\Omega t}{2} \right) = \frac{\Omega^2}{\Omega^2 + \Delta^2} \sin^2 \left(\frac{\Omega_{\text{tot}} t}{2} \right) \]

Off-resonance, there is never unit probability for the spin to go from \(\z^- \Rightarrow \z^+ \).

The probability amplitude also oscillates faster @ \(\Omega_{\text{tot}} = \sqrt{\Omega^2 + \Delta^2} \).
The angle the torque axis with \(N \):
\[-z \text{ axis } \tan \theta_a = \frac{\Omega}{-\Delta} \]
\[\Rightarrow \langle \sigma^x \rangle = \cos 2\theta_a = 2\sin^2 \theta_a - 1 = 2 \frac{\Omega^2}{\Omega^2 + \Delta^2} - 1 = P_{\perp} - P_x \]
\[= 2P_x - 1 \Rightarrow P_x = \frac{\Omega^2}{\Omega^2 + \Delta^2} \]

Rotating wave approximation (RWA)
Suppose that instead of rotating transverse field, we had a linearly oscillating field along a transverse axis, say \(x \)-axis.

\[B_x \cos(\omega t) \hat{e}_x = \frac{B_x}{2} \left[\cos \theta \hat{e}_x + \sin \theta \hat{e}_y \right] + \frac{B_x}{2} \left[\cos \theta \hat{e}_x - \sin \theta \hat{e}_y \right] \]
Right hand circulating \quad Left hand circulating

The linearly oscillating field decomposes into "co-rotating" and "counter-rotating" terms. Only the co-rotating term in near resonance. When \(|\omega - \omega_0| \ll \omega_0\) and \(\Omega \ll \omega_0\), the counter rotating term oscillates so fast in the rotating frame, that its net effect on the Bloch vector is negligible. This is known as the rotating wave approximation (RWA).
Formally, consider the interaction Hamiltonian in the Schrödinger picture:

\[\hat{H}_{\text{int}} = \hat{\mathbf{E}} \cdot \mathbf{B} \cos \omega t = -\frac{k}{2} \mathbf{E} \cdot \mathbf{B} \cos \omega t \hat{\sigma}_x = -\frac{k}{2} \mathbf{E} \cdot \mathbf{B} \left(e^{-i\omega t} + e^{i\omega t} \right) \left(\hat{\sigma}_+ + \hat{\sigma}_- \right) \]

Transforming to the rotating frame:

\[\hat{H}_{\text{rot}} = \frac{k}{2} \mathbf{E} \cdot \mathbf{B} \left(e^{-i\omega t} + e^{i\omega t} \right) \left(\hat{\sigma}_+ e^{i\omega t} + \hat{\sigma}_- e^{-i\omega t} \right) \]

\[= \frac{k}{2} \mathbf{E} \cdot \mathbf{B} \left(\hat{\sigma}_+ + \hat{\sigma}_- \right) \left(e^{i\omega t} \hat{\sigma}_+ + e^{-i\omega t} \hat{\sigma}_- \right) \approx \frac{k\Omega}{2} \left(\hat{\sigma}_+ + \hat{\sigma}_- \right) \]

Counter-rotating terms

Co-rotating terms

\[\Omega = -\mathbf{E} \cdot \mathbf{B} \]

The counter-rotating terms oscillate like 2ω, whereas the characteristic dynamics of the Bloch vector is at rates \(\Omega, \Delta \Rightarrow \) Rapid oscillations average to zero.

This can be made more rigorous using the "method of averages".

Different Representations

When examining the problem of Rabi oscillations, there are a number of different representations:

- Probability amplitudes

In the rotating frame:

\[|\psi_{\text{RF}}\rangle = c_{\uparrow} |\uparrow\rangle + c_{\downarrow} |\downarrow\rangle \]

\[\hat{H}_{\text{RF}} = -\frac{k\Delta}{2} \hat{\sigma}_x + \frac{k\Omega}{2} \hat{\sigma}_x \]

\[(\text{choosing drive phase } \phi = 0) \]

\[\Rightarrow \text{Matrix representation} \]

\[\frac{d}{dt} \begin{bmatrix} c_{\uparrow} \\ c_{\downarrow} \end{bmatrix} = -\frac{i}{2} \begin{bmatrix} \Omega & \Delta \\ \Delta & -\Omega \end{bmatrix} \begin{bmatrix} c_{\uparrow} \\ c_{\downarrow} \end{bmatrix} \Rightarrow \dot{c}_{\uparrow} = -\frac{i}{2} \Omega c_{\downarrow} - \frac{i}{2} \Delta c_{\uparrow} \]

\[\dot{c}_{\downarrow} = -\frac{i}{2} \Delta c_{\uparrow} - \frac{i}{2} \Omega c_{\downarrow} \]

On resonance:

\[\dot{c}_{\uparrow} = -\frac{i}{2} \Omega c_{\downarrow}, \quad \dot{c}_{\downarrow} = \frac{i}{2} \Omega c_{\uparrow} \Rightarrow \dot{c}_{\uparrow} = -\frac{\Omega^2}{4} c_{\uparrow} \] (Schrödinger's equation)

\[\Rightarrow c_{\uparrow}(t) = c_{\uparrow}(0) \cos \left(\frac{\Omega t}{2} \right) + \frac{2}{\Omega} c_{\downarrow}(0) \sin \left(\frac{\Omega t}{2} \right) = c_{\uparrow}(0) \cos \left(\frac{\Omega t}{2} \right) - i c_{\downarrow}(0) \sin \left(\frac{\Omega t}{2} \right) \]

with \(c_{\uparrow}(0) = 0, \quad c_{\downarrow}(0) = 1 \Rightarrow c_{\uparrow}(t) = -i \sin \left(\frac{\Omega t}{2} \right), \quad P_{\uparrow}(t) = \sin^2 \left(\frac{\Omega t}{2} \right) \]

[...continued...]
\[\dot{Q} = \left(\dot{\hat{q}} = (u, v, w) \right) \text{ (in rotating frame)} \]

Heisenberg equations of motion
\[
\frac{d}{dt} \dot{Q} = \dot{\hat{Q}} = \sum_{\text{tot}} \times \dot{Q}
\]

\[
\begin{bmatrix}
\dot{u} \\
\dot{v} \\
\dot{w}
\end{bmatrix} =
\begin{bmatrix}
0 & \Delta & 0 \\
-\Delta & 0 & -\Omega \perp \\
0 & \Omega \perp & 0
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w
\end{bmatrix}
\]

\[\frac{d}{dt} u = \Delta v, \quad \frac{d}{dt} v = -\Delta u - \Omega \perp w, \quad \frac{d}{dt} w = \Omega \perp v \quad \text{"Bloch equations"} \]

Connection to absorption and emission of light by a two-level atom.

Our initial motivation to study two-level quantum systems was to study absorption and emission of light by atoms close to resonance.

The field drives transitions between two (nondegenerate) levels \(|g\rangle \rightarrow |h\rangle \) and \(|e\rangle \rightarrow |f\rangle \). The monochromatic field at the position of the atom is \(\mathbf{E}(r, t) = \text{Re} \left(E_0 e^{i\phi(t)} e^{-i\omega t} \right) \). The total Hamiltonian

\[\hat{H} = \hat{H}_A + \hat{H}_{AL}(t) \]

Atom Hamiltonian \quad Atom-laser interaction Hamiltonian

\[\hat{H}_A = E_g |g\rangle \langle g| + E_e |e\rangle \langle e| - \frac{E_g + E_e}{2} \mathbf{\hat{H}}^2 \]

\[\Omega_\parallel = \frac{E_g - E_e}{\hbar} \] (Bohr's frequency)

We take here \(E_g + E_e = 0 \)

In the dipole approximation:

\[\hat{H}_{AL} = -\frac{\Delta}{2} \cdot \mathbf{E}(r, t) = -\frac{\Delta}{2} e E_0 e^{i\phi(t)} e^{-i\omega t} - \frac{\Delta}{2} e^2 E_0 e^{-i\phi(t)} e^{i\omega t} \]

For conciseness, consider a dipole-allowed \(S \rightarrow P \) atomic transition

\[
\begin{array}{ccc}
m_j & \langle e_1 \rangle & \langle e_2 \rangle & \langle e_3 \rangle \quad \text{excited P-state} \\
\varepsilon = \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon = \varepsilon_1 \\
|g\rangle & \quad \text{ground S-state} \end{array}
\]

According to the dipole selection rules, \(\Delta m_\ell = 0, \pm 1 \). Thus, by choosing the polarization of the laser, we pick a given two-levels.
Consider the $\Delta m = 0$ transition (linear polarization along the quantization axis) so $\tilde{E} \propto \mathbf{r}$

$$\hat{d} \cdot \tilde{E} = \langle e | \langle e | \hat{d} \cdot \tilde{E} | g \rangle + | g \rangle \langle g | \hat{d} \cdot \tilde{E} | e \rangle = \text{deg} \left(\hat{\sigma}_+ + \hat{\sigma}_- \right)$$

where $\text{deg} = \langle e | \hat{d} \cdot \tilde{E} | g \rangle$ is the dipole transition matrix element, which can be chosen real.

$$\Rightarrow \hat{H}_m = -\frac{\text{deg}}{2} \frac{E_0}{\hbar} \left(\hat{\sigma}_+ + \hat{\sigma}_- \right) \left(e^{i \phi} e^{-i \omega_i t} + e^{-i \phi} e^{i \omega_i t} \right)$$

This has the form of a magnetic spin resonance interaction: $\hat{H}_{\text{int}} = \hbar \Omega \hat{\sigma}_x \cos(\omega_i t - \phi)$.

We thus define the Rabi frequency $\Omega = -\text{deg} E_0 = |e| \langle e | \hat{d} \cdot \tilde{E} | g \rangle E_0$. We will drop the label \perp form now on, when not talking about magnetic spin resonance.

When $|\Delta| = |\omega_i - \omega_e| \ll \omega_e$ (near resonance) and $\Delta \ll \omega_e$ we can make the rotating wave approximation.

In the RWA: $\hat{H}_m = \frac{-i\hbar}{2} \left(\hat{\sigma}_+ e^{i \phi} e^{-i \omega_i t} + \hat{\sigma}_- e^{-i \phi} e^{i \omega_i t} \right)$. The Hamiltonian for absorption and emission thus has exactly the form of magnetic spin resonance.

Going to the rotating frame, having made the RWA:

In rotating frame: $\hat{H} = -\frac{\hbar \Delta}{2} \hat{\sigma}_z + \frac{\hbar \Omega}{2} \left(\hat{\sigma}_+ e^{i \phi} + \hat{\sigma}_- e^{-i \phi} \right)$

$$\Delta = \omega_i - \omega_e \quad \Omega = -\frac{\text{deg}}{\hbar} E_0 = -\frac{\langle e | \hat{d} \cdot \tilde{E} | g \rangle E_0}{\hbar}$$

The coherent interaction between the two-level atom and the laser field thus leads to Rabi Folling.

A $\frac{1}{2}$-pulse will create an atom in a coherent 50:50 superposition of $|g\rangle$ and $|e\rangle$.

\[|g\rangle - \frac{i e^{i \phi}}{\sqrt{2}} |e\rangle \]

\[\frac{|g\rangle + i e^{i \phi} |e\rangle}{\sqrt{2}} \]