Physics 522, Spring 2016
Problem Set #5
Due: Thursday Feb. 25, 2016 @ 5PM

Problem 3: The Finite Spherical Well (20 points)

Consider a spherically symmetric potential, \(V(r) = \begin{cases} -V_0 & 0 < r < a \\ 0 & r > a \end{cases} \). Along the radial coordinate, due to the boundary condition at \(r=0 \), this is just the half-finite well we studied in Problem Sets 5 and 6.

(a) For \(E<0 \), the solutions to the T.I.S.E. are bound states. Let \(E = -E_b \). Making the ansatz for the stationary state wave functions \(\psi_{E,J,m}(r,\theta,\phi) = R_{E,J}(r)Y_{l}^{m}(\theta,\phi) \), show that the radial function must have the form,

\[
R_{E,J}(r) = \begin{cases}
A j_l(k_1r) & 0 < r < a \\
A \frac{j_l(k_1r) - h_l^{(1)}(ik\alpha)}{h_l^{(1)}(\alpha)} & r > a
\end{cases}, \quad \text{where} \quad k_1 = \sqrt{\frac{2m}{\hbar^2} (V_0 - E_b)}, \quad \kappa = \sqrt{\frac{2m}{\hbar^2} E_b}.
\]

How would you determine \(A \)?

(b) Show that the binding energies are determined by the transcendental equation

\[
\begin{bmatrix}
\frac{d}{dr}(rj_l(k_1r)) \\
\frac{j_l(k_1r)}{rj_l(k_1r)}
\end{bmatrix}_{r=a} = \begin{bmatrix}
\frac{d}{dr}\left(r h_l^{(1)}(ik\kappa) \right) \\
\frac{h_l^{(1)}(ik\kappa)}{r h_l^{(1)}(ik\kappa)}
\end{bmatrix}_{r=a}.
\]

Does this reduce to the expected solution of s-states (i.e. \(l = 0 \)).

(c) Now consider the unbound states. We seek the scattering phase shift for the asymptotic incoming and outgoing partial waves, as discussed in Lecture.
Show that the phase satisfies the equation

\[
\left(\frac{r_j(qr)}{d/dr[r_j(qr)]} \right)_{r=a} = \left(\frac{r(\cos(\delta_l/2)j_{l}(kr) - \sin(\delta_l/2)n_{l}(kr))}{d/dr[r(\cos(\delta_l/2)j_{l}(ka) - \sin(\delta_l/2)n_{l}(kr))] \right)_{r=a},
\]

where \(k = \sqrt{\frac{2m}{\hbar^2}} E \) and \(q = \sqrt{\frac{2m}{\hbar^2}} (E + V_0) \).

Check that this limits to the expected result for s-wave (\(l=0 \)).

Problem 2: The 3D Isotropic Simple Harmonic Oscillator. (20 points)

Consider a particle of mass \(m \) moving in a three dimensional isotropic SHO, with frequency \(\omega \).

(a) Since the problem is separable in Cartesian coordinates, show that the energy eigenvalues are

\[
E_n = \hbar \omega (n + 3/2), \quad \text{where } n = 0,1,2,... \quad \text{Show that the degeneracy is } g_n = \frac{(n+1)(n+2)}{2}.
\]

(b) The degeneracy is of course stemming from the rotational symmetry of the problem. Let us now seek simultaneous eigenfunctions of \(\{ \hat{H}, \hat{L}_r^2, \hat{L}_z \} \) and separate in spherical coordinates, so that the wave function is \(\psi_{n,l,m}(r,\theta,\phi) = \frac{u_{n,m}(r)}{r} Y_{l,m}(\theta,\phi) \). Defining the usual dimensionless variables \(\xi \equiv r / r_c, \quad \varepsilon \equiv E / \hbar \omega \), (where \(r_c = \sqrt{\hbar / m \omega} \)), write the radial equation of the reduced radial wave function in dimensionless units, and show that it must have the form,

\[
u_{n,l}(\xi) = r^{l+1} e^{-\xi^2 / 2} F_{n,l}(\xi),
\]

where \(F_{n,l}(\xi) \) is constant near the origin, and does not blow up faster than \(e^{\xi^2} \) for large \(\xi \).
(c) Show that in fact, the radial wave functions are,

\[R_{nr,l}(r) = r^l e^{-r^2/2} L_{n-1/2}^l (r^2), \] (unnormalized)

where \(L_p^q(x) \) are the associated Laguerre polynomials.

\[E_{nr,m} = \hbar \omega (2n_r + l + 3/2) = \hbar \omega (n + 3/2), \]

where the “principal quantum number” is defined by \(n = 2n_r + l \). Sketch the first three degenerate energy levels, and label the \(s,p,d \) states. Show again that the degeneracy of the energy eigenvalues you found are as in part (a).

Problem 3: Hydrogenic atoms and atomic units. (15 points)

Consider the “hydrogenic” atoms - that is bound-states of two oppositely charged particles:

(i) The hydrogen atom: Binding of an electron and proton.

(ii) Heavy ion: Single electron bound to a nucleus of mass \(M \), charge \(Z e \) (say \(Z=50 \)).

(iii) Muonium: Muon bound to a proton

(iv) Positronium: Bound state of an electron and a positron (anti-electron)

(a) For each, using the charges, reduced mass, and the unit \(\hbar \), determine the characteristic scales of:

- Length, energy, time, momentum, internal electric field, and electric dipole moment.

Please give numerical values as well as the expressions in terms of the fundamental constants.

(b) Now add the speed of light \(c \) into the mix. Find characteristic velocity in units of \(c \), magnetic field, and magnetic moment. Show that for the particular case of hydrogen the characteristic velocity is \(v/c = \alpha = \frac{e^2}{\hbar c} (\text{cgs}) \approx 1 / 137 \), the “fine-structure” constant, and that the Bohr radius, Compton wavelength, and “classical electron radius”, differ by powers of \(\alpha \) according to,

\[r_{\text{class}} = \alpha \lambda_{\text{compton}} = \alpha^2 a_0 \]

(c) What is the characteristic magnetic field and magnetic dipole moment?