Office Hours: Wed. 10:00-11:00, Room 23
Problem Session: TBA
Quantum
optics is a broad and varied subject that deals with the study, control, and
manipulation of quantum coherence associated with electromagnetic fields. This
includes nonclassical optical media, the basic interaction of photons and
atoms, and the nonclassical nature of the electromagnetic field itself.
Quantum optics is the natural arena for experimental tests of the foundations
of quantum mechanics and measurement, especially in the context of open,
nonequilibrium quantum systems. Most recently, developments in theory and
experiment have led to the possibility of applying the coherent control of
quantum optical systems to perform completely new information-processing
paradigms such as quantum communication and quantum computation.
In this year long course will develop the tools necessary to analyze these
problems and apply them to contemporary research problems. Topics to be
studied include:
Quantum Optics I (Physics 566)
- Quantum and classical coherence
- Atom-photon coupling and atomic coherence
- The quantum electromagnetic vacuum
- Nonclassical light and photon statistics
Quantum Optics II (Physics 581)
- Quantum optical particles and waves (discrete and continuous variables)
- Foundations of entanglement and quantum maps
- Open quantum systems and decoherence
- Quantum trajectories and continuous measurement
- Fundamental paradigms in quantum optics (cavity QED, ion and neutral atom
traps, entangled light)
- Applications in quantum information science (quantum communication,
computation, metrology)
"Recommended" Texts (none required):
* Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light - Gryberg, Aspect, Fabre
* Quantum Optics - Scully and Zubairy,
* Quantum Optics, by R. Y. Chiao and J. C. Garrision
* Quantum Optics, by M. Fox
We will not be following any of these texts directly . They all have strengths in different areas and are good to have on your bookshelf.
Grading:
* Problem Sets (5-8 assignments) 75%
* Final Project 25%
* Problem sets will be available on the web, about every other week. Generally assignments will be due in class, Tuesdays.
Phys. 581: Quantum Optics II
I. Nonclassical Light
A. Nonlinear
optics and nonclassical light.
B. Squeezed
states.
C. Homodyne
detection.
D. Phase space methods -- Quasiprobability distributions, P-Glauber, Q-Husimi,
W-Wigner functions.
E.
Correlated twin photons.
II. Foundations
A. Bipartite entanglement.
B. EPR and
Bell’s Inequalities, finite and infinite dimensional systems.
C.
Completely-positive map, Kraus operators, and POVMs.
III. Open quantum systems
A. System-reservoir interactions.
B. Born-Markoff approximation and the Lindblad Master Equation.
C.
Phase-space representation: Fokker-Planck equation.
D.
Heisenberg-Langevin equation.
III. Continuous measurement
A. Quantum trajectories – different unravelings of the Master Equation.
B. Quantum Monte-Carlo wave functions.
C. The
stochastic Schrödinger equation.
D. Quantum
filtering theory.
IV. Fundamental Paradigms of quantum optics
A. Cavity QED (from atoms to superconductors)
B. Ion
traps.
C. Cold
neutral atom ensembles.
D.
Correlated photons and squeezed states.
V. Applications in quantum information processing
A. Quantum communication
B. Quantum
computation
C. Quantum
metrology
Jan. 21 |
Review: Quantum Optics, Coherence, and Quantum Fields |
|
Jan. 23 |
Continuous variables: Squeezed states, general properties |
|
Jan. 28 |
Quadratures, shot noise, and homodyne detection |
|
Jan. 30 |
Introduction to nonlinear optics and the generation of nonclassical light
|
|
Feb. 4 |
Linear optics, three-wave mixing |
No Podcast -- Sorry |
Feb. 6 |
Production of Squeezed Sates Parametric Downconversion |
|
Feb. 11 |
Quasiprobability functions Wigner (W), Husmi (Q), and Glauber (P) |
|
Feb. 13 |
Continuation |
|
Feb. 18 |
Tensor product structure and entanglement |
|
Feb. 20 |
No lecture -- SQuInT |
|
Feb. 25 |
Continuation |
|
Feb. 26 |
Entanglement and different degrees of freedom |
|
Feb. 27
|
Entanaglement in quantum optics - particles and waves Twin photon pairs and two-mode squeezing |
|
Mar. 6 |
Continuation |
|
Mar. 11
|
Test of Bell's Inequalities in Quantum Optics |
|
Mar. 13 |
Intro to open quantum systems: Quantum operations, CP maps, Kraus Representation |
|
Mar. 17-21 |
Spring Break |
|
Mar. 25 |
Irreverisble bipartite system-reservoir interaction. Markov approximation - Lindblad Master Equation |
|
Mar. 27 |
Continuation
|
|
Apr. 1 |
Make-up |
|
Apr. 5 |
Examples of Master Equation Evolution: Damped two-level atom, damped SHO |
|
Apr. 8 |
Continuation |
|
Apr. 10 |
Fokker-Planck Equation and Decoherence |
|
Apr. 15 |
Heisenberg-Langevin formulation of open quantum systems Fluctuation-dissipation |
|
Apr. 17 |
Quantum Trajectories I Master equation: quantum jump picture
|
|
Apr. 22 |
Quantum Trajectories II Quantum Monte-Carlo Wave Function Algorithm
|
|
Apr. 24 |
Quantum Trajectories III Different Unravelings of the Master Equation
|
|
Apr. 29 |
Continuation
|
|
May 1 |
Quantum Trajectories IV Quantum State Diffusion |
|
May 6 |
Continuous Measurement -- The Stochastic Schrödinger Equation |
|
May 8 |
Case study -- Spin squeezing |
Problem Set #1
|
Problem Set #2
|
Problem Set #3
|
Problem
Set #4
|